
Research Article Open Access

Androulakis, J Neurol Disord 2019, 7:2
DOI: 10.4172/2329-6895.1000404

Volume 7 • Issue 2 • 1000404
J Neurol Disord, an open access journal
ISSN: 2329-6895

Journal of Neurological Disorders Jo
ur

na
l o

f N
eurological Disorders

ISSN: 2329-6895

Encoding and Assessing Sung Melodies in Stroke Patients with Aphasia
Anthony Androulakis*
Center for the Study of Aphasia Recovery (C-STAR), University of South Carolina, Columbia, South Carolina, USA

Abstract
Aphasia is a language and communication disorder caused by damage to the brain, usually occurring after stroke or

traumatic brain injury. Two MATLAB computer programs are presented for encoding and assessing the sung melodies
of stroke patients. The first MATLAB program, Sung Melody to Matrix (SMM.m), converts a patient’s sung melody into a
matrix containing the frequency and corresponding duration of each note sung. To find when the patient moves from one
note to another, a novel method called Visual Audio Signal Envelope (VASE) is used, which determines an audio signal’s
envelope through visual cues. Other existing envelopes that were tested did not work as well with the voice of post-
stroke patients recorded in a noisy environment. The second MATLAB program, Melodic Fidelity Evaluator (MFE.m),
compares this matrix to the matrix of the tune that the patient was trying to imitate. This second program provides a fair
assessment of the note interval error and the time interval error of the patient. In addition, these programs are easy-to-
use and can be automated for large data sets to correlate with brain lesions in stroke patients.

*Corresponding author: Anthony Androulakis, Center for the Study of Aphasia Recovery
(C-STAR), University of South Carolina, Columbia, South Carolina, USA, Tel: 803-777-7700;
E-mail: aandroulakis@zoho.com

Received February 19, 2019; Accepted March 15, 2019; Published March 22,
2019

Citation: Androulakis A (2019) Encoding and Assessing Sung Melodies in Stroke
Patients with Aphasia J Neurol Disord 7: 404. doi:10.4172/2329-6895.1000404

Copyright: © 2019 Androulakis A. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Keywords: Aphasia; Stroke; MATLAB; Melody; Signal envelope;
Sung Melody to Matrix (SMM.m); Visual Audio Signal Envelope
(VASE); Melodic Fidelity Evaluator (MFE.m); Euclidean distance

Introduction
Aphasia is a language and communication disorder that can take

away one’s ability to speak. Ongoing research focuses on the relationship
between singing abilities of post-stroke patients and damage in their
brain. Moreover, singing has been used as a treatment for aphasic patients
as in Melodic Intonation Therapy [1]. To evaluate the abilities of post-
stroke patients to repeat melodies, simple melodies were first provided
to the patients and they were asked to repeat them. The patients were
recorded in a casual (not noiseless) environment as they attempted to
repeat the melodies. The assessment of the patients’ sung melodies can
be a demanding task if many patient recordings need to be analyzed,
and therefore a computer program would be more efficient and
consistent. However, currently, there is no existing computer program to
fairly assess a sung melody of a post- stroke individual in a noisy real-world
environment. The fair assessment of the singing voice, that is, finding and
assessing the notes that a person most likely sung, has been a subjective
matter. This assessment becomes even more subjective with post-stroke
patients since many have difficulties speaking and singing. Therefore,
the automatic and objective assessment of sung melodies of post-stroke
patients is very important. The purpose of this project is to provide
this automatic and objective assessment, which can be used to correlate
brain imaging findings to melodic repetition impairment.

This project consists of two codes written in MATLAB: Sung Melody
to Matrix (SMM.m) and Melodic Fidelity Evaluator (MFE.m). These
programs are available in GitHub [2]. The first code, SMM.m, encodes
a sung melody into a matrix. The task of encoding a clear singing voice
of non-aphasic individual in an ideal noiseless environment has been
addressed by many automatic pitch detection algorithms [3]. This task
is similar to monophonic singing transcription based on hysteresis
of pitch-time curve, intonation, auditory models, and probabilistic
methods [4-9]. Although there are speech recognition programs and
even machine-learning algorithms to recognize the words of aphasic
patients [10,11], these programs do not apply to melodies sung by post-
stroke patients. The program presented here is based on a new envelope
that I constructed using visual cues. The second code, MFE.m, gives a
fair (and consistent) assessment of the attempt of a post- stroke patient
to imitate a certain original tune. Although there exists a program that
can evaluate the difference between two audio inputs [12], the presented

program gives a fair and informative evaluation of the singing ability of
the stroke patients. This program is informative since it gives separate
error evaluations on note intervals, time durations, and number of
notes added or subtracted. Other singing assessment programs which
are mainly designed for singers who seek to improve their singing
abilities can be found in [13-15], which use dynamic time warp (DTW)
and use machine learning based on pitch interval accuracy and vibrato.
Our approach uses simple rules that I find to be fair based on abilities
of aphasic patients [16,17].

