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Introduction
Endothelial integrity depends on a balance between the extent of 

endothelial cell injury and the capacity for endogenous repair. Loss 
of endothelial integrity may cause atherosclerosis leading to coronary 
heart disease and stroke [1-4]. In healthy individuals, neighboring 
mature endothelial cells are capable to replicate locally and replace 
damaged cells [1]. However, local replication has limited potential 
and may be insufficient if the injurious stimuli remains prolonged and 
or repeated [5]. Therefore an alternative mechanism is required. One 
proposed mechanism is dependent on undifferentiated cells migrating 
to sites of vascular injury [6-8] then differentiating into mature 
endothelial cells [9-16]. These undifferentiated cells are thought to have 
a central role in vascular repair by their ability to proliferate, migrate 
to site of vascular injury and then differentiate into mature vascular 
endothelium [16,17]. They are also capable of augmenting this cycle 
by secreting pro-angiogenic cytokines [18-20]. Intense research has 
followed since the first reported observation of a bone marrow derived 
circulating progenitor cells termed endothelial progenitor cell (EPC) 
by Asahara et al. [21,22] EPCs are thought to be derived from pluri-
potential stem cells within the bone marrow and accounting for only 
0.001-0.0001% of peripheral blood cells [23]. Circulating EPCs are then 
thought to migrate to areas of vascular damage and differentiate into 
mature endothelial cells [21]. EPCs can be isolated from bone marrow 
or the circulation as a sub population of mononuclear cells [21,24,25] 
expressing a variety of endothelial surface markers [26]. 

However, there currently remains a lack of consensus EPC 
identification and function [27-32]. This may be confounding this, 
some studies have utilized EPC samples made of heterogenous cell 
population without recognition of the possible synergistic effect of 
different cell populations [33]. Furthermore EPCs are often referred 
to as a diverse group of cells lineages having angiogenic potential 
despite some of these cell populations being unable to differentiate 
into functional endothelial cells [27]. Consequently the current EPC 
nomenclature proposed over a decade ago is widely regarded as 
suboptimal [34]. This has made it difficult to clarify the role of EPCs in 
health and disease [35].

The review below highlights current controversies on a general 
consensus on a working definition on identification of EPCs [31]. The 
review will approach the current controversies on identification and 

function of EPCs by considering limitations of the commonly used 
laboratory methods used in EPC identification. 

Clinical applications

EPC are currently not measured routinely in clinical practice but 
understanding the role and EPCs in both health and disease are a focus 
of recent research. They remain very much a research tool at present. 
However it is now generally accepted that cardiovascular risk correlates 
with EPC number, highlighting the integral relationship between 
endothelial integrity and atherosclerosis [36-40]. With impaired 
EPC function being associated with cardiovascular events in several 
studies [6,38-40]. Decreased numbers have been found in patients 
with traditional risk factors for coronary artery disease including 
smoking, hypertension, [41] diabetes mellitus, [42-47] elevated low-
density lipoprotein cholesterol [48,49]and hypercholesterolemia [48-
53]. Disruption of endothelial integrity by endothelial cell injury has 
been shown to be a stimulus for the development of atherosclerosis 
[4] as well as augmentation of EPC number and function [12,54,55]. 
Continued endothelial damage [56] may eventually lead to a reduction 
of the number of EPCs resulting in deficient endothelial repair and 
progression of atherosclerosis and increased risk of myocardial 
ischaemia [12,48]. This has led to research examining the effect of 
EPC being infused in patients with intractable angina, post myocardial 
infarction left ventricular recovery and in chronic heart failure patients 
with some studies showing beneficial outcomes [57-66]. The REPAIR-
AMI trial found at 12 months the end points were significantly reduced 
in the bone marrow-derived progenitor cells group compared with 
placebo but also that the bone marrow-derived progenitor cells were 
independent predictor of favorable clinical outcome [67]. 
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Abstract
Endothelial integrity depends on a balance between the extent of endothelial cell injury and the capacity for 

endogenous repair. An imbalance is thought to be a contributory factor for development of atherosclerosis. In healthy 
individuals mature neighboring endothelial cells may replicate and therefore replace damaged cells. This mechanism 
has limited potential and therefore an alternative mechanism is also required. One that is proposed mechanism is of 
undifferentiated cells migrating to sites of vascular injury and then differentiate into mature endothelial cells. These 
cells are also thought to perpetuate the mechanism by secreting pro-angiogenic cytokines. However, there currently 
remains a lack of consensus on phenotypic and functional definition of endothelial precursor cells. 

