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Abstract
Cancer stem cells (CSCs) are the subpopulation of cells within a tumor proposed to be responsible for tumor 

initiation, relapses, and resistance to chemotherapeutic drugs. Here we optimized sphere culture conditions to isolate 
and enrich CSCs from colorectal cancer cell line IMCE-Ras. Spheroid cells that developed in culture expressed high 
levels of putative stem cell markers, and showed stronger anchorage-independent growth abilities and resistance to 
conventional chemotherapeutic drugs compared with the initial monolayer adherent cells. Xenograft transplantation 
assays further demonstrated that IMCE-Ras spheroid cells are highly enriched in CSCs. To develop CSC-targeted 
therapy, we found that the relative percentage of CSC in IMCE-Ras cells was significantly decreased after a short 
duration exposure to DNA Methylation inhibitor 5-aza-2’-deoxycytidine (5-Aza-dC), indicating that DNA Methylation 
may be critical for self-renewal and maintenance of CSCs. Indeed, double knockout of DNA methyltransferase 1 
(DNMT1) and DNA methyltransferase 3b (DNMT3b) in colon cancer cell line HCT116 resulted in loss of >95% DNA 
Methylation and complete loss of tumorigenicity both in vitro and in vivo. These data suggest that DNA Methylation 
is critical for maintenance of the colon CSC population, and a combination of classical chemotherapeutic drugs and 
DNA Methylation inhibitors may be an effective treatment of colon cancer. 

Keywords: Colon cancer stem cell; Tumorsphere; Chemotherapy;
Methylation; 5-aza-2’-deoxycytidine

Introduction
Cancer stem cells (CSCs) are defined as “a small subset of cancer 

cells” within a cancer, which can self-renew and replenish the 
heterogeneous lineage of cancer cells that comprise the tumor [1]. 
Identification and isolation of CSCs from primary tumor tissues or 
cell lines have so far depended on fluorescence-activated cell sorting 
(FACS) using a variety of different cell surface markers followed by tests 
of propagation in immunodeficient mice [2-8]. However, CSC markers 
are expressed in a complex pattern; neither single marker expression 
nor simple combinations can be universally used for isolation and 
enrichment of CSC from different sources of tumor cells [9]. 

Colon CSCs were first identified and enriched by FACS sorting of 
human tumors using putative stem cell marker CD133 in 2007 [3,10]. 
The percentages of CD133+ cells in the tumorigenic populations ranged 
from 3.2-24.5%. Using established cell lines, Ieta et al. [11] found that 
CD133+ cells in the HT29 colon cancer cell line were more tumorigenic 
than CD133- cells both in vitro and in vivo, suggesting that CD133 may 
also mark CSCs in colon cell lines. However, Shmelkov et al. [12] argued 
that expression patterns of CD133 were ubiquitous in differentiated 
epithelial cells and were not restricted to the CSC fraction in metastatic 
colon cancers. Further, CD133+ HCT116 colon cancer cells were 
found not to be radio resistant [13]. These data challenged the view 
that CD133 was an effective marker of colon CSCs. In another study, 
Dalerba et al. [14] employed CD44 and epithelial surface antigen (ESA) 
as stem-cell-specific markers to isolate colorectal CSCs. Recently, 
Yeung et al. [15] demonstrated that colorectal cell lines contain CSC 
populations that can be enriched by the use of an in vitro Matrigel-
based differentiation assay together with selection for expression of the 
CD44 and CD24 cell surface markers. Despite these lines of evidence 
demonstrating that CSCs exist in different sources of colon tumor cells, 
most of these CSC assays are cumbersome and expensive, not ideal for 

screening and testing of drugs for development of CSC-based therapy.