Implementation and Architecture
The outline of how the two programs SMM.m and MFE.m work

together along with example inputs and outputs is shown in Figure 1.

Figure 1: The input of the SMM.m is an audio file and the output is a matrix
containing the frequencies and corresponding durations for each note sung.
The inputs of MFE.m are the output matrix of the SMM.m as well as a matrix
of the frequencies and corresponding durations of the notes of the tune the
patient was attempting to repeat. The outputs of MFE.m are duration error,
note interval error and number of notes added or deleted.

Citation: Androulakis A (2019) Encoding and Assessing Sung Melodies in Stroke Patients with Aphasia J Neurol Disord 7: 404. doi:10.4172/2329-
6895.1000404

Page 2 of 7

Volume 7 • Issue 2 • 1000404
J Neurol Disord, an open access journal
ISSN: 2329-6895

The implementation of the two programs to evaluate the repetition
ability of a post- stroke patient is as follows:

1)	A simple melody is played to the post-stroke patient. Examples of
such melodies are the following (Figure 2):

Figure 2: The WAV files for these tunes can be found in GitHub [2], and they are
named tune1.wav, tune2.wav and tune3.wav, respectively.

The WAV files for these tunes can be found in GitHub [2], and they
are named tune1.wav, tune2.wav and tune3.wav, respectively.

2)	 While being recorded, the patient attempts to repeat the played tune.
3)	Open a 2018 version of MATLAB. You will need to have these

two toolboxes:
•	 Image Processing Toolbox (version 10.2 was used)
•	 Audio System Toolbox (version 1.4 was used)
4)	Clear your workspace variables (using the command clear) and

close any figures that may be open (using the command close).
5)	Find out the path of the recording of the patient, which will be

put into a variable called filename as a string. An example of this
in Mac computers would be:

filename = ' / Users / Androulakis / Recordings / patient tune1.wav';

And likewise, in Windows would be:

filename = 'C : \Users \ Androulakis \ Recordings \ patient tune1.wav';

Note that the apostrophe used (‘) is straight and not curved as in
(’). Else, MATLAB will give you an error. Of course, your path does not
have to be identical to the one shown above, so this is just an example.
This is how your recording will be Note that the apostrophe used (‘) is
straight and not curved as in (’). Else, MATLAB will give you an error.
Of course, your path does not have to be identical to the one shown
above, so this is just an example. This is how your recording will be
inputted into SMM.m.

6)	Run SMM.m. The output will be in a variable called PHz
(PHz stands for Patient Hertz) containing the frequencies and
corresponding durations for each note sung.

7)	Manually create the matrix of the frequencies and durations
of the melody the patient attempted to repeat. For finding the
frequencies of the notes, Wikipedia’s Piano Key Frequencies
chart [18] was used. For finding the durations of the notes, use
the formula applicable to the tempo of your tune (Table 1).

For example, the matrices of the tunes given above in Step 1 would

be inputted as follows (OHz Stands for Original Hertz):
Matrix of Tune 1: OHz=[440 493.8833 523.2511 391.9954 440

391.9954 329.6276;30/95 30/95 30/95 30/95 60/95 60/95 120/95];
Matrix of Tune 2: OHz=[261.6256 293.6648 329.6276 349.2282

329.6276 391.9954;60/120 30/120 30/120 90/120 30/120 60/120];
Matrix of Tune 3: OHz=[391.9954 349.2282 349.2282 523.2511

493.8833;90/110 30/110 30/110 30/110 90/110];
Even though these matrices could be attempted to be computed

through the SMM.m, this program works better with the human voice,
and thus for better accuracy, manually create the matrices of the origi-
nal tunes.