This review summarizes the current controversies surround the identification, nomenclature and classification 
of EPCs.
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The identification and classification of endothelial progenitor 
cells (EPCs)

There are currently two laboratory methods commonly used for 
identification and classification of EPCs’. The first a blood based assays 
quantified by a number of specific cell surface markers using flow 
cytometry. The second by the number of colonies of adherent cells that 
can be obtained from circulating mononuclear cells (MNCs) expressing 
mature endothelial cell markers in-vitro by cell culture isolation [68].

Flow cytometric analysis 

Flow cytometry can be used to identify and quantify the density 
of cells of interest through fluorimetric analysis of specific cell surface 
markers. There remains controversy regarding which specific markers 
identify EPCs. EPCs, thought to be derived from CD34 hematopoietic 
progenitor cells, [9,21,24,26] with co-expression of specific endothelial 
marker proteins [9,24,26]. With certain cell surface markers thought 
to be related to the stage of maturations of the EPC, such as, the cell 
surface marker CD133, a 120-kDa trans-membrane polypeptide. 
CD133 found to be expressed on bone marrow derived hematopoietic 
stem and progenitor cells in peripheral blood [69]. Interestingly 
expression of CD133 decreases to a complete absence in mature EPCs 
within the peripheral circulation. The timing of the loss of expression 
of CD133 from EPCs remains unclear [70]. However, the loss of CD133 
indicates the transformation to more mature endothelial like cells [69]. 
The converse is true for the expression of CD34 a cell surface marker 
found on immature pluri-potential stem cells [26]. CD34 gradually 
increases as the CD133 decreases as the EPC matures [69]. The value of 
using CD133 as a marker of EPC remains contentious firstly due to the 
rarity of cells expressing CD133 and more importantly studies suggest 
that CD133 are haematopoietic cell lines and therefore unable to form 
endothelial phenotypic EPCs [71,72].

Certain authors suggest a minimal antigenic profile should include 
at least 1 marker of immature cells, commonly CD34 and/or CD133 
plus at least 1 marker of endothelial cells commonly VEGFR2 (KDR/
Flk-1). CD133 either alone or in combination with CD34/VEGFR2 
have been used for identification of EPCs in some studies [26,73]. 
Whereas as other studies suggest expression of CD34, CD133, and/
or VEGF2 [23,27,71,74,75]. Table 1 summarizes and compares the 
distinct expression of three commonly used markers within bone 
marrow and EPCs. Some authors propose EPCs being derived from 
CD45-lineage [23]. Interestingly CD34, VEGFR2 and diminished 
CD45 (CD45dim) cells have been found to have greater correlation 
to coronary heart disease and response to statins when compared to 
healthy individuals [76,77]. With the combination of CD133, CD34 
and VEGFR-2 associated with early functional EPCs [10,26].

Therefore EPCs may express markers of both hematopoietic stem 
cells (CD34 and CD133) and endothelial cells (CD146, vWF, and 
VEGFR2) [23,24,26,69,72,78-82] amongst other proposed markers 
[21,69,70,83]. Hence current flow cytometric identification of EPCs 
remains controversial.

Cell culture analysis

Cell culture allows identification by formation of colonies of cells 
that have a pattern of immunofluorescence identifying functioning 
endothelial cell lines [84]. Asahara et al first isolated and defined EPCs 
as circulating mononuclear cells expressing CD34 and Flk-1 with 
further cell culture identification by CD31, uptake of acetylated LDL, 
and lectin binding [21]. Characteristics that are still commonly used to 
define EPC in cell culture. 

Cell culture definitions of EPCs also lack phenotypic specificity 
for a number of reasons. Firstly, micro-particles from platelets may 
transfer CD31 to haematopoietic cells [85]. Secondly CD31 and 
vascular endothelial growth factor receptor 2 (VEGFR2) may also be 
found in some monocytic subpopulations [86]. Finally AcLDL uptake 
and lectin binding have been found in both macrophages and mature 
endothelial cells [29].

A number of studies have described two types of time-dependent 
cell colonies with distinct properties. The spindle shaped early 
outgrowth EPC (EO-EPC) seen in the early period of culture and late 
outgrowth EPC (LO-EPC) that produce colonies and tube formation 
in latter period of culture [12,21,33,87-90]. These two populations have 
very different phenotypes, EO-EPC is thought of as haematopoietic 
and LO-EPC as endothelial cell lines [91]. This has led to populations 
being named as “hematopoietic EPCs” and “non-hematopoietic EPCs” 
[92]. Thereby supporting the hypothesis of hematopoietic EPCs giving 
rise to non-hematopoietic EPCs and ultimately endothelial cells. 

