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Introduction
Nearly half of the adult U.S population, 117 million people, lives 

with one or more chronic disease today, according to the Center for 
Disease Control. Seventy-five percent of the total U.S health care 
budget, amounting to almost $1.5 trillion dollars per year is spent 
on chronic diseases such as diabetes, heart disease, stroke, cancer, 
obesity, and asthma [1]. On a global scale, chronic diseases are now the 
leading cause of morbidity and mortality and are becoming a serious 
burden for both developed and developing countries [2]. While the 
global prevalence and related costs have become impossible to ignore, 
often times what is forgotten is that well over half of these diseases are 
preventable through modifications to lifestyle and health behaviors 
such as diet, exercise, or other environmental exposures [1].

Epigenetics, a fairly new scientific field, targets the particular 
chemical pathways through which these modifiable factors such as diet 
and lifestyle choices can alter gene expression, determining the onset 
and development of chronic diseases. The chemical molecules involved 
in these pathways that alter gene expression independent from changes 
in the DNA sequence can be naturally produced by our bodies, 
consumed through our diet, or we can be exposed to them through the 
environment. This article will outline the emergence of the epigenetic 
field and the epigenetic mechanisms discovered to be associated 
with changes in gene expression. The majority of the article will then 
discuss current research that focuses on how environmental influences 
throughout an organism’s life can modulate the susceptibility and 
prevention of chronic diseases through epigenetic events.

The Emergence of Epigenetics
In 1808, Jean-Baptiste de Lamarck provided one of the first theories 

for evolution, proposing that an organism could pass on traits acquired 
in its lifetime to its offspring [3]. Based on observations, Lamarck 
theorized that the environment had the greatest influence on the 
evolution of species over time as those characteristics that were useful 
to a particular organism were retained and passed on to offspring while 
those characteristics that were not useful were lost in future generations 
[4]. For example, according to Lamarck’s theory of evolution, the long 
neck of the giraffe was developed as an adaptation to the environment; 
as they stretched their necks to reach the leaves on the tallest trees, 
their necks gradually lengthened and the offspring acquired longer 
necks over time, through this mechanism called ‘soft inheritance’ [5]. 
‘Soft inheritance’ hypothesized that traits did not remain constant 

between different generations; instead they changed in response to 
environmental influences.

However, scientific contributions during the 19th and early 20th 
centuries including Darwin’s theory of natural selection, Mendelian 
genetic theory, and Weismann’s theory of germplasm, led to the 
emergence of the theory of ‘modern evolutionary synthesis’ [6]. The 
‘modern evolutionary synthesis’, as opposed to Lamarck’s theory of 
evolution, was supported by experimental data from several branches 
of biology and it was rooted in ‘hard inheritance’ which assumed that 
hereditary material remained constant and was inherited through 
DNA in the form of genes [7,8]. While the ‘modern evolutionary 
synthesis’ based in ‘hard inheritance’ has provided the foundation for 
biological fields today, recently, Lamarck’s simple observation of ‘soft 
inheritance’ has been a motivation for a field of genetic study called 
epigenetics. The word epigenetics directly translates to “above genetics” 
and today it encompasses the study of any change in phenotype or gene 
expression caused by molecular mechanisms other than changes in the 
DNA sequence [9-12]. 

A great illustration of an epigenetic process is observed in eusocial 
insects such as the honeybee [13]. As larvae, the honeybee queen and 
the worker bees are genetically identical, but the queen bees live for 
one to three years and produce up to 2,000 eggs per day while the 
worker bees are sterile and their lifespan is less than two weeks. The 
differences start after hatching, as the larvae who are fed small portions 
of pollen and nectar become worker bees and constantly work to 
clean comb cells and forage for food while the larvae fed ‘royal jelly’ 
in large quantities for long periods of time become the queen bees and 
do not engage in any work. Thus, while both the queen bees and the 
worker bees have identical genetic information as larvae, it has been 
elucidated through recent genomic studies, that the different diets and 
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activity levels of the honey bees induce changes in the expression of 
particular gene pathways for development [14]. This example along 
with current epigenetic research involving animal and human models 
reinforce that soft inheritance, the generation of a phenotype that is not 
rigidly determined by DNA, can be modulated by diet, activity level, 
and other environmental stimulants [15]. Additionally, one of the 
most fascinating facets of epigenetics is ‘transgenerational epigenetics’ 
which involves phenotypic traits that are not genetically determined 
that are passed onto future generations. Thus, because epigenetic 
modifications alter gene expression but not the DNA sequence itself, 
studying the specific epigenetic mechanisms as well as the physiological 
and transgenerational effects of epigenetics can reveal biomarkers for 
disease susceptibility, detection, and prevention.

