

Epigenetics: Diverse Influences on Health, Disease, Therapy

Kaori Nakamura*

Department of Clinical Neurology, University of Padua, Padua, Italy

Introduction

Epigenetics plays a crucial role across a spectrum of biological processes and disease contexts. Here's a look at how epigenetic modulation impacts various aspects of health and biology. Specifically, research highlights how epigenetics influences cancer stem cells, which are key players in tumor growth and resistance to treatment. It breaks down the specific mechanisms involved, like DNA methylation and histone modifications, and then discusses how we can target these pathways therapeutically. The big idea here is finding new ways to treat cancer by modulating these epigenetic changes in cancer stem cells[1].

What's interesting in this piece is the exploration of epigenetic changes in Alzheimer's disease. The authors review how things like DNA methylation, histone modifications, and non-coding RNAs are altered in AD, impacting gene expression and disease progression. They also look at potential new drug targets that could modulate these epigenetic pathways to slow down or even prevent AD[2].

This paper highlights how epigenetic modulation plays a crucial role in various metabolic diseases such as obesity, diabetes, and non-alcoholic fatty liver disease. It explains how environmental factors and lifestyle choices can induce epigenetic alterations, which then influence metabolic pathways. Understanding these mechanisms opens up avenues for epigenetic therapies to manage or prevent these widespread conditions[3].

This work focuses on the fascinating interplay between epigenetics and immunometabolism. It explains how changes in DNA methylation and histone modifications regulate the metabolic reprogramming of immune cells, which is critical for their function and differentiation. This understanding is key for developing new strategies to treat immune-related disorders and infections[4].

This article explores how early life experiences, including prenatal and postnatal environmental factors, shape an individual's epigenome. These epigenetic changes can have profound, long-lasting effects on health outcomes, influencing susceptibility to diseases later in life. It emphasizes the importance of understanding early life epigenetic programming for preventive medicine[5].

This review gives us a current snapshot of therapeutic strategies that target epigenetic mechanisms in cancer. It discusses various epigenetic drugs, like DNA methyltransferase inhibitors and histone deacetylase inhibitors, and their applications in clinical settings. The goal here is to find more effective and less toxic cancer treatments by exploiting these epigenetic vulnerabilities[6].

This paper really zeroes in on how environmental factors, from pollutants to diet, can directly influence our epigenome. These environmentally induced epigenetic

modifications can lead to a range of health issues. It's about recognizing that our surroundings don't just affect us at a superficial level; they can fundamentally alter how our genes are expressed, contributing to disease[7].

The authors here delve into the role of epigenetic mechanisms in the aging process. They discuss how epigenetic hallmarks, like changes in DNA methylation patterns and histone modifications, contribute to age-related decline and disease. Importantly, the article explores potential therapeutic interventions aimed at reversing or slowing down these epigenetic changes to promote healthier aging[8].

This article shifts focus to the plant kingdom, illustrating how epigenetic modulation is crucial for plants to adapt and respond to various environmental stresses, such as drought, salinity, and extreme temperatures. It examines how epigenetic mechanisms like DNA methylation and small RNAs help plants adjust gene expression to survive challenging conditions, which is vital for agriculture[9].

This paper looks at the critical involvement of epigenetic modifications in the development and progression of cardiovascular diseases. It explains how altered DNA methylation, histone modifications, and non-coding RNA expression contribute to conditions like atherosclerosis, hypertension, and heart failure. The authors also consider the promising potential of epigenetic-based therapies for treating these widespread heart conditions[10].

Description

The influence of epigenetics is pervasive, impacting fundamental biological processes and disease development. One significant area of study involves how epigenetics affects cancer stem cells, central to tumor growth and treatment resistance. Researchers are dissecting mechanisms such as DNA methylation and histone modifications, identifying ways to therapeutically target these pathways to develop innovative cancer treatments by modulating these epigenetic changes in cancer stem cells[1]. In parallel, epigenetic changes are also being explored in Alzheimer's disease, where alterations in DNA methylation, histone modifications, and non-coding RNAs are shown to impact gene expression and disease progression. This research points towards promising new drug targets to modulate these epigenetic pathways, potentially slowing or preventing AD[2].

Epigenetic modulation extends its reach to a variety of metabolic diseases, including obesity, diabetes, and non-alcoholic fatty liver disease. It is understood that environmental factors and lifestyle choices can trigger epigenetic alterations, which subsequently influence metabolic pathways. This understanding paves the way for epigenetic therapies designed to manage or prevent these prevalent con-

ditions[3]. Additionally, the intricate relationship between epigenetics and immunometabolism is under scrutiny. This work highlights how alterations in DNA methylation and histone modifications regulate the metabolic reprogramming of immune cells, which is essential for their proper function and differentiation. Such insights are crucial for devising new strategies to treat immune-related disorders and infections[4].

Further research reveals how early life experiences, encompassing both prenatal and postnatal environmental factors, profoundly shape an individual's epigenome. These epigenetically driven changes can have deep, long-lasting consequences on health, influencing susceptibility to diseases later in life. This underscores the critical importance of comprehending early life epigenetic programming for advancements in preventive medicine[5]. Concurrently, therapeutic strategies that specifically target epigenetic mechanisms in cancer are being reviewed. This includes a discussion of various epigenetic drugs, such as DNA methyltransferase inhibitors and histone deacetylase inhibitors, and their current clinical applications. The ultimate aim is to discover more effective and less toxic cancer treatments by leveraging these epigenetic vulnerabilities[6].