8) Now that you have both the variables PHz and OHz in your
MATLAB workspace, run MFE.m. This program will output the
Time Error (seconds), Note Interval Error (semi- tones), and
Number of Notes Added (+)/Deleted (-). The time error and note
interval error is saved in the variable BR. The number of notes
added or deleted is saved in the variable Notes added or deleted.

[y, fs] = audioread(filename);
song = y(:,1);
clear y

The SMM.m Code
In this section, the MATLAB code SMM.m which encodes a sung

melody into a matrix, is described. In a melody, two notes never overlap.
Therefore, the mathematical objects that characterize the melody are
the frequencies and time durations of the notes. Thus, a matrix of two
rows suffices where one row is reserved for the frequencies of the notes
and the other row is reserved for the corresponding time durations.
To identify this matrix of two rows, the program SMM.m first cuts
the sung melody into intervals where each interval contains a single
note and then computes the median frequency and time length in each
of those intervals. The input of the SMM.m program is an audio file.
Acceptable formats are .wav, .ogg, .flac, .au, .aiff, .aif, .aifc, .mp3, .m4a,
.mp4. The program has been tested extensively with 1,269 recordings of
human singing, each of length up to 3.6 seconds. Only one channel of
the audio recording is considered.

[y, fs] = audioread(filename);
song = y(:,1);
clear y

The properties of the formations created by the amplitude graph are
usually very oscillatory, as can be seen in Figure 3.

Which note gets the beat Formula
Half Note 120/(beats per minute)

Quarter Note 60/(beats per minute)
Eight Note 30/(beats per minute)

Sixteenth Note 15/(beats per minute)
Table 1: For finding the durations of the notes, use the formula applicable to the
tempo of your tune.

Figure 3: The highly oscillatory graph of the amplitude graph of the
sung melody of a post- stroke patient can be seen here.

Citation: Androulakis A (2019) Encoding and Assessing Sung Melodies in Stroke Patients with Aphasia J Neurol Disord 7: 404. doi:10.4172/2329-
6895.1000404

Page 3 of 7

Volume 7 • Issue 2 • 1000404
J Neurol Disord, an open access journal
ISSN: 2329-6895

Therefore, the amplitudes are first converted into decibels for better
readability. Figure 4 shows the graph of the sung melody of a post-
stroke patient, converted into decibels and shifted above the x- axis for
better image processing.

Figure 4: The graph of the sung melody converted into decibels and shifted
above the x-axis is shown here. The decibels graph is not as oscillatory as
the amplitude graph.

decibelsSong = mag2db(song);
decibelsSong(decibelsSong == -Inf) = NaN;
decibelsSong(isnan(decibelsSong)) = min(decibelsSong);
decibelsSong = decibelsSong - min(decibelsSong);

During singing, at the point of the passage from one note to the
next, the loudness of the human voice usually dips. Unfortunately, the
decibels graph is still slightly oscillatory and thus obscures the voice
dips which occur when the post-stroke patient changes notes. To reveal
and exemplify the voice dips which occur at the note changes, a simple
graph is constructed which outlines the graph of the decibels. This
simple graph is called an envelope. The envelope should not be prone
to err from oscillations created by noise. There exist signal enveloping
functions in MATLAB such as peak, Hilbert, and rms (Root-Mean-
Square), but none performed well when tested on post-stroke singing.
Also, currently existing voice enveloping functions that were tested,
erroneously signified sudden unintended sounds such as taps or door
slams. Here a novel envelope function is presented called Visual Audio
Signal Envelope (VASE) that uses visual cues of an audio signal’s graph
to identify a rough outline (envelope) of the decibels graph. VASE is
described next. First the picture of the decibels graph is extracted with
a line thickness of 1 without the axes. The reason for thickening the
lines is to fill the spaces that are between the almost vertical lines of the
decibels graph.

saveas(plot(1: length(decibelsSong),decibelsSong, ,1),)
saveas(plot(1: length(

'lineWidth' 'MelodyTask.png'
'W' 'MelodecibelsSong),decibelsSong,),)

imageDecibelsGraph = imread
dyTaskaxes.png'

'MelodyTask.png'();
imageAxes = imread();
decibelsGraphNoAxes = imageAxes -

'MelodyTaskaxes.png
imageDecibelsGr

'
aph;

Then this image is blurred with a motion filter at a 45◦ to “fill” small

oscillatory dips that occur in the graph. Next, a convolution of the
blurred picture is taken which further blurs the borders of the already
blurred object. Finally, the contour of tis blurred object is drawn and
saved in a variable called contour Data.