Early outgrowth EPC (EO-EPC) are thought to be short-lived 
cells (<2 weeks) and do not differentiate into endothelial cells in 
vivo but have the ability to restore endothelial function and enhance 
angiogenesis after tissue ischaemia through a paracrine mechanism 
[21,80,93]. However, they are thought to be a heterogeneous 
population of hematopoietic cells [93-95] and often referred to as 
circulating angiogenic cells (CACs) [96]. CACs have been produced 
in-vitro in cell culture conditions, however there is little evidence to 
suggest that this occurs in-vivo. Leading to some authors to suggesting 
that this cell population be termed as myeloid angiogenic cells (MACs) 
based on their lineage and function [29]. MACs are characterized 
by cell culture immune-phenotyping with CD45, CD14, CD31, and 
negative for CD146, CD133, and Tie2 [97,98]. These cells have potent 
pro-angiogenic and vaso-reparative effect by a paracrine mechanism 
[15,99-101]. Importantly, they are not capable of becoming endothelial 
or progenitor cells [31,102]. Therefore the terms MACs/CACs should 
not be used interchangeably with EPCs [29].

In contrast LO-EPCs, are thought to be homogeneous endothelial-
like progenitor cell population that possess a high proliferative potential, 
differentiate into vascular endothelial cells and form networks in vitro 
and in vivo. Furthermore LO-EPCs are also capable of augmenting the 
process by auto paracrine mechanism [29,33,103-106]. A mechanism 
noted in patients with cardiovascular risk factors [104,107]. New 
recommendations have suggested that this population of cells perhaps 
should be referred to as endothelial colony forming cells (ECFCs) 
[25,29]. ECFCs derived from peripheral blood mononuclear cells, or 
umbilical cord blood grown in endothelial cell culture conditions are 
characterized by immunophenotype positive for CD31, VE-Cadherin, 
von Willebrand factor, CD146, VEGFR2, and negative for CD45 and 
CD14. CD34 expression may also be expressed however may decline 
during in-vitro expansion [103,108,109] as mentioned above under 
flow cytometric analysis.

Interestingly, the proliferative, differentiation and tube forming 

Bone marrow Circulation
Early EPCs Mature EPCs

CD133+ + +/- -
CD34+ + + +
VEGFR2+ + ++ +++

Table 1: Cell surface markers during course of maturation of EPCs (Adapted from 
Sandhu et al.) [32].
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ability have been found to been enhanced by laminar shear stress [110-
113] suggesting that they may contribute to autologous vascular repair. 
This is an important finding raising the possibility of using these cells 
as viable treatment option for cardiovascular patients [90]. However 
any future use in as a treatment option would require an ex-vivo 
production due to the low concentrations of LO-EPC in-vivo [87,114].

The use of ECFCs and MACs are preferentially used terms as 
this definition accurately describes the phenotype and function of 
these cell-types [102,115]. Figure 1 adapted from Medina et al. [29] 
summarizes cellular analysis technique, phenotype markers, preferred 
nomenclature and function of cells often termed as EPC in current 
literature. 

Conclusion
Since the first reported reports of bone marrow derived circulating 

cells differentiating to endothelial cells some there have been a 
number of cells termed EPCs despite being unable to differentiate into 
functional endothelial cells. However currently there remains a lack 
of consensus on phenotypic and functional definition of endothelial 
precursor cells. Intense research is being undertaken into elucidating a 
consensus on classification and identification of EPCs. This will allow a 
better understanding of the function of EPCs in both health and disease 
but may also path the way for use of EPC as a viable treatment modality.   

References 

1.	 Deanfield JE, Halcox JP, Rabelink TJ (2007) Endothelial function and 
dysfunction: testing and clinical relevance. Circulation 115: 1285-1295.

2.	 Widlansky ME, Gokce N, Keaney JF, Vita JA (2003) The clinical implications of 
endothelial dysfunction. J Am Coll Cardiol 42: 1149-1160.

3.	 Munzel T, Sinning C, Post F, Warnholtz A, Schulz E (2008) Pathophysiology, 
diagnosis and prognostic implications of endothelial dysfunction. Ann Med 40: 
180-196.