We adopted a sphere culture to isolate and enrich colon CSCs from 
colon cell lines. Sphere cultures have been used to isolate CSCs from 
different types of cancer cell lines including breast [16,17], renal [18], 
liver [19] , prostate [20], pancreatic [21], and brain [22] cancers along 
with melanoma [23]. Tumorsphere culture in serum-free medium 
was also used to isolate and propagate colon CSCs from primary 
tumors, but has not been optimized to enrich CSCs from colon cancer 
cell lines [3,24]. For this study, we optimized the suspension culture 
conditions for culture of colon cancer cell lines. We demonstrate that 
this modified sphere culture system can be used to isolate and enrich 
CSCs from colon cancer cell lines. Using the isolated cells, we provide 
evidence to show that the colon CSCs are resistant to chemotherapeutic 
drugs such as 5-FU but sensitive to DNA Methylation inhibitor 5-aza 
deoxycytidine. Our results imply that a combination of conventional 
chemotherapeutic drugs and DNA Methylation inhibitors may be an 
effective treatment for colon cancer. 

Material and Methods
Cell lines and cell cultures

Human colon cancer HCT-116, DLD1 and HT-29 cells were 
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obtained from the American Type Culture Collection (ATCC, 
Rockville, MD). Double knockout (DKO) cells (HCT116 cells with 
genetic disruption of DNMT1 and DNMT3b) were kindly provided by 
Dr. Bert Vogelstein and cultured as previously described [25]. In brief, 
cells were maintained in Dulbecco’s modified Eagle medium (DMEM; 
4.5 g/L D-glucose) supplemented with 10% FBS and 1% antibiotic/ 
antimycotic in tissue culture flasks in a humidified incubator at 37°C in 
an atmosphere of 95% air and 5% carbon dioxide. Mouse colon cancer 
cells IMCE-Ras cells were kindly provided by Dr. Robert H. Whitehead 
at the Vanderbilt University [26]. These cells are only conditionally 
immortalized and cultured at the permissive temperature of 33°C 
in Dulbecco’s Modified Eagle Medium (DMEM; 4.5 g/L D-glucose) 
containing 5% fetal calf serum, 1 µg/ml insulin, 10 µM α-thioglycerol, 
1 µM hydrocortisone and 5 units per ml of mouse gamma interferon, 
which is used to up regulate the immortalizing gene within the cells. 
The medium was changed two times a week, and cells were passaged 
using 0.05% trypsin/EDTA.

In vitro propagation of tumorsphere

Cells were counted and plated in petri dishes at a constant density 
of 40,000 viable cells per ml. Cells were grown in serum-free DMEM 
medium (Gibco), which was supplemented with 20 ng/ml epidermal 
growth factor (EGF, Sigma), 10 ng/ml basic fibroblast growth factor 
(bFGF, Sigma), 0.4% bovine serum albumin (BSA, Sigma), and 5 μg/
ml insulin (Sigma). 1 × F12 (Gibco) and/or N2 (Stemcell Technologies 
Inc.) supplements were added to the treatment group to investigate 
their effect on tumorsphere formation. Human colon cancer HCT-116, 
DLD1 and HT-29 cells were incubated in a humidified atmosphere 
with 5% CO2 at 37°C for 6 days, and collected by gentle centrifugation. 
Mouse colon cancer cells IMCE-Ras cells were incubated at the 
permissive temperature of 33ºC. The pelleted cells were enzymatically 
dissociated with Accutase (Innovative Cell Technologies) for 10 
minutes at room temperature, and mechanically dispersed by gently 
pipetting through a 23-gauge sterile needle. Single-cell suspensions 
were plated at the same density and culture conditions as described 
above, to generate the second generation of tumorspheres, and so 
forth. The number of spheres formed in each well was determined after 
6 days. Tumorspheres from every passage were dissociated and assayed 
for tumorsphere-forming efficiency.

MTT assay

Inhibition of cell growth in response to chemotherapeutic drugs 
was assessed by 3-(4,5-dimethylthiazol-2yl)-2, 5-diphenyltetrazolium 
bromide (MTT) assay as described previously [27,28]. Briefly, cells 
at 2.5 × 104 cells per milliliter were seeded into 96-well culture plates 
with six replicates. After 24 hours of plating, cells were treated with 
different agents as described in figure legends. At 48-h post treatment, 
the culture medium was removed, 50 μl of MTT solution (5 mg/ml) 
added to each well, and cultures incubated for 3-4 hours. The formazan 
crystals were then dissolved by adding 0.1 ml of dimethyl sulfoxide. 
The intensity of the color that developed, which reflects the number 
of live cells, was measured at a wavelength of 570 nm. All values were 
compared with the corresponding controls. 