grayImage = rgb2gray(decibelsGraphNoAxis);
motionBlurDecibels = imilter(grayImage, fspecial(,30 - 45));
binarizedMotionBlur = imbinarizeMotionBlurDecibels);
fullyBlurred = conv2(binarizedMotionBlur,o

'mot

ne(

ion'

50) / (50*50),);
newImage = fullyBlurred > 0.5
[contourData,~] = imcontour(newimage,1);

'same'

close

Then, x in frames (which is a time unit) and y in decibels on the
positive axis are computed from the variable contour Data. This task is
tedious because one must ensure that the x coordinates of the envelope
are in increasing order and do not repeat. However, the dimensions
of the contour are proportional to the original decibels graph and
therefore can be scaled appropriately (Figure 5).

xContourCoord = contourData(1,2 : contourData(2,1));
ycontourCoord = contourData(2,2 : contourData(2,1));
shiftedY = -yContourCoord - min(-yContourCoord);
findX = xContourCoord(find(shiftedY > 30));
findY = shiftedY(find(shiftedY > 30));
shiftedX = findX - min(findX);
[sortedX,SortingIndex] = sort(shiftedX)
sortedY = findY(sortingIndex);
hSong = reshape(song,[],1)';
silence = strfind(num2str(hSong == 0,),)'
removedSilenceSong

'%d'
= so

'00'
ng(silence(1) : (silence(end) +1));

scale0fx = length(removedSilenceSong) / (max(sortedX) - min(sortedX));
decibelsSong = mag2db(removedSilenceSong);
decibelsSong(decibelsSong == -Inf) = NaN;
decibelsSong(isnan(decibelSong)) = min(decibelsSong)
decibelsSong = decibelsSong - min(decibelsSong);
scale0fy = ((max(decibelssong) - min(decibelsSong)) / (max(sortedY) - min(sortedY) + 30));
scaledX = sortedX*scale0fX;
scaledY = sortedY*scale0fy;
nonRedundantX = scaledX(find(sclaedX ~= θ));
nonRedundantY = scaledY(find(scaledX ~= θ));
[~, xIndex,~] = unique(nonRedundantX);

 n = 1: length(xIndex) -1
loc = find(nonRedndantY == max(nonRedndantY(xIndex(n) : xIndex(n +1) -1)
for

));
x(1,n) = nonRedundantX(loc(find(loc >= xIndex(n) & loc <= (xIndex(n +1) -1))));
y(1,n) = nonRedundantY(loc(find(loc >= xIndex(n) & loc <= (xIndex(

LocationsofM
n = 1) -1))));

c aximus
end
lear

clear n

Figure 5: The graph of the decibels above the x-axis and the Visual Audio
Signal Envelope (VASE) is shown here. VASE is graphed by plotting the
variable y against the variable x.

Citation: Androulakis A (2019) Encoding and Assessing Sung Melodies in Stroke Patients with Aphasia J Neurol Disord 7: 404. doi:10.4172/2329-
6895.1000404

Page 4 of 7

Volume 7 • Issue 2 • 1000404
J Neurol Disord, an open access journal
ISSN: 2329-6895

VASE does not erroneously outline sharp unintended sounds as
Figure 6 shows.

Figure 6: Another signal graph with its corresponding VASE is shown here. The
sharp un-intended door slam approximately at frame 0.4 × 105 is not effecting
VASE.

This completes the description of VASE. Then the local
minima of the envelope are found. These are controlled by a
min separation parameter of 50 frames and a min prominence
parameter of 1. The locations of these minima are the points
when the patient changes notes.

Finally, the time matrix is defined, which contains the
beginning and ending in frames of each note sung. In each
interval, the fundamental frequency (f0) is estimated. Using
MATLAB’s pitch function from the Audio System Toolbox, this
task is done by utilizing the Pitch Estimation Filter (PEF) [19].
The frequencies and time intervals of each note are then saved
as the first and second rows of the final matrix, respectively. In
the program below, the matrix created from the patient audio is
called PHz.

TimeMatrix = [1 round(frameWhenNoteChanges) length(song)];
n = 1: length(TimeMatrix) -1
[f0, ~] = pitch(song(Ti
'Method' PEF'
'Ra

meMatrix(n) : TimeMatrix(n +1)),Fs,
, ' ,

,[nge'
'WindowLe

for
.

ngth

..
...

