

Open Access

Endothelial Function and Short-term Exposure to Particulate Matter: A Systematic Review and Meta-analysis

Yanping Ruana¹, Ruijuan Liangb², Hui Liana¹, Xiaoyi Zhaoa¹, Xiaole Liua¹ and Zhongjie Fan¹

¹Department of Cardiology, Peking Union Medical College Hospital, Peking Union, Medical College and Chinese Academy of Medical Sciences, Beijing, PR China ²Department of Cardiology, Shenzhen People's Hospital, Shenzhen, China

Abstract

Association of particulate matter with endothelial function Current evidence has confirmed the definite correlation between air pollution and cardiovascular disease. One of the mechanisms was the adverse effect on endothelial function. However, there is heterogeneity between the air pollution and endothelial function in different studies. We performed a meta-analysis to determine the direction and strength of the association. PubMed, EMBASE, Cochrane library and Web of Science were searched for a combination of keywords related to major air pollutants and to the indexes of endothelial function, including reactive hyperemia, flow-mediated dilation and nitroglycerin-mediated dilatation. Thirteen of reviewed articles with sufficient details met inclusion criteria. Descriptive and quantitative information was extracted from the included studies. A pooled estimate in a random effects model was computed, and change in endothelial function (95% CIs) were calculated for each increment of 10 µg/m³ in PM_{2,5} and 1 µg/ m³ scaled for black carbon. A 0.27% decrease in flow-mediated dilation was marginally associated with per 1 µg/m³ increase in PM25 in overall risk estimate analysis, with the greatest effect occurred in PM25 exposure for 1-day lag. Subgroup analyses have shown that the effect was modified by the factors as follows: American, subjects aged less than 55 years old, the proportion of female less than 50%, and the panel design. A 0.07 mm decrease in brachial artery diameter and 2.46% decrease in nitroglycerin-mediated dilation for per 1 µg/m³ increment in BC were observed in the pooled analysis from two studies(P=0.005 and P=0.043, respectively). No significant association was found between black carbon and flow-mediated dilation. Short-term exposure to PM_{2.5} and black carbon was associated with endothelial function, which provided the evidence for the increased risk of cardiovascular disease due to air pollution.

Keywords: Endothelial dysfunction; Flow-mediated dilation; Cardiovascular disease; Particulate matter; Meta-analysis.

Introduction

A growing body of evidence has confirmed the association between air pollutants and increased risk of cardiovascular morbidity and mortality [1], either short-term or long-term exposure. What's more, exposure to air pollution has been emerging as an important risk factor for the development and progression of cardiovascular disease (CVD), which has been set forth in the guidelines and scientific statement [2,3]. Many credible pathological mechanisms of PM-mediated cardiovascular effects have been elucidated, including systemic autonomic nervous system imbalance, systemic proinflammatory responses, thrombosis and coagulation, oxidative stress, vascular or endothelial dysfunction [4]. Atherosclerosis is the major cause of CVD. In the earliest time, 2 clinical trials with 798 participants conducted in the Los Angeles, arrived at the conclusion that $10 \,\mu\text{g/m}^3$ higher in PM₂, was associated with non-significant 4.2% elevation in common carotid intima-media thickness (CIMT), a marker of subclinical atherosclerosis [5]. Afterwards, related studies have been increasing with heterogeneity between different studies concerning the strength of the association. In 2015, Provost et al. performed a meta-analysis and drew a conclusion that an increase of 5 μ g/m³ PM₂₅ was associated with a 1.66% thicker CIMT in the combined cross-sectional studies and a 1.04 µm per year greater CIMT progression in the combined longitudinal studies [6].

Endothelial dysfunction, as a possible and important mechanism, is an initial step in atherosclerosis and caused principally by loss of endothelium-derived nitric oxide [7]. The noninvasive tools to evaluate the endothelial function are brachial artery ultrasound and peripheral arterial tonometry (PAT). The former is a commonly used and widely accepted measure of peripheral macrovascular endothelial function, reported as baseline arterial diameter (BAD), nitroglycerin-mediated dilation (NMD), flow-mediated dilation (FMD). The latter is commonly used to assess microvascular endothelial function via changes in finger pulse wave amplitude in response to reactive hyperemia. Indeed, both macrovascular endothelial dysfunction, as measured by flow-mediated dilation, and microvascular endothelial dysfunction have been found to be independent predictors of future cardiovascular events in large cohort studies in healthy individuals over and above traditional risk factor assessment [8].