Quantitative real-time PCR analysis

Total RNA from parental cells and tumorspheres was extracted 
using TRIzol Reagent (Invitrogen) according to the manufacturer’s 
instructions [29]. 1 μg of total RNA was used for the reverse 
transcription assay to generate cDNA using M-MLV reverse 
transcriptase (Invitrogen). 1 μl of cDNA was used for a single PCR 

reaction to determine the expression of self-renewal markers and 
stem cell markers. The quantitative RT-PCR was performed using the 
fluorescent dye SYBR Green Master Mix following standard protocols 
on an ABI PRISM 7300 sequence detection system (Applied Biosystems, 
CA) [29]. The data were first analyzed using Sequence Detector Software 
SDS 2.0 (Applied Biosystems). Results were calculated and normalized 
relative to the GAPDH control using the Microsoft Excel program. The 
relative expression values were calculated relative to GAPDH by using 
the 2-ΔCT method [29]. The data shown here represent the average of 
three independent experiments. 

Soft-agar assay

Cells (5 × 103 cells per 35-mm well) were resuspended in complete 
medium containing 0.35% agarose. Cells were grown on tissue culture 
dishes containing a 2-mL layer of solidified 0.7% agar in a complete 
medium. After 14 days, number of colonies was quantified from two 
randomly taken micrographs per well (original magnification, ×20). 
For visualization, foci were methanol-fixed and stained with 0.005% 
crystal violet [28].

In vivo tumorigenesis assays

Cells were resuspended in 50 µl DMEM/F12 medium and mixed 
with 50 µl Matrigel (Becton Dickinson) at a 1:1 ratio and held on ice. 
The entire 100 µl sample was injected into each flank of 6-8 weeks old 
NOD/SCID mice anesthetized with isoflurane according to the animal 
protocol approved by the USC committee for research in vertebrate 
animals. Tumor sizes in two dimensions were measured twice weekly, 
and volumes were estimated using the formula (L × W2) × 0.5, wherein 
L is length and W is width, as previously described [28,30]. 

Statistical analysis

The results were expressed as mean ± SD. The data were treated 
by Student’s t test to determine statistical significance. We used 
nonparametric tests (Mann–Whitney test), if appropriate, to compare 
differences. P < 0.05 was considered statistically significant. Statistical 
analysis was performed using SPSS 12.0 software [29]. 

Results
Spheroid culture for enrichment of CSCs from colon cancer 
cell lines

In order to develop a method to isolate and propagate CSCs 
from colon cancer cell lines in vitro, we optimized the tumorsphere 
culture conditions. We cultured colon cancer cell line HCT116 in 
serum-free DMEM medium containing bFGF and EGF, and further 
supplemented with N2 or/and F12 nutrients. Although HCT116 cells 
could form tumorspheres in culture media supplemented with either 
N2 or F12, tumorsphere forming ability was gradually lost during 
the serial passages of tumorspheres, indicating that sphere-forming 
cells can survive for a few passages under these conditions but fail 
to undergo self-renewal proliferation (Figure 1A). In the presence 
of both N2 and F12, the tumorsphere forming efficiency continued 
to increase with each passage, suggesting self-renewal proliferation 
(Figure 1B). To investigate whether the same medium could be used to 
grow tumorspheres from other colon cancer cell lines, we cultured two 
more human colon cancer cell lines, DLD1 and HT29, and one mouse 
colon cancer cell line, IMCE-Ras [26]. All of these cell lines could form 
tumorspheres and maintain their tumorsphere-forming ability over 
long-term culture in the presence of both N2 and F12 (Figure 1C).