.50 800],
, round(Fs'

..
*0.08),

, round(Fs*0.05));
FrequencyMatrix(1,n) = median(f0);
clear

clear
PHz(1,:) = FrequencyMatrix;
PHz(2,

'OverlapLen

:) = diff(Tim

gth

eMa

.

t

'

f

ri

..

end
0

n

x) / Fs;

The MFE.m Code

In this section, the MATLAB code MFE.m which gives a fair (and
consistent) assessment of the attempt of a post-stroke patient to repeat
a certain original tune, is described. The inputs of MFE.m are two

matrices: the PHz matrix (produced by the SMM.m code described
in the previous section) and the OHz matrix (produced manually)
containing the frequencies and time durations of the tune and the
patient recording respectively. In order to change the subjective matter
of the assessment of a sung melody into an objective matter, the
following rules are adapted:

1.	 The patient should not be penalized for not singing on the exact
pitch as long as s/he produces the correct semitone intervals.

2.	 The patient should not be penalized if he/she sings at a faster or
slower tempo as long as the patient preserves the correct ratios
of note durations.

3.	 If the patient produces the original tune correctly with added
notes, then for computing the error of the patient, the time
durations of the original song and the note intervals when the
patient was adding notes are both set equal to zero.

4.	 Likewise, if the patient reproduces only a subsection of the
original tune, then it is assumed that the notes the patient failed
to produce have time durations and note intervals containing at
least one missed note are both equal to zero.

First, the MFE.m program converts the frequencies into notes by
corresponding A4 to 0.

*

*

(log(OHz(1, i) / 440) / log(2)) +1) / 2);
O(2, i) = OHz(2, i);

end
for i = 1: size(PHz, 2)

P(1, i) = floor)((24 (log(PHz(1, i) / 440) / log(2)) +1) / 2);

end

for i = 1: size(OHz,2)
O(1,i) = floor((24

P(2,i) = PHz(2,i);

There are three cases which are based on the number of notes the
patient makes relative to the number of notes of the original tune.

Case 1: If the patient produces the same number of notes as the
original tune, first rescale uniformly the durations of the time intervals
of the patient’s recording to minimize the Euclidean distance between
the original durations and the uniformly scaled durations of the patient.
Given two time vectors (T1, . . . , Tk) and (t1, . . . , tk) of same length and non-
negative coordinates, then by the Pythagorean Theorem it can be seen
that the uniform rescaling factor x of (t1, . . . , tk) that makes the Euclidean
distance (T1 − xt1)

2 + · · · + (Tk − xtk)
2 minimum, is given by x = (T1t1 + · ·

· + Tktk)/(t2 + · · · + t2). This uniform rescaling of the time intervals of the
patient ensures that the patient will not be penalized if he/she sings at
a different tempo than the original song, as long as the correct ratios
of the durations of the individual notes of the original tune are kept.
After this time interval rescaling, compute the Euclidean distance of the
uniformly rescaled time intervals of the notes of the patient’s recording
from the time intervals of the original tune. This is the time error of the
patient. Also compute the Euclidean distance of the note intervals of
the patient’s recording from the note intervals of the original tune. This
is the note interval error of the patient.

Citation: Androulakis A (2019) Encoding and Assessing Sung Melodies in Stroke Patients with Aphasia J Neurol Disord 7: 404. doi:10.4172/2329-
6895.1000404

Page 5 of 7

Volume 7 • Issue 2 • 1000404
J Neurol Disord, an open access journal
ISSN: 2329-6895

Case 2: If the patient produces more notes than the original tune,
then first select a submatrix of the matrix of the patient that has the
same number of columns (each column corresponds to one note made)
as the original and minimizes the Euclidean distance of the note interval
error. Second, scale the time intervals of the matrix of the original tune
to minimize the Euclidean distance of the time intervals between these
two matrices of the same size. Third, enlarge the matrix of the original
tune by adding auxiliary columns where the patient added notes. Each
such auxiliary column contains a zero for the time interval and contains
the same tone as the column on its left. Now the augmented matrix
of the original song and the matrix of the patient’s recording have the
same size, so the Euclidean distance of their top rows gives the note
error, and the Euclidean distance of their bottom rows gives the time
duration error. To understand the mentioned augmentation in the third
step, assume for example that the patient produces the matrix