Several studies have reported an association between endothelial function and particulate air pollution [9-12]. However, there is heterogeneity in the strength and direction of the reported association. Therefore, we performed a meta-analysis to evaluate the short-term exposure to particulate air pollution and endothelial function, such as BAD, NMD, FMD, and reactive hyperemia index (RHI).

Methods

Search strategy and selection criteria

PubMed, EMBASE, Cochrane library and Web of Science were searched to identify relevant articles that were published through Aug 1, 2015, according to the search strategy as follows: ("air pollution" OR "air pollutant*" OR "particle" OR "particulate matter" OR aerosol OR "PM_{2.5}" OR "PM₁₀" OR "Black carbon" OR "carbon black" OR sulfate OR nitrate) AND ("reactive hyperemia" OR "endothelial function" OR "endothelial dysfunction" OR "Peripheral arterial tonometry" OR "flow-mediated dilation" OR "endothelium-dependent dilatation" OR

*Corresponding author: Zhongjie Fan, Department of Cardiology, Peking Union Medical College Hospital, Peking Union, Medical College and Chinese Academy of Medical Sciences, Beijing, 100730, China, Tel: 86 010 69155086; E-mail: Fan@pumch.cn

Received August 31, 2015; Accepted September 18, 2015; Published September 23, 2015

Citation: Ruana Y, Liangb R, Liana H, Zhaoa X, Liua X et al. (2015) Endothelial Function and Short-term Exposure to Particulate Matter: A Systematic Review and Meta-analysis. J Environ Anal Chem 2: 159. doi:10.4172/2380-2391.1000159

Copyright: © 2015 Ruana Y, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Page 2 of 9

"RHI" OR "reactive hyperemia index" OR "vascular function" OR "Nitroglycerin-mediated vasodilation" OR "Nitroglycerin-mediated dilatation" OR "flow-mediated dilatation" OR "flow-mediated vasodilation") (Table 1), with restriction of human and not review. We also considered references found in the literature search.

Study selection

The cross-sectional and longitudinal cohort studies were included to evaluate the association between particulate air pollution (PM_{10} , $PM_{2.5}$, Black carbon, sulfate and nitrate) and endothelial function as assessed by BAD, NMD, FMD and RHI. Only English language was including in our search. We excluded non-human studies, studies reporting gaseous pollutants exposure, studies reporting estimates other than absolute and percent change in outcome per change in the level of particulate air pollutants, and studies with incomplete data. There were 2073 non-duplicate abstracts searched from the four databases, which were evaluated by all the authors independently using the search algorithm. Articles relevant to our meta-analysis (n=33) were reviewed by two separate authors to identify the final studies based on our inclusion and exclusion criteria. If any disagreement, a third author determined and resolved the final results.

Data extraction

There were 6 cross-sectional studies and 7 longitudinal studies on the association between the particulate air pollutants and endothelial function. If a group published two or more papers based on the same study participants, only articles with more details were included in our analysis. Information extracted included citation data, authors' names, publication year, data source, country, sample size, age distribution, sex distribution, study design, baseline exposure level, outcome measure, effect estimate, and standard error of effect estimate. For studies that reported multiple effect estimates, we extracted the estimate from the main model or model that reflected the greatest degree of control for potential confounders. For each included studies, we extracted mean change in the indexes of endothelial function.

Statistics analysis

All estimates were standardized to per 10 µg/m3 increase in PM257 per 1 µg/m³ for black carbon (BC), and per 1000/cm³ for particle number concentration (PNC). In all included studies, linear mixed or general linear models were used to analyze the association between air pollution and the indicators of endothelial function. Therefore, we pooled absolute and percent change (with upper and lower 95% CI) for an increment per unit in air pollutants based on the assumption of the linear association between the both factors. Effect estimates were derived from the point estimate of each separate study weighted by the inverse of the variance (1/SE²). The combined estimate was computed using the random effect model. Delayed and cumulative effects of air pollutants on endothelial function were evaluated with multiple lag patterns, (e.g., lag 0 meant the present day exposure of BP measurement, lag 1 meant the day before and so on; 5-day moving average (MA) referring to the average of the same day and the previous four days), in many studies. If there were several estimates for multiple lag patterns reported in the same article, we chose the lag pattern with the largest estimate size, which was most frequently used in all the selected studies to assess overall risk estimates. In addition, we pooled the various estimates according to lag pattern separately and only pooled estimates where more than two estimates were available. Heterogeneity between studies was detected by the forest plot, and I-squared (I²) statistic. Consistent with prior thresholds we considered an I² statistic \geq 50% to represent substantial heterogeneity and \geq 75% to represent considerable heterogeneity. Meta-regression was used to assess potential sources of heterogeneity, such as year of publication, country, study design, sample size, and baseline level of exposure. Subgroup analyses were conducted to explore the impact of possible confounding factors. All statistical tests were two-sided and p values <0.05 were considered to be statistically significant. Analyses were conducted with STATA Version 12(Stata Corp., College Station, Texas, USA).