Specific Epigenetic Mechanisms
The genome contains all of the information for the proper 

physiological and psychological functioning of an organism. However, 
regulation is necessary in order to express the proper genes at the 
proper times and in proper order and correct tissues in that organism. 
For example, gene silencing occurs during gamete development where 
some genes are imprinted by the methylation of DNA and are not 
expressed. Imprinting of genes is gender and individual specific, thus, 
offspring inheriting one copy of an imprinted gene from one parent 
and a non-imprinted gene from the other parent will only express the 
latter [16]. DNA methylation is just one example of an epigenetic ‘mark’ 
or ‘tag’. The other well studied biological processes that modulate 
epigenetic events include histone modification, and non-coding RNA.

DNA methylation constitutes covalent additions of methyl groups 
often at the 5’ position of a cytosine ring in eukaryotes [17-19]. While 
the methylation pattern of the parent DNA serves as a template for the 
newly synthesized DNA, methylation processes can also occur at sites 
along the nucleotide that were previously unmethylated. This process 
is called ‘de novo methylation’ and when it occurs at promoter regions 
it is usually associated with the underexpression or silencing of genes 
[20-22]. However, hypermethylation sometimes prevents the binding 
of inhibitory factors so it can result in overexpression of certain genes 
as well [23].

Histone modification, a second epigenetic mechanism, can include 
the methylation, acetylation, phosphorylation, ubiquitination, and 
ADP ribosylation of chromosome packaging proteins [24]. These 
molecular changes alter the level of condensation of the chromatin, 
thus, defining the area that is accessible for transcription [25-27].

Non-coding microRNAs (miRNAs) also play a role in epigenetic 
regulation by interfering with the expression of several important 
proteins responsible for DNA and histone methylation and acetylation. 
Typically, these miRNAs are less than 25 nucleotides in length and they 
interfere post-transcriptionally with RNA by repressing the expression 
of hundreds of target genes [28,29]. Self-sustaining loops and structural 
inheritance also impact epigenetic events but these mechanisms are less 
understood and will not be discussed in length in this article. Instead, 
the focus will remain on how DNA methylation, histone modifications, 
and noncoding RNA act in concert to make molecular modifications to 
DNA contributing to disease susceptibility and expression [10,30,31].

Epigenetic Mechanisms that Impact Disease 
Development

Epigenetic research has significant potential for improving the 
detection of disease risk and possible disease prevention strategies, 
specifically, by targeting the complex interactions between diet, 

lifestyle, genetics, and disease. Epigenetic changes occur most often 
during gestation, neonatal development, puberty, and old age [9]. 
However, animal studies and human epidemiologic data suggest that 
long-term epigenetic changes that manifest in disease phenotypes are 
especially critical during the prenatal and neonatal stages as well as 
during times of ‘dietary transition’ in adulthood [32-35]. 

Early Life Programming for Disease Susceptibility
The link between the fetal environment and development of 

several chronic diseases was originally observed by David Barker 
in the early 1900’s and is often described as the ‘Developmental 
Origins of Adult Health and Disease Hypothesis’ (DOHaD) or the 
‘fetal programming hypothesis’. His studies utilized birth weight as a 
marker for intrauterine nutrition and showed an inverse relationship 
between birth weight and risk of hypertension, cardiovascular disease, 
and type II diabetes in adulthood [36,37]. Countless studies have 
supported the DOHaD and have confirmed that environmental stimuli 
such as nutrition during fetal development can lead to an increased 
risk for developing various chronic diseases during adulthood by 
permanently modifying the expression of genes involved in cell 
structure and function [38-40]. Offspring of mothers who were severely 
undernourished during the Dutch Famine of 1944, showed reduced 
glucose tolerance, raised insulin concentrations at age 50, double the 
incidence of cardiovascular disease, and a five-fold increase in risk of 
breast cancer in offspring later in life as compared to controls [41,42]. 
Importantly, it was interpreted through these famine cohort studies 
that severe calorie restriction during early gestation had greater adverse 
health effects than restriction in later pregnancy periods [43]. Today, 
the periconception period of pregnancy has been identified as the most 
sensitive period to poor maternal nutrition because certain epigenetic 
modifications from the egg and sperm can be erased and new marks 
are established for long-term epigenetic reprogramming [44,45]. In 
contrast, in selected cases of transgenerational epigenetic inheritance, 
the epigenetic modifications are inherited and not removed or cleansed 
at conception. Both cleansing and inheritance are possible; we do not 
know why they are cleansed in some cases and not in others.