To test whether these tumorspheres are enriched for CSCs, 
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we examined the expression profiles of putative stem cell markers 
including Lgr5 [31,32], CD133 [3], Aldh2 [33] and Sca1[34,35], and 
self-renewal genes including Ascl2 [36,37], Bmi [38], Nanog [39] and 
Oct3/4 [39] in tumorspheres derived from colon cancer cell line IMCE-
Ras (Figure 2A). Quantitative real-time PCR results revealed that the 
spheroid cells expressed 47-fold higher levels of putative stem cell 
maker Sca1. The expression levels of other putative stem cell markers 
and self-renewal genes are also significantly higher in tumorspheres 
compared to monolayers (Figure 2B). These gene expression profiles 
indicated that the tumorspheres may be enriched for CSCs.

Spheroid IMCE-Ras cells showed increased tumorigenic 
potential both in vitro and in vivo

To further address whether tumorspheres are enriched for CSCs, 
we first performed soft-agar assays. IMCE-Ras derived spheroid cells 
formed about 2.5-fold more colonies than the monolayer cells (Figure 
3A). We then tested whether these spheroid cells also showed enhanced 
tumorigenicity in vivo, by injection of spheroid or monolayer cells into 
the flank region of adult NOD/SCID mice. Figure 3B illustrates the 
ability of serially diluted spheroid and monolayer cells to form tumors. 
Monolayer IMCE-Ras cells were able to form tumors when at least 50K 

cells were injected, but failed to do so at lower cell doses (10K, 5K, 500). 
In contrast, spheroid cells were able to generate tumors in all animals 
when 500K, 50K, 10K, or 2K cells were injected (Table 1). As few as 
500 spheroid cells derived from the IMCE-Ras cell line were capable 
of forming tumors: one of two mice injected with 500 spheroid cells 
developed a tumor. Statistical calculation reveals that tumorspheres 
from IMCE cells are up to about 450-fold enriched in tumor-initiating 
capacity in comparison with cells in monolayer culture (Table 1). 

Spheroid IMCE-Ras cells show resistance to chemotherapeutic 
agents and remain sensitive to methylation inhibitor 5-Aza-
2’-deoxycytidine

CSCs are characterized by their high resistance to chemotherapeutic 
agents [1]. To test whether the spheroid cells derived from IMCE-Ras 
share this property, we treated spheroid IMCE-Ras cells and the cells 
in monolayer culture with 5-FU and Doxorubicin. The cell viability 
was measured by MTT assay. As shown in Figure 4A and B, spheroid 
cells manifested significantly higher resistance to chemotherapeutic 
drugs 5-FU and Doxorubicin than the control monolayer cells (Figure 
4A and B). However, MTT assay did not show any differences in the 
sensitivities to the DNA Methylation inhibitor 5-aza-2’-deoxycytidine 

Figure 1: Tumorsphere culture of colon cancer cell lines in the suspension 
medium. (A) Morphological examination of colon cancer cells cultured at 
different conditions. Morphological differences were visualized between 
tumorspheres maintained in the suspension medium  (DMEM/F12 medium 
containing10 ng/ml bFGF, 20 ng/ml EGF, 0.4% BSA and 5 µg/m Insulin) 
supplemented with F12, N2 or both. The morphological changes were traced 
microscopically over serial passages. Original magnification: ×40; Scale bar 
= 200µM. (B) Tumorsphere-forming efficiency assay. One hundred cells per 
well were seeded into ultra-low attachment 96-well plates. The Y axis shows 
the sphere-forming efficiency, which is calculated by the average number of 
tumorspheres per one hundred seeded cells. (C) Monolayer and spheroid 
culture of colon cancer cell lines (HCT116, HT29, DLD1 and IMCE-Ras). 
Tumor cells cultured in DMEM containing 10% FBS exhibiting an epithelial-
like monolayer morphology. Tumorspheres were grown in non-adherent culture 
dishes in the suspension medium containing10 ng/ml bFGF, 20 ng/ml EGF, 
0.4% BSA and 5 µg/m Insulin) supplemented with both F12 and N2 nutrition 
for six days. All of the tested cell lines form typical smooth-edged tumorspheres 
in the supplemented medium. ML, monolayer culture; TS, Tumosphere; Scale 
bar = 200µM. 
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(5-Aza-dC). Treatment of cells with 0.5 - 2µM of 5-Aza-dC resulted in 
a weak inhibition of cell growth (Figure 4C).