Results

Study selection

There were 2073 articles screened by title and abstract, 2224 of which were excluded, and the remaining 33 articles were reviewed by full text according to the inclusion criteria of the meta-analysis (Figure 1). Thirteen studies were considered for data extraction, a total of 11226 subjects (51% female) from 6 studies in a cross-sectional design [11-16] and 7 in a longitudinal design [9,17-22]. The number of subjects for both groups was 7934 and 3293, respectively. The mean age for the subjects in the included studies except one study [11] was more than 45 years old. The mean level of PM_{2.5} exposure among studies ranged from 6.8 to 28 μ g/m³, ranged from 0.36 to 4.7 μ g/m³ for BC concentration. Most of the studies focused on the short-term effect of air pollutants on endothelial function. The long-term effect was depicted only in the two studies [9,15] (Tables 2 and 3).

Association between PM_{2.5} and endothelial function

We found nine studies reporting on the association between PM_{2.5} and FMD, which reflected the macrovascular function as described above. The meta-analysis based on the largest estimates chosed from different lag patterns pooled as overall risk estimates showed that a 0.27% decrease in FMD was associated with per 10 μ g/m³ increase in PM_{2.5} exposure with marginal significance (P=0.05) (Figure 2).

In addition, subgroup analysis for different lag pattern between $PM_{2.5}$ and FMD has been performed, which indicated that the greatest effect was found for per 10 µg/m³ increase in 1-day lag $PM_{2.5}$ exposure with 0.092% decline in FMD (P=0.014) (Figure 3). However, no significant association was found for other lag pattern and 5-day average exposure (all P>0.05). There were moderate heterogeneity between studies (I²=49.2%, P=0.046). Therefore, we performed further subgroup analysis on this issue, according to whether ambient or personal exposure, study design, the percentage of female, whether age>55 years or not and non-American or American (Figure 4 and Table 4), which demonstrated that larger effect in pooled analysis was found for American with a 0.551% decrease in FMD for per 10 µg/m³

 Search criteria for Medline*

 #1
 "reactive hyperemia" OR "endothelial function" OR "endothelial dysfunction" OR "Peripheral arterial tonometry" OR "flow-mediated dilation" OR "endothelium-dependent dilatation" OR "RHI" OR "reactive hyperemia index" OR "vascular function" OR "Nitroglycerin-mediated vasodilation" OR "Nitroglycerin-mediated dilatation" OR "flow-mediated dilatation" OR "flow-mediated vasodilation"

 #2
 "air pollution" OR "air pollutant*" OR "particle" OR "particulate matter" OR aerosol OR "PM_{2.5}" OR "PM₁₀" OR "Black carbon" OR "carbon black" OR sulfate OR nitrate

 #3
 (#1) AND #2 NOT review Filters: Humans

Table 1: Detailed search strategy. *Similar search criteria executed for EMBASE using specific Mesh terms.

increase in PM_{2.5} exposure (P=0.002), -0.457% for subjects aged less than 55 years old (P=0.048), -0.837% for the group with the proportion of female less than 50% (P=0.032), -0.357% for the group in the panel design (P=0.022). Meanwhile, meta regression in univariate analysis was conducted to find out the sources of heterogeneity and showed that the listed factors, including publication year, location, data source, population, age, sex and study design were not contributing to the heterogeneity (all P>0.05). However, multivariate meta-regression analysis was not performed, because the poor rationality resulted from few studies.

