Molecular Biology: Open Access

ER-α 36, A Novel Biomarker for ER-Negative Breast Cancer

Yang Wang1 and Wei Zou2*3

1Department of Medical Microbiology and Immunology, Creighton University, Omaha, USA
2College of Life Science, LiaoNing Normal University, Dalian 116081, USA
3Liaoning Key Laboratories of Biotechnology and Molarcl Drug Research and Development, Dalian, 116081, USA

Breast cancer is one of the most common cancers among women in the world. The expression level of estrogen receptor-alpha (ER-α) is an important diagnostic factor for breast cancer. ER-α is a 66 kDa, ligand-induced transcription factor [1]. Tamoxifen has been proven as a successful treatment for ER-positive breast cancer for decades; however, some breast tumors are finally resistant to tamoxifen therapy. The molecular mechanisms underlying tamoxifen resistance is still largely unknown.

A novel variant of ER-α with molecular weight of 36 kDa was identified and cloned in Cav-1 insufficient human Mammalian epithelia by Dr. Wang, named ER-α36. ER-α36 is predicted to act as a dominant-negative effector of ER-α66-mediated estrogen-responsive gene pathways [2]. ER-α36 protein lacks ligand-dependent and -independent transactivation domains (AF-1 and AF-2), but it retains DNA-binding, partial dimerization and ligand-binding domains. ER-α36 possesses a unique 27 amino acid domain at the C-terminal that replaces the last 138 amino acids encoded by exons 7 and 8 of ER-α66 gene [3]. ER-α36 mediated non-genomic estrogen signaling pathways has been proven by many studies.

Zhang et al. demonstrated that ER-α36 mediated non-genomic estrogen signaling pathway through EGFR/Src/ERK and was expressed highly in ER-negative breast cancer cells. ER-α36 interacted with EGFR/Src/Shc complex through AP1 site in the ER-α36 promoter region and mediated estrogen-induced phosphorylation of EGFR and Src [4]. They also found that cells with high ER-α36 expression became more sensitive to estrogen, activating ERK phosphorylation [5,6].

Our previous study demonstrated that Caveolin-1 downregulation activates the MEK/ERK and PI3K/AKT pathway, which in turn accelerates the growth of cells [7]. Deng et al. found that ER-α36 mediated rapid estrogen signaling via AKT/GSK3b pathway played an important role in the regulation of ER-positive breast cancer stem/progenitor cells [8]. Zhang et al. transfected an ER-α36-specific microRNA hairpin vector into MDA-MB-231 cells and established ER-α36 stable knockdown cell line. They found that these cells were more sensitive to paclitaxel; c-Jun N-terminal kinase pathway. Down regulation of ER-α36 also resulted in decreasing of invasion and migration, which were estrogen independent [9].

Overexpression of HER2 in breast cancer cells has been proven responding poorly to tamoxifen therapy. Yin et al. found that increased ER-α36 level by ER-α36-EGFR/HER2 loops is one of the mechanisms by which ER-positive breast cancer cells resist tamoxifen therapy [10]. They also reported that high expression of ER-α36 in breast cancer cells were resistant to tamoxifen and down regulation of ER-α36 in tamoxifen resistant cells could restore tamoxifen sensitivity, indicating that regained ER-α36 expression is one of the potential mechanisms of tamoxifen resistance. They suggested novel therapy for tamoxifen resistant patients may target the ER-α36-EGFR/HER2 loops [11].

These findings revealed that ER-α36 may be a novel target for treating ER-negative breast cancers. Thus, ER-α36 may be a novel biomarker for diagnosis and prognosis of ER-negative breast cancer [12]. SNG-162 (Icaritin) is first-in-class small molecule specifically targeted at ER-α36 for breast cancer and liver cancer treatment discovered by Shenzhen Pharma Group. Icaritin got Investigational New Drug approval in 2009 and completed phase I clinical trial by Dr. Xu at Cancer Institute and Hospital, Chinese Academy of Medical Sciences in China. Icaritin had been approved for phase II/III clinical trials in 2013. Recently, Icaritin phase II clinical trial is progressing simultaneously in many hospitals by Dr. Sun.

References


*Corresponding author: Yang Wang, Department of Medical Microbiology and Immunology, Creighton University, Omaha, USA, E-mail: weizou60@126.com

Received September 21, 2016; Accepted September 21, 2016; Published September 28, 2016


Copyright: © 2016 Wang Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.