ISSN: 2684-4273 Open Access

# Environmental Pollutants and the Rising Incidence of Thyroid Dysfunction

#### **Arslon Wind\***

School of Public Health, University of California, Berkeley, USA

#### Introduction

Thyroid disorders are among the most common endocrine diseases globally, with their incidence showing a concerning upward trend in recent decades. While improved screening and awareness partly explain this rise, increasing attention is being directed toward environmental pollutants as contributors to thyroid dysfunction. The thyroid gland is particularly susceptible to disruption from environmental agents due to its high vascularization, active iodine uptake and hormone synthesis processes that can be interfered with by exogenous chemicals. A wide range of environmental pollutants including heavy metals, pesticides, industrial chemicals and Endocrine-Disrupting Compounds (EDCs) have been shown to interfere with thyroid hormone synthesis, metabolism and receptor signaling. Persistent organic pollutants such as Polychlorinated Biphenyls (PCBs), Bisphenol A (BPA), Phthalates And Perfluorinated Compounds (PFCs) are particularly implicated. These substances may alter thyroid hormone homeostasis even at low exposure levels, leading to subtle or overt thyroid dysfunction. Populations with high environmental exposure, such as industrial workers or residents in polluted regions, appear disproportionately affected. In utero and early-life exposures are especially concerning, given the critical role of thyroid hormones in neurodevelopment. This commentary explores the growing evidence linking environmental pollutants with thyroid dysfunction, emphasizing the need for preventive strategies, stronger regulations and increased public and clinical awareness [1].

## **Description**

The molecular mechanisms by which environmental pollutants influence thyroid function are diverse and complex. Many EDCs act by mimicking or blocking the action of thyroid hormones at the receptor level, or by altering the expression of genes involved in hormone synthesis and metabolism. For example, PCBs and dioxins can bind to thyroid hormone transport proteins such as transthyretin, displacing endogenous hormones and affecting their bioavailability. Others, like perchlorate and nitrate, inhibit the Sodium-Iodide Symporter (NIS), directly impairing iodine uptake and thyroid hormone synthesis. BPA and phthalates are known to interfere with deiodinase activity, thereby disrupting the conversion of T4 to the more active T3. Flame retardants such as Polybrominated Diphenyl Ethers (PBDEs) have also been shown to downregulate thyroid hormone receptors and influence feedback regulation at the hypothalamic-pituitary axis. The cumulative impact of these exposures can result in subclinical or overt hypothyroidism, hyperthyroidism and even autoimmune thyroiditis in genetically susceptible individuals. Of particular concern is the synergistic effect of combined chemical exposures, which may not be fully captured by studies evaluating single compounds. Chronic low-dose exposures, often below established regulatory thresholds, may still exert significant endocrine-disrupting effects, especially over time [2].

\*Address for Correspondence: Arslon Wind, School of Public Health, University of California, Berkeley, USA, E-mail: wind.arslon@uoc.edu

Copyright: © 2025 Wind A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02 June, 2025, Manuscript No. rtr-25-171747; Editor assigned: 04 June, 2025, PreQC No. P-171747; Reviewed: 16 June, 2025, QC No. Q-171747; Revised: 23 June, 2025, Manuscript No. R-171747; Published: 30 June, 2025, DOI: 10.37421/2684-4273.2025.9.118

Epidemiological studies from various regions have documented associations between environmental pollution and increased prevalence of thyroid disorders. Large cohort studies such as the NHANES (National Health and Nutrition Examination Survey) in the United States have found correlations between serum levels of EDCs like BPA, triclosan and phthalates with altered TSH and free T4 levels. In heavily industrialized or agriculturally intensive regions, higher rates of goiter, hypothyroidism and thyroid nodules have been reported. Prenatal exposure to EDCs is particularly alarming, with studies linking maternal pollutant levels to impaired fetal thyroid hormone status and neurodevelopmental outcomes. Thyroid hormones are essential for fetal brain development and even mild maternal hypothyroxinemia has been associated with reduced IQ and cognitive delays in offspring. Children are especially vulnerable due to their developing endocrine systems, greater exposure per body weight and immature detoxification pathways. Despite this, many environmental pollutants remain poorly regulated or inadequately monitored. Furthermore, the latency between exposure and clinical disease complicates risk assessment and policy development. As urbanization and industrialization continue to expand, so too does the urgency to understand and mitigate these environmental risks [3].