There were 5 studies evaluating the association between $PM_{2.5}$ and BAD, as well as NMD, and 2 studies for $PM_{2.5}$ and RHI. The pooled estimates in the meta-analysis demonstrated no significant association in the random-effect model (P=0.40, P=0.33, and P=0.48, respectively) (Figure 5).

Association between other pollutants and endothelial function

BC, an important pathogenic component of $PM_{2.5}$ has proved to be associated with cardiovascular morbidity and mortality [23]. A 0.07 mm decrease in BAD and 2.461% decrease in NMD for per 1 $\mu g/$

m³ increment in BC were observed in the pooled analysis from two studies (P=0.005 and P=0.043, respectively) [14,21,22]. Meanwhile, 5.9% decline in RHI was associated with 1 μ g/m³ increment in BC according to the pooled results of the studies conducted by Ljungman et al. [13] and Zhao et al. [16], respectively (P=0.028) (Figure 6). However, we didn't find the association between BC and FMD (P=0.928).

Limited studies on the association between PM_{10} , sulfate and endothelial function, and the indicators of endothelial function were different for these studies, which made the difficulty for the overall risk estimate in the meta-analysis [13,14,22].

Discussion

The finding of the meta-analysis based on the 13 current human studies comprising 11226 study participants has indicated that FMD is marginally and negatively associated with short-term exposure to $PM_{2.5}$, with the largest effect for 1-day lag $PM_{2.5}$ exposure. We also observed the association between BC and BAD, NMD, RHI, but not FMD. The effect of BC was calculated from only two or three studies. The association of other pollutants, including PM_{10} , sulfate and nitrate,

Page 4 of 9

Authors	Year	Location	Study period	Study design	Data source	Population	Number of participants	Age	% female
Briet et al. [11]	2007	Paris	2000-2006	Cross-sectional	study to evaluate the arterial effects of partial genetic deficiency in tissue kallikrein activity on endothelial function	healthy, nonsmoking male subjects	40	22	0
Brook et al. [18]	2011	Michigan	2005-2007	longitudinal	Non reported	non-smoking subjects	65	45	77
Brook et al. [19]	2011	Detroit	2005-2007	longitudinal	Non reported	non-smoking subjects	51	45	75
Karottki et al. [12]	2014	Copenhagen	2011-2012	cross-sectional	Non reported	non-smoking volunteers	78	55	42
Krishnan et al. [9]	2012	Six cities in US	2000-2002	longitudinal	MESA cohort	Subjects free of clinical cardiovascular disease	3040	61	49
Lanzinger et al. [20]	2014	North Carolina	2004-2005	longitudinal	Non reported	Subjects with T2DM	22	61	36
Liu L et al. [21]	2009	Ottawa	2007	longitudinal	Non reported	nonsmoking seniors	28	78	61
Ljungman et al. [13]	2014	Massachusetts	2003-2008	Cross-sectional	the Framingham Heart Study.	the participants from the study	2369	56	51
O'Neill et al. [14]	2005	Boston	1998-2002	Cross-sectional	4 clinical trials conducted at the Joslin Diabetes Center and Beth Israel Deaconess Medical Center in Boston	participants either had DM (type I or type II) or were at risk for diabetes	270	55	41
Schneider et al. [17]	2008	North Carolina	2004-2005	longitudinal	Non reported	subjects with T2DM	22	61	36
Wilker et al. [15]	2014	Boston	2001	cross-sectional	Framingham Offspring Study and Third Generation Studies	participants from Framingham study	5112	49	53
Zanobetti et al. [22]	2014	Boston	2006-2009	longitudinal	Non reported	Subjects with T2DM	64	64	50
Zhao et al. [16]	2014	Beijing	2012	cross-sectional	Non reported	Subjects with MtS	65	61	57

Table 2: Demographic characteristics of the 13 studies. DM: Diabetes mellitus; T2DM: Type 2 diabetes mellitus; Mts: Metabolic syndrome; MESA: Multi-ethnic of atherosclerosis.

