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Commentary
Genetic background and environmental factors are some of the 

main triggers underlying tumor progression and metastasis. This multi-
factorial disease is one of the first leading cause of death worldwide 
representing an important economic and social impact on health care 
systems [1,2].

In this sense, genome-scale metabolic models (GSMM) have been 
widely used in cancer research to study the aberrant tumoral metabolism 
[3]. GSMMs gather the current knowledge concerning the metabolic 
reactions taking place in a cell from a given organism/tissue [4]. This 
systems biology tool accounts for logical rules describing relationship 
between the genes encoding the enzymes that catalyze the metabolic 
reactions, the so-called GPRs, which makes GSMMs an excellent 
platform to integrate transcriptomic and proteomic data. Briefly, 
GPRs use logical “or” and “and” operators to represent isoenzymes 
encoded by different genes or genes encoding sub-units of a complex, 
respectively. The gene expression is incorporated into the GPRs that 
can be represented either in absolute or relative values, depending 
on the approach, the logical “or” is replaced by the “mean” or “max” 
operators and the logical “and” by the “minimum” operator. Next, 
by solving the mathematical expressions, the value of the metabolic 
reactions is calculated. Finally, the reactions values are implemented 
in the different transcriptomic-based model-driven methods to infer a 
case-specific metabolic flux profile. Thus, GPRs allow the integration of 
large omics data-sets generated by different high-throughput platforms 
which ultimately enhances the predictive capabilities of the GSMM-
based methods [5]. In the last decade, a variety of GPR-based algorithms 
have been developed to integrate both proteomic and transcriptomic 
data into GSMMs [6]. However, despite the recent advance in the field, 
current GPR formulation does not consider the number of transcript 
copies that are required to produce a catalytically active enzyme. In 
other words, if the classical GPR formulation is applied on a complex 
with, for instance, three sub-units, one encoded by the gene “a” and 
two by the gene “b”, both genes have the same weight in the calculation 
of the activity state of the associated metabolic reaction. Thus, classical 

GPRs assume that the same expression of gene “a” and “b” is needed 
to produce a catalytically active enzyme, regardless the complex has 
double sub-units encoded by gene “b” than by gene “a”. Thus, this lack 
of stoichiometry in the GPR formulation limits our understanding on 
how gene expression modulates metabolism. 

In order to overcome the existing lack of stoichiometry in the gene-
to-reaction associations, we have enriched the current GPR formulation 
by accounting the stoichiometry of the transcripts: Stoichimetric-GPR 
(S-GPR) [7]. 

In brief, S-GPR formulation follows the same principle than GPRs 
rules but incorporating the transcripts stoichiometry. Following the 
same example described above, the GPR corresponding to the complex 
is “a and b”, while the S-GPR formulation is “1*a and 2*b”. Replacing 
the logical operators by min/max operators the GPR will be formulated 
as follow: “min (a, b)”. However, S-GPR approach in addition divides 
the gene expression by its stoichiometric coefficient: “min (a/1, b/2)”. 
Thus, if for instance, the expression of gene “a” is 3 and the expression of 
gene “b” is 4, based on GPR formulation,  gene “a” is the limiting factor 
(exp.gene_a < exp.gene_b), while if S-GPR approach is implemented, 
the limiting factor is gene “b” (exp.gene_a /1 > exp.gene_b/2), which 
is more realistic. The accuracy in this step of the integration process is 
especially relevant as the way the gene expression data is incorporated 
to the analysis has an important impact on the reliability of the model 
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Abstract
Genome-scale metabolic models (GSMMs) have been widely used to study the molecular mechanisms 

underlying a variety of diseases with a strong metabolic component such as diabetes or cancer. GSMMs incorporate 
logical rules associating genes, proteins, and reactions (GPR rules), enabling the integration of either proteomics 
or transcriptomics. However, current GPR formulation do not account for the necessary stoichiometry to describe 
the number of transcript copies that are necessary to generate a catalytically active enzyme, which limits our 
understanding of how gene expression modulates metabolism. Thus, in this short commentary article, we introduce 
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by significantly improving the GSMM predictions. Thus, the novel S-GPR concept that we have developed enables 
a more precise integration of transcriptomics data into GSMM-based methods and can be extended to proteomics 
data, with an important impact in the environmental and the clinical fields.
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predictions.