From a public health and clinical perspective, there is a pressing need to integrate environmental risk factors into thyroid disease prevention and management frameworks. Routine clinical assessments rarely account for environmental exposures and healthcare professionals are often underinformed about the endocrine-disrupting potential of commonly encountered substances. Environmental histories should become a more routine part of thyroid disorder evaluations, particularly in high-risk groups such as pregnant women, children and those in contaminated regions. Biomonitoring of pollutant levels in vulnerable populations could help identify at-risk individuals and inform preventive interventions. Clinicians should also be aware of the potential for pollutants to interfere with thyroid function testing, leading to diagnostic challenges. On a broader scale, public health initiatives aimed at reducing exposure through cleaner industrial practices, stricter chemical regulations and consumer education are critical. Educating patients about limiting plastic use, avoiding pesticide-laden foods and using safer household products can empower communities to take action. Moreover, multidisciplinary collaboration between endocrinologists, toxicologists, policymakers and environmental scientists is essential to address this growing health concern holistically [4].

Research efforts must continue to identify, characterize and mitigate the thyroid-disrupting effects of environmental chemicals. Emerging tools such as high-throughput screening, in vitro assays and computational toxicology offer promise in evaluating large numbers of substances for endocrine activity. Omics technologies, including transcriptomics and metabolomics, can uncover early biomarkers of thyroid disruption and aid in personalized risk assessment. There is also a growing recognition of the importance of studying mixtures of pollutants rather than isolated agents, reflecting real-world exposures more accurately. Policy responses must keep pace with scientific findings; many chemicals currently in widespread use have not been adequately tested for endocrine disruption. The precautionary principle should guide regulation, especially where vulnerable populations like pregnant women and infants are concerned. International cooperation is needed, as pollutants released in one part of the world can affect populations globally through air and water

transmission. Ultimately, protecting thyroid health in the face of environmental pollution will require a sustained, interdisciplinary effort that bridges science, medicine, policy and public awareness [5].

### **Conclusion**

In conclusion, environmental pollutants are an increasingly recognized contributor to the global burden of thyroid dysfunction. Through diverse mechanisms, these agents disrupt thyroid hormone synthesis, metabolism and signaling, leading to clinical and subclinical thyroid disease. Vulnerable populations, particularly pregnant women and children, bear a disproportionate share of this risk. Integrating environmental awareness into clinical practice, public health planning and policy-making is essential. As research continues to unravel the complex relationships between pollutants and thyroid health, proactive efforts to reduce exposures can help curb the rising incidence of thyroid dysfunction and protect endocrine health for future generations.

## **Acknowledgement**

None.

#### Conflict of Interest

None.

#### References

- Oliveri Conti, Gea, Behzad Heibati, Itai Kloog and Maria Fiore, et al. "A review of AirQ Models and their applications for forecasting the air pollution health outcomes." Environ Sci Pollut Res Int 24 (2017): 6426-6445.
- Conti, Gea Oliveri, Aldo Eugenio Calogero, Filippo Giacone and Maria Fiore, et al.
   "B (a) P adduct levels and fertility: A cross-sectional study in a Sicilian population."
   Mol Med Rep 15 (2017): 3398-3404.
- Khaniabadi, Yusef Omidi, Seyed Mohammad Daryanoosh, Philip K. Hopke and Margherita Ferrante, et al. "Acute myocardial infarction and COPD attributed to ambient SO2 in Iran." Environ Res 156 (2017): 683-687.
- 4- Aschebrook-Kilfoy, Briseis, Curt T. DellaValle, Mark Purdue and Christopher Kim, et al. "Polybrominated diphenyl ethers and thyroid cancer risk in the Prostate, Colorectal, Lung and Ovarian Cancer Screening Trial cohort." Cohort Am J Epidemiol 181 (2015): 883-888.
- Nettore, Immacolata Cristina, Annamaria Colao and Paolo Emidio Macchia.
   "Nutritional and environmental factors in thyroid carcinogenesis." Int J Environ Res Public Health 15 (2018): 1735.

**How to cite this article:** Wind, Arslon. "Environmental Pollutants and the Rising Incidence of Thyroid Dysfunction." *Rep Thyroid Res* 09 (2025): 118.