Authors	Year	Exposure	Concentration	Method of exposure measurement	Exposure way	Outcome	
Briet et al. [11]	2007	PM _{2.5}	28	Fixed station gives hourly level of air pollutants	Short-term	FMD	
		PM ₁₀	43				
Karottki et al. [12]	2014	Indoor PNC	12400	Monitored with Philips NanoTracer1000	Short-term	RHI	
		Outdoor PNC	3900	Monitored at an urban background station			
		Indoor PM _{2.5}	11.8	gravimetrically on Fluoropore Membrane PTFE filter			
		Outdoor PM _{2.5}	14.4	Monitored at an urban background station			
		Outdoor PM ₁₀	21.4				
Ljungman et al. [13]	2014	PM _{2.5}	9.6	Using a tapered-element oscillating microbalance	Short-term	RHI	
		BC	0.7	Using an Aethalometer			
		PNC	20560	With a condensation particle counter			
		SO4 ²⁻	3.2	Measured by x-ray fluorescence analysis of the PM _{2.5} filter samples			
O'Neill et al. [14]	2005	PM _{2.5}	11.5	Measured at a site established by the Harvard School	Short-term	NMD, FMD	
		SO4 ²⁻	3.3	of Public Health, located near the site where patients were examined			
		BC	1				
		PNC	36155				
Wilker et al. [15]	2014	PM _{2.5}	10.9	Daily PM _{2.5} concentration was predicted by aerosol optical density(AOD), ground PM _{2.5} measurements from 78 monitoring stations, land use regression and meteorological	Long-term	FMD	
Zhao et al. [16]	2014	BC	4.7	Measured by personal Aethalometer	Short-term	RHI	

Table 3: Characteristics of the cross-sectional studies included in the meta-analysis. PNC: Particle number concentration, with the unit of per cm³; BC: Black carbon, with the unit of $\mu g/m^3$; The unit of $PM_{2.5}$, PM_{10} and $SO_4^{2.5}$ is $\mu g/m^3$; NMD: Nitroglycerin-mediated dilation; FMD: Flow-mediated dilation; RHI: Reactive hyperemia index.

Page	5	of	9
-			

Authors	Year	Exposure	Concentration	Method of exposure measurement	Exposure way	Outcome		
Brook et al. [18]	2011	Outdoor PM _{2.5}	15.4	Monitored at a nearby state of Michigan air quality monitoring site	Short-term	BAD, NMD,FMD		
Brook et al. [19]	2011	Personal PM _{2.5}	22.5	Using a modified personal DataRam mephelometer	Short-term	BAD, NMD,FMD		
Krishnan et al. [9] 201		PM _{2.5}	10.6-24.7	Estimated at each participant's residence using Long-term a spatio-temporal model		FMD, BAD		
		PM _{2.5}	1-74	Based on daily central-site monitoring in each of the 6 cities	Short-term	FMD, BAD		
Lanzinger et al. [20]	2014	PM _{2.5}	13.6	Obtained from a monitoring site	Short-term	BAD, FMD		
Liu L et al. [21]	2009	personal PM _{2.5}	6.30	An active personal monitor,which was a modified (pDR) that consisted of, in series, an personal data random access memory air sampling pump	Short-term	BAD, FMD		
		Indoor BC	0.36	by Aethalometers				
		Outdoor BC	0.71	by Aethalometers				
		Indoor PM _{2.5}	6.80	Measured using a DustTrak at each of the three nursing homes				
		Outdoor PM _{2.5}	15.30	Measured using a DustTrak,located close to the homes				
Schneider et al. [17]	2008	PM _{2.5}	13.60	Obtained at central monitoring sites	Short-term	NMD, FMD		
Zanobetti et al. [22]	2014	Ambient PM _{2.5}	8.37	measured hourly at a central monitoring site	Short-term	BAD, FMD, NMD		
		Indoor PM _{2.5}	7.11	Measured by fine particle samplers				
		Home/trip- integrated PM _{2.5} (5-day)	9.18	Collect fine particles on Teflon filters to determine $PM_{2.5}$ and BC mass concentration				
		ambient BC	0.61	measured hourly at a central monitoring site	1			
		HOME/trip- integrated BC	0.77	Collect fine particles on Teflon filters to determine PM _{2.5} and BC mass concentration				
		PNC	13270	measured hourly at a central monitoring site				
		SO4 2-	2.13			BAD		

Table 4: Characteristics of the longitudinal studies included in the meta-analysis. PNC: Particle number concentration, with the unit of per cm³; BC: Black carbon, with the unit of µg/m³; The unit of PM_{2.5}, PM₁₀ and SO₄²: is µg/m³; BAD: Baseline arterial diameter; NMD: Nitroglycerin-mediated dilation; FMD: Flow-mediated dilation.

with endothelial function was not explored due to the limited studies and different indicators of endothelial function.