The S-GPR formulation was applied to study the metabolic 
reprogramming in the prostate cancer (PC) cell line DU145, associated 
to a prolonged exposure to sub-lethal concentrations of the endocrine 
disruptor (ED) Aldrin. This organic pollutant is found at low 
concentrations in different ecosystems [8]. Numerous studies have 
already shown a clear relation between increasing ED concentration 
and an enhanced tumor malignancy. However, how a long exposure 
to low and non-lethal EDs concentrations affects cancer metabolism 
remains poorly understood. In this sense, Bedia et al. reported 
important alterations in the metabolic and lipidomic profile of the 
DU145 prostate cancer cells that are associated with an enhanced 
tumor malignancy, after a chronic exposure to low concentrations of 
Aldrin [9].

In this study, DU145 cells were exposed for a long period (50 days) 
to a pollutant concentration that didn’t compromise their growth rate. 
As consequence, it exists a high isogeneity between Aldrin-exposed 
and non-exposed cells. Indeed, only 0.35% of genes are deferentially 
expressed between conditions and among these genes only 1.62% are 
metabolic genes. However, it has been reported that Aldrin-exposed 
cells present an enhanced malignant phenotype compared with non-
exposed DU145 cells [9]. 

To evaluate how the incorporation of stoichiometry into the gene-
to-reaction formulation improved models’ predictive capabilities, we 
applied some of the most widely used transcriptomic-based model-
driven methods to integrate the transcriptomic data of Aldrin-exposed 
and non-exposed DU145 cells via either S-GPR or GPR [10-14]. The 
predicted and the experimentally measured metabolic consumption/
production rates were compared (up to 244 uptake/secretion rates 
from different species), showing a significant improvement of model’s 
predictions when S-GPR were implemented (up to 6% depending 
on the integration method). In addition, our computational analyses 
unveiled a marked metabolic reprogramming of key metabolic 
pathways in Aldrin-exposed cells. More specifically, carnitine shuttle, 
that transports long-chain fatty acids from cytosol to mitochondria 
and prostaglandine biosynthesis metabolisms were predicted to be 
significantly over-activated in Aldrin-exposed DU145 cells compared 
with control DU145 cells. Our computational analysis’s predictions 
are consistent with reported metabolic changes associated to an 
enhanced malignant phenotype in prostate cancer and are supported 
by experimental observations [15].

Furthermore, this case of study is especially sensitive to the 
incorporation of stoichiometry into the gene-to-reaction formulation as 
the high isogeneity between Aldrin-exposed and non-exposed DU145 
prostate cancer cells makes harder to infer metabolic changes from 
transcriptomic data. By contrary, the impact of adding stoichiometry 
to the gene-to-reaction associations may be disguise if more important 
differences exist in the transcriptomic profile between conditions. For 
instance, if important differences exist between conditions, considering 
the stoichiometry of a complex with several sub-units encoded by the 
same gene may not have any further effects due to the expression of 
the gene would unlikely become limiting at producing a catalytically 
active enzyme. 

The novel S-GPR formulation that we have developed, incorporates 
stoichiometry to the gene-to-reaction associations enables a more 
precise integration of the transcriptomic data that ultimately enhances 
the predictive capabilities of the GSMM-based analyses. This new 
grasp outperformed previous approaches by significantly improving 
predictions of metabolism of multi-factorial diseases in a complex 
scenario. In addition, the novel S-GPR concept that we have developed, 
has the potential to be extended to proteomic data integration, which 
increases the impact that this new slant can have in key research areas 
such as environmental or clinical fields.
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