To further test whether the drug treatments affect the relative 
content of CSCs, we treated IMCE-Ras cells with each drug, 5-FU or 
5-Aza-dC, for two days and then washed out the drug to allow recovery 
of the surviving cells for an additional 5 days (Figure 5A). The relative 
CSC population was assessed by sphere formation and soft-agar assays. 
At 2 days post-treatment, we observed that more cells were killed by 
exposure to 5-FU than 5-Aza-dC. After the drug washout, surviving 
cells can resume proliferation quickly in both drug-treated plates. 
Interestingly, exposure of cells to 5-Aza-dC treatment resulted in > 90% 
reduction in tumorsphere-forming ability compared to mock-treated 
cells (Figure 5B), while cells surviving 5-FU treatment displayed slightly 
increased tumorsphere formation efficiency (Figure 5B). The colony 
formation assay shows a similar pattern (Figure 5C). Taken together, 
our data suggest that Methylation inhibitor 5-Aza-dC can effectively 
eliminate CSCs, although they are not as effective at reducing the total 
population of cancer cells. Conventional chemotherapeutic drugs like 
5-FU preferentially kill non-stem cancer cells, leading to enrichment of 
CSCs after treatment.

DNA methylation is critical for maintenance of cancer stem 
cell properties

5-Aza-dC is a DNA methyltransferase (DNMT) inhibitor that 
blocks DNA Methylation [40]. To further demonstrate that DNA 
Methylation is critical for maintenance of colon CSCs, we studied the 
CSCs in a DNA methyltransferase 1 and 3b double knockout cell line 
(DKO) and the wild-type HCT116 colon cancer cell line. Again, the 
relative CSC population was assessed by ability to form tumorspheres 
in serum-free medium and colonies in soft-agar plates. In parallel 
with loss of more than 95% of genome-wide DNA Methylation [25], 
DKO cells almost completely lost their tumorsphere-forming and 
colony-forming abilities (Figure 6B and C). Furthermore, animal 
injection experiments confirmed that wild type HCT116 cells were 
able to generate tumors in all animals when 10K, 1K and 500 cells 
were injected, whereas one million of the DKO cells failed to generate 
tumors in the injected animals (Figure 6D). These data suggest that a 
CSC population may not exist in DKO cells. The loss of CSCs cannot be 
simply explained by the slightly impaired proliferation ability of these 
cells (Figure 6A). Overall, these data suggest that DNA Methylation 
is critical for self-renewal of cancer stem cells. Inhibition of DNA 
Methylation may lead to exhaustion of the CSC population.

Discussion
Previous studies have demonstrated that intestinal cancer may 

originate from transformed crypt stem cells [5,31] and be maintained 
by a rare population of CD133+ tumor initiating cells within the tumor 
mass [3,10,14], suggesting the existence of a cellular hierarchy in colon 
cancers. However, the validity of surface protein CD133 as a CSC marker 
was questioned [12,13,41]. Besides CD133, CD44, CD24, CD166 and 

ESA have been used individually or in combination for isolation and 
enrichment of colon CSCs [6-8,15,42]. Again, no simple combination 
can be used for identification of CSCs from different sources of tumor 
cells [9]. The tumorsphere assay has been used for more than a decade 
as a suitable surrogate assay for in vivo serial transplantation to verify 
self-renewal potential of normal and cancer stem cells. Several previous 
studies have utilized the spheroid culture to isolate and culture CSC 
from primary colon carcinoma [3,42]. However, this method has not 
been optimized for enrichment of CSC from colon cancer cell lines. 