FMD and NMD were calculated by the extent of reactive hyperemia after the occlusion of brachial artery, which represented the endothelial function and comprised the combined effects of endothelial-dependent processes and endothelial-independent process. The former influenced the production and quenching of vasodilatory nitrogen oxide (NO), while the latter influenced vascular smooth muscle responsiveness to NO [24,25]. NMD, a measure of the change in BAD before and after administration of nitroglycerin (an exogenous source of NO), reflects autonomic vascular smooth muscle responsiveness occurring independently of endothelial NO production. A decrease in FMD but not NMD suggests an effect on endothelial function specifically, whereas a decrease in both outcomes suggests that part or all of the change is due to endothelial-independent effects. Combined with our results, the association of PM_{2.5} with FMD represented the dysfunction of the endothelial-dependent process, depending on the vascular condition of the subjects. However, the effect of BC on NMD found in the meta-analysis has been demonstrated the dysfunction of vascular smooth muscle responsiveness to NO. The generalization of the results should take caution due to the limited studies on BC and NMD.

The results from our pooled analysis absolutely provided the certain evidence of mechanisms of PM-mediated adverse effect on cardiovascular morbidity and mortality- endothelial dysfunction. It is a systemic process, not only reflecting atherosclerotic risk [26], but also serving as a prognostic marker for future cardiovascular events [27]. As described in the meta-analysis, BAD, FMD, and peripheral arterial tonometry (PAT) (expressed as RHI) have been shown to correlate well with invasive measures. What's more, there were 3 meta-analyses

Citation: Ruana Y, Liangb R, Liana H, Zhaoa X, Liua X et al. (2015) Endothelial Function and Short-term Exposure to Particulate Matter: A Systematic Review and Meta-analysis. J Environ Anal Chem 2: 159. doi:10.4172/2380-2391.1000159

Citation: Ruana Y, Liangb R, Liana H, Zhaoa X, Liua X et al. (2015) Endothelial Function and Short-term Exposure to Particulate Matter: A Systematic Review and Meta-analysis. J Environ Anal Chem 2: 159. doi:10.4172/2380-2391.1000159

Page 8 of 9

reporting the prognostic value of non-invasive endothelial function and the risk of adverse outcomes, which demonstrated that the pooled RR of overall CVD risk, cardiovascular events and all-cause mortality or only cardiovascular events per 1% increase in brachial FMD was 0.92 (0.88-0.95), 0.90 (0.88-0.92) and 0.87 (0.83-0.91), and the pooled RR per 0.1 increase in RHI for cardiovascular events was 0.85 (0.78-0.93) [8,28,29].

The potential implication of the effect of particulate air pollution on endothelial function has deduced based on our result. The results were also verified by controlled exposure studies in a comparative way [30,31] and current air filtration-based intervention studies. Conclusion was drawn based on a randomized, double-blind, crossover study design published in 2008 by Brauner et al. that indoor air filtration significantly improved microvascular function by 8.1% [32]. However, there are several studies with the results of no association between filtration and endothelial function [33]. Just as the studies included in the meta-analysis with heterogeneity in results, there were several reasons to explain the potential factors, such as population sensitivity, models, the relative low baseline pollution concentrations, methods if vascular function measurement, the exposure error or indoor sources, and the composition of the particles.

There was moderate heterogeneity between studies included the meta-analysis, and the meta-regression found no factors listed explaining the source of heterogeneity according to univariate metaregression analysis. The subgroup analysis has shown that there were several potential effect modified factors, such as study design, age, gender, and American.

Although, the mechanisms of the effect of air pollution on endothelial function have been explored gradually, including the destruction of endothelium, the imbalance of vasoconstriction and vasodilation factor, such as increased endothelin-1 (ET-1), decreased nitric oxide bioavailability, inflammation with thrombosis/coagulation, as well as PM-mediated reactive oxygen species (ROS) [21,28].

There are several strengths and limitations in our meta-analysis. This is the first study to pool effect based on the current studies which have inconsistent results and the study areas are focused on the three different countries (United State, Canada, China), comprised developed and developing countries. The potential limitations as follows deserve consideration. First, the number of included studies was relatively small, particularly for BAD, NMD and RHI, which limited our ability to derive strong conclusion from these analysis and to explore the source of heterogeneity. Second, the measurement error in assessment of exposure was different in different studies, which may result in the biased estimates.