1 2 3 4 5
1 2 3 4 5

N N N N N
T T T T T
 
 
 

While the matrix of the original song was merely

1 2 4
1 2 4

N N N
T T T
 
 
 

 (here N 1, N 2, . . . stand for notes and T 1, T 2, . . . stand for time durations).
Then the matrix of the original song is augmented to

1 2 2 4 4
1 2 0 4 0

N N N N N
T T T
 
 
 

The note error becomes

() ()() () ()()
() ()() () ()()

2 2

2 2

2 1 2 1 3 2 2 2

4 3 4 2 5 4 4 4

N N N N N N N N

N N N N N N N N

− − − + − − − +

− − − + − − −

The time error becomes

2 2 2

2 2

(1 2) (2 2) (3 0)
(4 4) (5 0)

T T T T T
T T T
− + − + −

+ − + −

if size(p, 2) > size(0, 2)
disp(['notes added(positive)or (negative) : 'num2str(p,2) - size(0,2))'])

C = nchoosek(1: size(p,2),size(0,2));
for k =: size(C,1)

Sk = P(:,C(k,:);
if size(Sk, 2) == 1
SQJE = 0;

else
 SQJE = 0;

 for L = 1(size(Sk,2) -1)
 SQJE = SQJE + ((0(1,L +1) - 0(Sk(1,L +1) -Sk(1,L))) ^ 2;
 end
 end
 JEMATRIX(k,1) = SQJE;
end
MINJE = min(JEMATRIX);

if size(p,2) > size(0,2)
disp(['notes added(positive)or (negative) : 'num2str(p,2) - size(0,2))'])

C = nchoosek(1: size(p,2),size(0,2));
for k =: size(C,1)

Sk = P(:,C(k,:);
if size(Sk,2) == 1
SQJE = 0;

else
 SQJE = 0;

 for L = 1(size(Sk,2) -1)
 SQJE = SQJE + ((0(1,L +1) - 0(Sk(1,L +1) -Sk(1,L))) ^ 2;
 end
 end
 JEMATRIX(k,1) = SQJE;
end
MINJE = min(JEMATRIX);

Case 3: If the patient produces fewer notes than the original tune,

if size(p,2) == size(O,2)
disp('notes added (positive)or deleted (negative) : 0')

numerator = 0
fori = 1: size(P,2)

numerator = numerator + P(2,i)*O(2,i);
end
denominator = 0;
for i = 1: size(P,2)

denominator = denominator + P(2,i) ^ 2;
end
x = numerator / denominator;
SCALEDP(1,;) = P(1,:);
SCALEDP(2,;) = P(2,:);
TE = 0;

for i = 1: size(P,2)
TE = TE + (O(2,i) -SCALEDP(2,i)) ^ 2;

end
TTE = sqrt(TE);
JE = 0;
for i = 1: size(P,2) -1

JE = JE + ((O,(1, i +1) - O(1,i)) - (P(1,i +1) - P(1, i))) ^ 2;
end

TJE = sqrt(JE);
BR = [TTE,TJE];
disp('The results are :")
disp('Timeerror (sec) Note Intervalerror (semitones)')
disp(BR)

end

Citation: Androulakis A (2019) Encoding and Assessing Sung Melodies in Stroke Patients with Aphasia J Neurol Disord 7: 404. doi:10.4172/2329-
6895.1000404

Page 6 of 7

Volume 7 • Issue 2 • 1000404
J Neurol Disord, an open access journal
ISSN: 2329-6895

R(r, 2) = TJE;
 r = r +1;
 end
 end
if size(R,1) == 1
 BR = R;
 disp('The results are : ')
 disp('Timeerror (sec) Noteintervalerror (semitones)')
 disp(BR)
 else BR = min(R);
 disp('The results are')
 disp('Timeerror (sec) Noteintervalerror (semitones)')
 disp(BR)
 end
end

then first select a submatrix of the matrix of the original tune that has the
same number of columns (each column corresponds to one note made)
as the matrix of the patient’s recording and minimizes the Euclidean
distance of the note interval error. Second, scale the time intervals of
the matrix of the patient’s recording to minimize the Euclidean distance
of the time intervals between these two matrices of the same size. Third,
enlarge the matrix of the patient recording by adding auxiliary columns
where the patient missed notes. Each such auxiliary column contains a
zero for the time interval and contains the same tone as the column on
its left. Now the augmented matrix of the patient’s recording and the
matrix of the original tune have the same size, so the Euclidean distance
of their top rows gives the note error, and the Euclidean distance of
their bottom rows gives the time duration error.