Our previous study showed that supplemental B27 can sustain 
the growth of tumorspheres derived from primary tumors of MMTV-
Her2/neu transgenic mice [43]. In this study, we further tested another 
growth supplement, N2, for the continued growth of tumorspheres 
from colon cancer cell lines. We found that basic medium supplemented 
with either N2 or F12 is sufficient for formation of tumorspheres for a 
few passages. However, in the presence of both N2 and F12, the sphere 
forming efficiency continues to increase over the passages, indicating 
that the CSCs are expanding with each passage. Our data indicates 
that optimized spheroid culture conditions can be potentially used to 
propagate and expand CSC from colon cancer cell lines and provide a 
practical method for development of relatively high-throughput drug 
screening assays for CSC-targeted therapy [44].

While the presence of self-renewing cells in tumorspheres is 
supported by their ability to form new generations of tumorspheres, 
we provide the following evidence to support our speculation that 

Injected cells
Tumors/Injections Frequency of 

CSCa p-value
5x105 5x104 1x104 2x103 500

Tumorsphere 2/2 2/2 2/2 2/2 1/2 1/890
0.0013Monolayer 2/2 1/2 0/2 0/2 0/2 1/390,850

aThe limit-dilution calculation was based on a Poisson probability distribution: ln (y) = rx + ln (a), where y is the ratio of non–tumor-generating injections, x is the number 
of cells injected, and r is the frequency of CSC; a is the y intercept and it was assumed that with no cells injected, no tumors are formed (therefore at 100% non–tumor 
generation, a = 1). The frequency of CSCs (r) was calculated from the slope of line best fit to the data points [56,57].

Table 1: Tumorspheres displayed increased tumorigenicity in xenograft transplantation assay.

Figure 4: The sensitivity of spheroid and monolayer IMCE-Ras cells to 
chemotherapy was tested by the MTT assay. Spheroid and monolayer 
cells at 2.5 × 104 cells per milliliter were seeded into 96-well culture plates 
with six replicates. After 24 hours of plating, cells were treated for another 
48 hours with different testing agents before being subjected to MTT assay.  
(A) Treatment with 5-FU; (B) Treatment with Doxorubicin; (C) Treatment with 
5-aza-2’-deoxycytidine. 5-FU, 5-fluorouracil; Dox, doxorubicin; 5-Aza, 5-aza-2’-
deoxycytidine.
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CSCs are not only present but actually enriched in tumorspheres. 
First, a higher level of expression of putative stem cell markers in 
tumorspheres further corroborates the presence of CSC-like cells in 
the tumorspheres. However, Sca1 was the only stem cell marker whose 
mRNA was present at dramatically higher levels in tumorspheres 
compared to monolayer cultures. Sca1 has been recognized as an adult 
and cancer stem cell marker from different tissues [34,35]. Further 
studies will clarify whether Sca1 can be used a maker to isolate CSCs 
from colon cancer cell lines and primary colon carcinomas. Next, we 
performed both in vitro and in vivo experiments to demonstrate that 
tumorspheres are highly tumorigenic. We found that tumorspheroid 
cells displayed increased colony formation abilities in soft-agar 
assay compared with adherent cells cultured as monolayer. In vivo 
transplantation assay data shows that tumorspheres from IMCE-Ras 
cells are up to about 450-fold enriched in tumor-initiating capacity in 
comparison with cells in monolayer culture. Taken together, our data 
suggest that tumorspheres derived from IMCE-Ras cells are enriched 
for CSCs.

CSCs are suggested to be slow cycling and to express high levels 
of drug transporters and anti-apoptotic proteins. Consequently, 
they are resistant to chemotherapeutic drug-induced cell death [45-
48]. Presently, there are only a few studies reporting on the chemo 
sensitivity of colorectal CSCs. Most of these studies suggest that CSCs 
are more resistant to chemo- and radio-therapy, being responsible for 
the recurrence of the disease after treatment [42,49-52]. In line with 
these findings, our data showed that spheroid cells are more resistance 
to conventional chemotherapeutic drugs 5-FU and Doxorubicin. 
However, the sensitivity of spheroid cells to the DNA methylation 
inhibitor 5-Aza-dC is the same as cells in monolayer culture by MTT 
assay. The MTT assay can only measure the survival rate of the total cell 