Conclusion

In conclusion, short-term exposure to $PM_{2.5}$ was marginally and negatively associated with FMD, which reflected the imbalance of endothelial-dependent dilation. BC was associated with NMD and BMD based on a very small number of studies. The interpretation of the results based on the meta-analysis need to be careful.

References

- Koulova A, Frishman WH (2014) Air pollution exposure as a risk factor for cardiovascular disease morbidity and mortality. Cardiol Rev 22: 30-36.
- Fihn SD, Gardin JM, Abrams J, Berra K, Blankenship JC, et al. (2012) 2012 AccF/ AHA/AcP/AAtS/PcNA/ScAi/StS guideline for the diagnosis and management of patients with stable ischemic heart disease: executive summary. A report of the American college of cardiology Foundation/American Heart Association task Force on Practice Guidelines, and the American college of Physicians, American Association for thoracic Surgery, Preventive cardiovascular Nurses

Association, Society for cardiovascular Angiography and interventions, and Society of thoracic Surgeons. Circulation 126: 3097-3137.

- Brook RD, Rajagopalan S, Pope CA III, Brook JR, Bhatnagar A, et al. (2010) Particulate matter air pollution and cardiovascular disease. An update to the scientific statement from the American Heart Association. Circulation 121: 2331-2378.
- Chin MT (2015) Basic mechanisms for adverse cardiovascular events associated with air pollution. Heart 101: 253-256.
- Kunzli N, Jerrett M, Mack WJ, Beckerman B, LaBree L, et al. (2005) Ambient air pollution and atherosclerosis in Los Angeles. Environ Health Perspect 113: 201-206.
- Provost EB, Madhloum N, Int Panis L, De Boever P, Nawrot TS (2015) Carotid intima-media thickness, a marker of subclinical atherosclerosis, and particulate air pollution exposure: the meta-analytical evidence. PLoS One 10: e0127014.
- Kitta Y, Obata JE, Nakamura T, Hirano M, Kodama Y, et al. (2009) Persistent impairment of endothelial vasomotor function has a negative impact on outcome in patients with coronary artery disease. J Am Coll Cardiol 53: 323-330.
- Xu Y, Arora RC, Hiebert BM, Lerner B, Szwajcer A, et al.(2014) Non-invasive endothelial function testing and the risk of adverse outcomes: a systematic review and meta-analysis. Eur Heart J Cardiovasc Imaging 15: 736-746.
- Krishnan RM, Adar SD, Szpiro AA, Jorgensen NW, Van Hee VC, et al. (2012) Vascular responses to long- and short-term exposure to fine particulate matter: MESA Air (Multi-Ethnic Study of Atherosclerosis and Air Pollution). J Am Coll Cardiol 60: 2158-2166.
- Brook RD, Urch B, Dvonch JT, Bard RL, Speck M, et al. (2009) Insights into the mechanisms and mediators of the effects of air pollution exposure on blood pressure and vascular function in healthy humans. Hypertension 54: 659-667.
- Briet M, Collin C, Laurent S, Tan A, Azizi M, et al. (2007) Endothelial function and chronic exposure to air pollution in normal male subjects. Hypertension 50: 970-976.
- Karottki DG, Beko G, Clausen G, Madsen AM, Andersen ZJ, et al. (2014) Cardiovascular and lung function in relation to outdoor and indoor exposure to fine and ultrafine particulate matter in middle-aged subjects. Environment international 73: 372-381.
- Ljungman PL, Wilker EH, Rice MB, Schwartz J, Gold DR, et al (2014) Shortterm exposure to air pollution and digital vascular function. American Journal of Epidemiology 80: 482-489.
- 14. O'Neill MS, Veves A, Zanobetti A, Sarnat JA, Gold DR, et al. (2005) Diabetes enhances vulnerability to particulate air pollution-associated impairment in vascular reactivity and endothelial function. Circulation 111: 2913-2920.
- Wilker EH, Ljungman PL, Rice MB, Kloog I, Schwartz J, et al. (2014) Relation of long-term exposure to air pollution to brachial artery flow-mediated dilation and reactive hyperemia. American Journal of Cardiology 113: 2057-2063.
- Zhao X, Sun Z, Ruan Y, Yan J, Mukherjee B, et al. (2014) Personal black carbon exposure influences ambulatory blood pressure: Air pollution and cardiometabolic disease (AIRCMD-China) study. Hypertension 63: 871-877.
- Schneider A, Neas L, Herbst MC, Case M, Williams RW, et al. (2008) Endothelial dysfunction: Associations with exposure to ambient fine particles in diabetic individuals. Environmental Health Perspectives 116: 1666-1674.
- Brook RD, Bard RL, Burnett RT, Shin HH, Vette A, et al. (2011) Differences in blood pressure and vascular responses associated with ambient fine particulate matter exposures measured at the personal versus community level. Occup Environ Med 68: 224-230.
- Brook RD, Shin HH, Bard RL, Burnett RT, Vette A, et al. (2011) Exploration of the rapid effects of personal fine particulate matter exposure on arterial hemodynamics and vascular function during the same day. Environ Health Perspect 119: 688-694.
- 20. Lanzinger S, Breitner S, Neas L, Cascio W, Diaz-Sanchez D, et al. (2014) The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes. Environmental Research 134: 331-338.
- 21. Liu L, Ruddy T, Dalipaj M, Poon R, Szyszkowicz M, et al. (2009) Effects of indoor, outdoor, and personal exposure to particulate air pollution on cardiovascular physiology and systemic mediators in seniors. Journal of occupational and environmental medicine / American College of Occupational and Environmental Medicine 51: 1088-1098.