Quality Control

To check that VASE has faithfully created an envelope of the decibels
graph of the patient’s sung melody, run the program graphing.m,
which can be found in GitHub [2]. The SMM.m code has been tested
in 1064 patient wav files and their envelopes have been checked using
graphing.m with very satisfactory results.

System requirements

Operating system: macOS: El Capitan (10.11) Windows: Server 2012

Ubuntu: 14.04 LTSx

Debian: 8
Red Hat: Enterprise Linux 6 (minimum 6.7) SUSE: Linux Enterprise

Server 12 (minimum SP2)
Programming language: MATLAB 2018a
Additional system requirements: Minimum processor: Any Intel

or AMD x86-64 processor
Recommended disk space: 4-6 GB
Minimum RAM: 4 GB
Dependencies: Image Processing Toolbox Audio System Toolbox

Software location
Code repository
Name: GitHub	
Location: https://git.io/fx8rp
License: BSD 3-Clause ”New” or ”Revised” License
Date published: October 23, 2018

Conclusion
The significance of the presented MATLAB codes is that they can

be easily implemented in other stroke research labs to evaluate the
singing abilities of post-stroke patients. At the time of this writing, the
computer programs described here are being used in an ongoing study
to examine correlations between brain lesions and melodic repetition
errors. Future studies to combine these computer programs with neural
networks to investigate the correlation between melodic repetition
errors and treatment recovery are of great interest.

Acknowledgements

I would like to thank Professor Fridriksson, head of the Aphasia Lab at the
University of South Carolina, and the members of his lab (who can be found here:
https://web.asph.sc.edu/aphasia/members/) for their support, help, and stimulating
discussions during this research.

References
1.	 Albert ML, Sparks RW, Helm NA (1973) Melodic intonation therapy for aphasia.

Arch Neurol 29: 130-131.

2.	 Androulakis A (2015) Encoding and assessing sung melodies. GitHub.

3.	 Hess W (2012) Pitch determination of speech signals: Algorithms and devices.
Springer Science & Business Media. Germany.

4.	 Clarisse LP, Martens JP, Lesaffre M, Baets BD, Meyer HD, et al. (2002) An
auditory model based transcriber of singing sequences. Inf Retrieval ISMIR.
pp: 116-123.

5.	 DeMulder T, Martens JP, Lesaffre M, Leman M, De Baets B, et al. (2003) An
auditory model based transcriber of vocal queries. Inf Retrieval ISMIR.

6.	 McNab RJ, Smith LA, Witten IH (1996) Signal processing for melody
transcription, In: Proc 19th Australasian Comput Sci Conf 18: 301-307.

7.	 Haus G, Pollastri E (2001) An audio front end for query-by-humming systems.
In: Proceedings of 2nd International Symposium Music Inf Retrieval (ISMIR)
p: 6572.

r = 1;
for k = 1: size(C,1)
 if JEMARTRIX(k,1) == MINJE
 Sk = P(:,C(k,:));
 numerator = 0
 for i = 1;size(O,2)
 numerator = numerator +Sk(2,i)*O(2,i);
 end
 denominator = 0;
 for i = 1;size(O, 2)
 denominator = denominator +Sk(2,i) ^ 2;
 end
 x = numerator / denominator;
 SCALEDO(1,:) = O(1,:);
 SCALEDO(2,:) = O(2,:)*x;
 TE = 0;
 for i = 1: size(P,2)
 if 1 == ismember(i,C(k,:))
 TE = TE + (P(2,i) -SCALEDO(2, find(C(k,:) == i))) ^ 2;
 elseTE = TE + P(2,i) ^ 2;
 end
 end
 TTE = sqrt(TE);
 JE = MINJE;
 for i = 1;size(P,2) -1
 if 2 ~= ismember(i,C(k,:)) + ismember(i +1,C(k,:))
 JE = JE + (P(1,i +1) - P(1,i)) ^ 2;
 end
 end
 TJE = sqrt(JE);
 R(r,1) = TTE;