population and thus may not accurately reflect the sensitivity of CSCs 
to chemotherapies. To functionally demonstrate that CSCs are resistant 
or sensitive to chemotherapies compared to the bulk of tumor cells, 
we briefly exposed the colon cancer cells to chemotherapeutic drugs 
and then measured the relative percentages of CSCs in the surviving 
cells. We reasoned that if CSCs were more resistant to treatment, they 
should be enriched among the cells that survive. Indeed, short duration 
exposure to 5-FU led to relative enrichment of colon CSCs as previously 
reported in the literature [49]. In contrast, exposure to 5-Aza-dC 
resulted in dramatic decreases in colony and sphere formation abilities, 
strongly suggesting that colon CSCs are selectively eliminated by the 
DNA methylation inhibitor 5-Aza-dC. 

The question remains why 5-Aza-dC can selectively target colon 
CSCs. 5-Aza-dC is a DNA methyl-transferase inhibitor and is also 
known to strongly induce cell differentiation, but it is not a strong 
apoptotic inducer [40]. Several recent studies indicate that epigenetic 
therapy could potentially also be used to induce CSC differentiation, 
thereby rendering these aggressive cells more susceptible to 
conventional cytotoxic treatment [53-55]. We hypothesized that DNA 
Methylation is critical for maintenance of the colon CSC population. 
In line with this hypothesis, DKO cells with loss of >95% of genome-
wide Methylation almost completely lost their sphere-forming 
abilities and failed to form colonies on soft-agar plates. In addition, 
in vivo transplantation assays show that DKO cells completely lost 
their tumorigenicity, which is the main feature of CSCs. Since DKO 
cells retain their long-term proliferation ability in vitro, severely 
reduced DNA Methylation levels in DKO cells may account for the 
loss of tumorigenicity. This data is in line with recent findings that 
the transition of stem cells from self-renewal to differentiation is 
accompanied by extensive changes in their Methylation pattern [54]. 
In hematopoietic stem cells (HSCs), the self-renewal program requires 

Figure 5: Exposure of IMCE-Ras cells to 5-Fu or 5-Aza-dC has different 
effects on the size of CSC population. (A)  Schematic strategy for treatment 
of IMCE-Ras cells with 5-FU and 5-Aza-dC. The 5 x 104 cells were seeded into 
each well of 6-well plates 24 hrs before treatment. The cells were treated with 
20mM of 5-FU or 1 µM of 5-Aza-dC for 2 days and then the drugs were washed 
out. After 5 days of recovery, the surviving cells were evaluated for CSC 
population by in vitro sphere assay and tumorigenicity by soft-agar assay. (B) 
Sphere formation assay. SFE, sphere forming efficiency. (C) Soft-agar assay. 
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Figure 6: Global loss of DNA methylation in DKO cells results in elimination 
of CSC population and complete loss of tumorigenicity both in vitro and in 
vivo. (A)  DKO cells retain substantial proliferation ability in vitro. DKO, DNMT1 
and DNMT3b double knockout HCT116 cells; WT, wild type cells. (B) DKO 
cells failed to form typical tumorspheres. (C) DKO cells completely lost colony 
formation ability in soft-agar plates. (D) Loss of tumorigenicity for DKO cells. 1x 
102, 1 x 103 and 1 x 104 wild type HCT116 cells or 5 x 105 and 1 x 106 isogenic 
DKO cells lacking DNMT1 and DNMT3b were injected into both flanks of NOD/
SCID mice for assessment of tumor growth. Tumor sizes were monitored and 
measured weekly. N = 4.
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constitutive maintenance of a critical threshold of Methylation. More 
importantly, hypomethylation impairs malignant self-renewal of AML 
cells and completely blocks initiation of acute B-lymphoid leukemia 
(B-ALL) from transformed stem cells [54]. Overall, these data suggest 
that retention or re-establishment of stem cell–specific Methylation 
patterns is an important step in the development and maintenance 
of CSCs. Thus, demethylating chemicals may be important for the 
consideration of using “epigenetic” therapy to target CSCs. 
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