Beyond individual health, environmental factors are recognized as direct influencers of our epigenome. Pollutants and diet, for instance, can induce epigenetic modifications that contribute to a range of health issues. This emphasizes that our surroundings can fundamentally alter gene expression, contributing significantly to disease development[7]. Moreover, the role of epigenetic mechanisms in the aging process is a growing area of interest. Researchers are examining how epigenetic hallmarks, like shifts in DNA methylation patterns and histone modifications, contribute to age-related decline and disease. Importantly, this field is exploring potential therapeutic interventions aimed at reversing or slowing these epigenetic changes to foster healthier aging[8].

Interestingly, epigenetic modulation is not confined to human health; it is vital in the plant kingdom as well. Plants utilize epigenetic mechanisms to adapt and respond to various environmental stresses, such as drought, salinity, and extreme temperatures. Understanding how DNA methylation and small RNAs help plants adjust gene expression to survive challenging conditions is of significant importance for modern agriculture[9]. Finally, the critical involvement of epigenetic modifications in the development and progression of cardiovascular diseases is being thoroughly investigated. This work elucidates how altered DNA methylation, histone modifications, and non-coding RNA expression contribute to conditions like atherosclerosis, hypertension, and heart failure. The promising potential of epigenetic-based therapies for treating these widespread heart conditions is a key focus[10].

Conclusion

The field of epigenetics is critical for understanding various biological processes and disease states. This collection of research highlights its influence on cancer, particularly cancer stem cells, and explores therapeutic strategies like DNA methylation and histone modification inhibitors. Epigenetic changes are also key in neurodegenerative conditions such as Alzheimer's Disease (AD), affecting gene expression and progression, pointing to new drug targets. Beyond this, epigenetics plays a role in metabolic diseases like obesity and diabetes, where environmental and lifestyle factors induce alterations influencing metabolic pathways. The interplay between epigenetics and immunometabolism regulates immune cell function, with implications for immune disorders. Early life experiences, including prenatal and postnatal factors, profoundly shape the epigenome, impacting long-term health. Environmental factors, from pollutants to diet, directly induce epigenetic

modifications contributing to disease. In aging, epigenetic hallmarks drive decline, and interventions targeting these changes could promote healthier lives. Even in plants, epigenetics enables adaptation to environmental stresses like drought, crucial for agriculture. Lastly, epigenetic modifications are deeply involved in cardiovascular diseases, offering promising therapeutic targets for treating conditions such as atherosclerosis and heart failure. Collectively, these studies underscore epigenetics as a fundamental mechanism across diverse biological contexts, offering vast potential for therapeutic interventions.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Yu-Han Wu, Zhi-Qiang Zhu, Yan-Li Zhao. "Epigenetic Regulation of Cancer Stem Cells: Mechanisms and Therapeutic Implications." *Front Cell Dev Biol* 9 (2021):704152.
2. María del Rocío Pérez-Rodríguez, David León-Jiménez, Marina Fernández-Arjona. "Epigenetic modulation in Alzheimer's disease: current landscape and future perspectives." *Cells* 12 (2023):1845.
3. Meng Wang, Yi-Huan Cai, Ting Zhang. "The role of epigenetic modulation in metabolic diseases." *Cell Mol Biol Lett* 27 (2022):68.
4. Ting Li, Wen-Lin Xie, Li-Ming Chen. "Epigenetic Modulation in Immunometabolism." *Front Immunol* 13 (2022):902896.
5. Marijn F. van Dooren, Manon L. van Schayck, Merijn X. G. D. van de Sandt. "Epigenetic modulation in early life and its implications for later health and disease." *Semin Cell Dev Biol* 143 (2023):101666.
6. Yu-Ning Chen, Wan-Ting Wang, Feng-Qiang Li. "Therapeutic Epigenetic Modulation in Cancer: Current Status and Future Perspectives." *Front Pharmacol* 13 (2022):843187.
7. Zhi-Min Li, Hua-Min Li, Xiang-Li Li. "Environmental factors and epigenetic modulation: Implications for health and disease." *Environ Res* 236 (2023):116715.
8. Meng Wang, Xiaohua Li, Yangfan Wang. "Epigenetic modulation of aging: current insights and therapeutic strategies." *Signal Transduct Target Ther* 8 (2023):151.
9. Xiao-Jie Li, Mei-Ling Li, Yu-Xuan Li. "Epigenetic Modulation in Plants: Mechanisms and Roles in Stress Responses." *Int J Mol Sci* 24 (2023):8712.
10. Yan-Li Wang, Yan-Fei Wang, Xin-Yu Wang. "Epigenetic modulation in cardiovascular diseases: A promising therapeutic target." *J Adv Res* 47 (2023):227-240.

How to cite this article: Nakamura, Kaori. "Epigenetics: Diverse Influences on Health, Disease, Therapy." *Epilepsy J* 11 (2025):334.

***Address for Correspondence:** Kaori, Nakamura, Department of Clinical Neurology, University of Padua, Padua, Italy, E-mail: kaori@nakamura.jp

Copyright: © 2025 Nakamura K. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-Oct-2025, Manuscript No. elj-25-174929; **Editor assigned:** 03-Oct-2025, PreQC No. P-174929; **Reviewed:** 17-Oct-2025, QC No. Q-174929; **Revised:** 22-Oct-2025, Manuscript No. R-174929; **Published:** 29-Oct-2025, DOI: 10.37421/2472-0895.2025.11.334