4.	 Ross R (1999) Atherosclerosis- an inflammatory disease. N Engl J Med 340: 
115-126.

5.	 Buijs JOD, Musters M, Verrips T, Post JA, Braam B, et al. (2004) Mathematical 
modeling of vascular endothelial layer maintenance: the role of endothelial cell 

division, progenitor cell homing, and telomere shortening. Am J Physiol Heart 
Circ Physiol 287: H2651-H2658.

6.	 Walter DH, Rittig K, Bahlmann FH, Silver M, Isner JM, et al. (2002) Statin 
therapy accelerates reendothelialization: a novel effect involving mobilization 
and incorporation of bone marrow-derived endothelial progenitor cells. 
Circulation 105: 3017-3024.

7.	 Griese DP, Ehsan A, Melo LG, Kong D, Zhang L, et al. (2003) Isolation and 
transplantation of autologous circulating endothelial cells into denuded vessels 
and prosthetic grafts: implications for cell-based vascular therapy. Circulation 
108: 2710-2715.

8.	 Fujiyama S, Amano K, Uehira K, Yoshida M, Nishiwaki Y, et al. (2003) 
Bone marrow monocyte lineage cells adhere on injured endothelium in a 
monocyte chemoattractant protein-1-dependent manner and accelerate 
reendothelialization as endothelial progenitor cells. Circ Res 93: 980-989.

9.	 Bhattacharya V, McSweeney PA, Shi Q, Bruno B, Ishida A, et al. (2000) 
Enhanced endothelialization and microvessel formation in polyester grafts 
seeded with CD34(+) bone marrow cells. Blood 95: 581-585.

10.	Gehling UM, Ergun S, Schumacher U, Pantel K, Otte M, et al. (2000) In vitro 
differentiation of endothelial cells from AC133-positive progenitor cells. Blood 
95: 3106-12.

11.	Hu Y, Davison F, Zhang Z, Xu Q (2003) Endothelial replacement and 
angiogenesis in arteriosclerotic lesions of allografts are contributed by 
circulating progenitor cells. Circulation 108: 3122-3127.

12.	Hill JM, Zalos G, Halcox JP, Finkel T, Schenke WH, et al. (2003) Circulating 
endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl 
J Med 348: 593-600.

13.	Takahashi T, Kalka C, Masuda H, Chen D, Silver M, et al. (1999) Ischemia- and 
cytokine-induced mobilization of bone marrow-derived endothelial progenitor 
cells for neovascularization. Nat Med 5: 434-8.

14.	Carmeliet P (2003) Angiogenesis in health and disease. Nat Med 9: 653-660.

15.	Urbich C, Heeschen C, Aicher A, Dernbach E, Zeiher A, et al. (2003) Relevance 
of monocytic features for neovascularization capacity of circulating endothelial 
progenitor cells. Circulation 108: 2511-2516.

16.	Nissen SE, Nicholls SJ, Sipahi I, Grasso AW, Hu T, et al. (2007) Effect of 
very high-intensity statin therapy on regression of coronary atherosclerosis: the 
Asteroid trial. JAMA 295: 1556-65.

17.	Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for 
organ vascularization and regeneration. Nat Med 9: 702-712.

Cell analysis               Phenotypic Markers                  Terms used                                   Cell Lineage                            Function 
technique 

Blood and blood 
mononuclear cells 

Flow  cytometry 
CD 34, VEGF , 

CD133 
CD146, vWF 

Endothelial 
progenitor cells 

Angiogenesis and 
vascular repair 

Cell culture 

CD31, VE-
Cadherin,, 

CD146, 
VEGFR2,vWF 
Negative for 

CD45 and 
CD14  

ECFC Also known as 
Endothelial 
outgrowth cells 
(EOCs) 
Late EPCs 
Late outgrowth EPC 
Non-
haematopoietic 
EPCs 
Large EPCs  

Endothelium cells 
Intrinsic tube forming 
capacity in vitro and in 

vivo and or repair 

CD45, CD14, 
CD31,  

Negative for 
CD146, 

CD133, and 
Tie2. 

 
MAC Also knows as 

Circulating 
angiogenic cells 
(CACs) 
Colony forming unit – 
Hill EPC (CFU-Hill) 
Early EPCs 
Early outgrowth EPCs 
Hematopoietic EPCs 
 

Haematopoietic  Angiogenesis via 
paracrine effect 

Abbreviations:  EPC: Endothelial Progenitor Cell; ECFC: Endothelial Colony Forming Cells; MAC : Myeloid Angiogenic Cells; vWF : von Willebrand Factor.
Figure 1: Table summarising cellular analysis technique, phenotype markers, preferred nomenclature and function of cells often termed as EPC in current 
literature.
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