Citation: Ruana Y, Liangb R, Liana H, Zhaoa X, Liua X et al. (2015) Endothelial Function and Short-term Exposure to Particulate Matter: A Systematic Review and Meta-analysis. J Environ Anal Chem 2: 159. doi:10.4172/2380-2391.1000159

Page 9 of 9

- 22. Zanobetti A, Luttmann-Gibson H, Horton ES, Cohen A, Coull BA, et al.(2014) Brachial artery responses to ambient pollution, temperature, and humidity in people with type 2 diabetes: A repeated-measures study. Environmental Health Perspectives 122: 242-248.
- 23. Grahame TJ, Klemm R, Schlesinger RB (2014) Public health and components of particulate matter: the changing assessment of black carbon. J Air Waste Manag Assoc 64: 620-660.
- 24. Ghio AJ, Kim C, Devlin RB (2000) Concentrated ambient air particles induce mild pulmonary inflammation in healthy human volunteers. Am J Respir Crit Care Med 162: 981-988.
- Sorensen M, Daneshvar B, Hansen M, Dragsted LO, Hertel O, et al. (2003) Personal PM2.5 exposure and markers of oxidative stress in blood. Environ Health Perspect 111: 161-166.
- 26. Anderson TJ, Uehata A, Gerhard MD, Meredith IT, Knab S, et al. (1995) Close relation of endothelial function in the human coronary and peripheral circulations. J Am Coll Cardiol 26: 1235-1241.
- Martin BJ, Anderson TJ (2009) Risk prediction in cardiovascular disease: the prognostic significance of endothelial dysfunction. Can J Cardiol 25 Suppl A:15A-20A.

- Ras RT, Streppel MT, Draijer R, Zock PL (2013) Flow-mediated dilation and cardiovascular risk prediction: a systematic review with meta-analysis. Int J Cardiol 168: 344-351.
- 29. Inaba Y, Chen JA, Bergmann SR (2010) Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. Int J Cardiovasc Imaging 26: 631-640.
- Peretz A, Sullivan JH, Leotta DF, Trenga CA, Sands FN, et al. (2008) Diesel exhaust inhalation elicits acute vasoconstriction in vivo. Environ Health Perspect 116: 937-942.
- Pope CA, 3rd, Hansen JC, Kuprov R, Sanders MD, Anderson MN, et al. (2011) Vascular function and short-term exposure to fine particulate air pollution. Journal of the Air & Waste Management Association 61: 858-863.
- 32. Brauner EV, Moller P, Barregard L, Dragsted LO, Glasius M, et al. (2008) Exposure to ambient concentrations of particulate air pollution does not influence vascular function or inflammatory pathways in young healthy individuals. Part Fibre Toxicol 5: 13.
- 33. Weichenthal S, Mallach G, Kulka R, Black A, Wheeler A, et al. (2013) A randomized double-blind crossover study of indoor air filtration and acute changes in cardiorespiratory health in a First Nations community. Indoor Air 23: 175-184.