Not only is sufficient calorie intake important, but the quality of the 
calories ingested is just as critical in shaping the epigenome of offspring 
and preventing disease. One experiment examined how maternal 
nutrition could alter the expression of the agouti gene in mice. The 
agouti gene, a homolog of which is also found in humans, codes for 
a brown coat color in mice and low disease risk when methylated and 
codes for a yellow, obese mouse prone to diabetes and cancer when the 
gene is unmethylated. The human homolog is found in adipocytes and 
leads to abnormal fat metabolism. The results showed that the pregnant 
mice that were fed a methyl rich diet gave birth to mostly brown 
healthy pups that remained healthy for life [46]. Discoveries such as 
these imply that optimal nutrition during pregnancy should include 
methyl-donor nutrients such as folic acid, B vitamins, and S-Adenosyl-
L-Methionine (SAM-e) that can prevent or reverse epigenetic changes 
due to methylation modifications that could manifest in disease 
phenotypes later in life [47,48].

Another contribution which has been elucidated through an 
ovine model has shown that maternal undernutrition can lead to 
the hypomethylation and increased histone acetylation of certain 
promoters in hypothalamic peptides that regulate the appetite and 
energy expenditure in offspring. Other consequences of maternal 
undernutrition are disturbances in skeletal muscle development and 
increased visceral fat deposits in offspring, which correspond to DNA 
methylation patterns of particular gene promoters in rat models [49-52].
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In addition to the effects of maternal undernutrition, there is a 
growing wealth of experimental evidence revealing that maternal 
obesity and high fat diets lead to the predisposition for chronic 
metabolic deficiencies in offspring. For example, maternal high fat 
diets have thus far been associated with life-long hyperglycemia, insulin 
resistance, increased fat deposition, and obesity in offspring [53]. 
In certain studies, independent maternal obesity or diabetes status, 
maternal high fat diet during pregnancy alone, has led to diabetes 
related conditions in offspring such as impaired glucose tolerance of 
the B-cells and impaired insulin secretion of the pancreas [54].

Paternal effects also have a significant role in affecting offspring 
development as demonstrated through several animal models such 
as fruit flies, mice, non-human primates, and humans [55-57]. For 
example, human studies have uncovered a relationship between 
paternal obesity and changes in sperm count, concentration, motility, 
and morphology that lead to an increased possibility of sperm DNA 
damage [58]. One cannot blame mothers or fathers as each may confer 
transgenerational effects.

Studies within the past year have identified that paternal obesity 
is also associated with hypomethylation of the imprinted insulin-
like growth factor gene (IGF2) in offspring which can result in 
malfunctioning of many physiological processes, potentially leading to 
chronic diseases in adulthood [59]. Additionally, low birth weight in 
both male and female offspring as well as higher levels of adiposity, 
B-cell dysfunction, and risk of diabetes in female offspring have been 
linked to paternal high fat diets [60,61].

Compelling studies also indicate that intrauterine exposure to 
chemical toxicants during pregnancy such as cigarette smoke, alcohol 
consumption, and antibiotics have all been associated with low birth 
weight, and DNA methylation modifications [62-64] (Figure 1).

Impacts for Disease Susceptibility during Adult 
Development

Epigenetic research involving monozygotic twins, who are born 
with identical genomes, yet exhibit different phenotypes later in life, are 
an excellent example of how impactful environmental factors can be in 
the developmental plasticity of organisms. These identical twin studies 
have demonstrated a correlation between phenotypic differences such 
as disease with changes in DNA methylation patterns [65]. Similar 
to nutrition during pregnancy, nutrition during adult development 
is a key environmental signal that can be integrated into the genome 
and can cause changes in gene expression of health and disease 
phenotypes [66,67]. This dynamic relationship between nutrition and 
genes throughout an organism’s lifetime has now been recognized 

as a subfield called Nutritional Epigenomics or ‘Nutrigenomics’ and 
provides promising insight for how to target disease from a nutritional 
standpoint [68].

In adults, the most critical times that dietary factors can influence 
the epigenome are during periods of “Dietary Transition” in which 
either an excess or deficiency of certain nutrients are consumed (protein 
deficiency, caloric restriction, or chronic high fat feeding) and last for 
a long duration of time [69-71]. These changes can be subtle, may 
be expressed over long periods, or may result in permanent changes 
in gene expression as in the case with most epigenetically associated 
changes for disease risk. Chronic high fat feeding has been shown to 
alter the DNA methylation pattern of genes that regulate food intake 
in mice, contributing to the development of obesity and obesity related 
illnesses [70]. Also, possible transgenerational effects of high fat feeding 
have been explored in recent studies and results from animal models 
suggest that epigenetic modifications can accumulate in successive 
generation leading to predisposition for metabolic phenotypes such as 
lipogenesis or beta cell dysfunction and may be functions of the human 
agouti homolog gene [72].

Caloric restriction, on the other hand, has shown a positive 
correlation with disease prevention by increasing lifespan and 
delaying the onset of cardiovascular disease, type II diabetes and 
forms of cancer [73,74]. Recent data supports that caloric restriction 
results in chromatin remodeling which leads to lifespan extension, 
and it reverses onset of these aging-related degenerative diseases 
by stabilizing the genome through various epigenetic mechanisms 
[75]. There are also many chemicals and additives that contribute to 
epigenetic modifications upon exposure, and can lead to physiological 
changes. One well documented scientific example that has also gained 
popularity through the media, is exposure to Bisphenol A (BPA), a 
compound found in polycarbonate plastic that alters the epigenetic 
programming leading to endocrine disruption which can increase risk 
for diabetes, cancers, reproductive problems, early puberty, and obesity  
[76,77].

Exercise has also been known to be a protective factor against the 
risk of cardiovascular disease, cancer, and type II diabetes by altering 
the gene expression in multiple tissues. Recent epigenetic studies 
have uncovered that increased levels of physical activity results in the 
methylation of individual genes and global methylation remodeling 
which contributes to changes in metabolic function associated with the 
decreased risk of chronic diseases [78-81]. For example, exercise has 
shown to alter the expression of genes involved in improved lipid and 
glucose metabolism as well as muscle tissue, leading to improvements 
in glucose homeostasis and decreased blood pressure [82-89]. These 
changes have been linked to exercise-induced molecular modifications 
such as the hypomethylation of skeletal muscle genes, changes made 
to the actions of cytosolic messengers such as calcium and AMP, 
as well as the increased expression of the GLUT4 gene [78,83,84]. 
Exercise has also shown to protect against inflammatory environments 
which promote carcinogenesis and the development of other age-
related diseases by decreasing the expression of the ASC gene through 
upregulating methylation [85,86]. Results from a six month exercise 
intervention performed this past year have also helped to support 
that the DNA methylation of many genes in both skeletal muscle and 
adipose tissue change in response to exercise [87]. In a contrasting 
study in which subjects were to mimic the sedentary lifestyle of today’s 
society by participating in nine days of bed rest, the opposite results of 
the exercise intervention study were found to be true [88]. Not only 
has exercise been studied as prevention for chronic disease but there 
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Figure 1: Example showing epigenetic factors involved in health and wellness. 
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is promise for the use of exercise as forms of treatment as well. The 
beginnings of this type of treatment experimentation suggest that 
regular exercise can affect epigenetic regulation of tumor suppressor 
genes in cancer patients, and decrease susceptibility to several diseases 
associated with chronic inflammation such as type II diabetes, arthritis, 
and atherosclerosis [89,90]. 

Conclusion
Epigenetics research offers us a vehicle to better understand the 

many aspects of diet, lifestyle factors, exercise, and environmental 
factors that contribute to chronic disease prevalence and susceptibility, 
specifically those aspects that are not rigidly determined by our genes 
but those that we have control over. This article has detailed the recent 
evolution of the field of epigenetics as well as current knowledge 
regarding how the biological mechanisms that regulate gene expression 
are correlated with the expression of disease phenotypes. The stages 
of life most vulnerable to epigenetic change as well as the most 
influential environmental factors that lead to these changes have also 
been identified. However, there is much more to discover, especially, 
regarding the permanence of epigenetic changes and the ability to 
transfer those alterations, trangenerationally. The field of epigenetics 
offers alternative disease treatment discoveries that could lead to the 
better management of chronic diseases through prevention tactics such 
as nutrition and exercise interventions as well as drug development that 
specifically target the epigenetic pathways and reverse epigenetic marks 
associated with disease. Arguably, the most important contribution is 
that epigenetic research has provided a molecularly based incentive for 
individuals and populations to invest in healthy nutrition and lifestyle 
behaviors to improve health outcomes for individuals presently and for 
future generations.   
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