https://doi.org/10.1001/archneur.1973.00490260074018
https://doi.org/10.1001/archneur.1973.00490260074018
https://github.com/AnthonyAndroulakis/EncodingAndAssessingSungMelodies
https://www.springer.com/us/book/9783642819285
https://www.springer.com/us/book/9783642819285
https://www.semanticscholar.org/paper/An-Auditory-Model-Based-Transcriber-of-Singing-Clarisse-Martens/a326e119d8972008f43b631fd5fa60dcdbae10dd
https://www.semanticscholar.org/paper/An-Auditory-Model-Based-Transcriber-of-Singing-Clarisse-Martens/a326e119d8972008f43b631fd5fa60dcdbae10dd
https://www.semanticscholar.org/paper/An-Auditory-Model-Based-Transcriber-of-Singing-Clarisse-Martens/a326e119d8972008f43b631fd5fa60dcdbae10dd
https://www.researchgate.net/publication/2922158_An_Auditory_Model_Based_Transcriber_of_Vocal_Queries
https://www.researchgate.net/publication/2922158_An_Auditory_Model_Based_Transcriber_of_Vocal_Queries
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.9742&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.9742&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.3984
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.3984
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.22.3984

Citation: Androulakis A (2019) Encoding and Assessing Sung Melodies in Stroke Patients with Aphasia J Neurol Disord 7: 404. doi:10.4172/2329-
6895.1000404

Page 7 of 7

Volume 7 • Issue 2 • 1000404
J Neurol Disord, an open access journal
ISSN: 2329-6895

8.	 Molina E, Tardon LJ, Barbancho AM, Barbancho I (2015) SiPTH: Singing
transcription based on hysteresis defined on the pitch-time curve. Trans Audio
Speech Language Process 23: 252-263.

9.	 Krige W, Herbst T, Niesler T (2008) Explicit transition modelling for automatic
singing transcription. J New Music Res 37: 311-324.

10.	Deller JR, Hansen JHL, Proakis JG (2000) Discrete-time processing of speech
signals. Wiley-IEEE Press. USA.

11.	Kohlschein C, Schmitt M, Schuller B, Jeschke S, Werner CJ (2017) A machine
learning based system for the automatic evaluation of aphasia speech. IEEE
19th International Conference on e-Health Networking, Applications and
Services (Healthcom).

12.	Wolfram Language Contributors (2018) Use DTW to compare recordings. In:
Wolfram Language.

13.	Molina E, Barbancho I, Gomez E, Barbancho AM, Tardon LJ (2013)
Fundamental frequency alignment vs. note-based melodic similarity for singing
voice assessment. IEEE International Conference on Acoustics, Speech and
Signal Processing.

14.	Abeßer J, Hasselhorn J, Dittmar C, Lehmann A, Grollmisch S (2013) Automatic
quality assessment of vocal and instrumental performances of ninth-grade and
tenth-grade pupils. CMMR. pp: 975-988.

15.	Schramm R, Nunes HDS, Jung CR (2015) Automatic solfège assessment. In:
16th International Society for Music Information Retrieval Conference (ISMIR)
pp: 183-189.

16.	Nakano T, Goto M, Hiraga Y (2006) An automatic singing skill evaluation method
for unknown melodies using pitch interval accuracy and vibrato features. In:
Interspeech pp: 1706-1709.

17.	Bozkurt B, Baysal O, Yüret D (2017) A dataset and baseline system for singing
voice assessment, Proc. of the 13th International Symposium on CMMR pp:
25-28.

18.	Wikipedia Contributors (2010) Piano key frequencies. In Wikipedia, The Free
Encyclopedia.

19.	Gonzalez S, Brookes M (2014) PEFAC - A pitch estimation algorithm robust to
high levels of noise. IEEE/ACM Trans Audio Speech Language Process 22:
518-530.

http://emiliomm.com/wp-content/uploads/2016/09/Molina-et-al.-2015-SiPTH-Singing-transcription-based-on-hysteresis-defined-on-the-pitch-time-curve.pdf
http://emiliomm.com/wp-content/uploads/2016/09/Molina-et-al.-2015-SiPTH-Singing-transcription-based-on-hysteresis-defined-on-the-pitch-time-curve.pdf
http://emiliomm.com/wp-content/uploads/2016/09/Molina-et-al.-2015-SiPTH-Singing-transcription-based-on-hysteresis-defined-on-the-pitch-time-curve.pdf
https://doi.org/10.1080/09298210902890299
https://doi.org/10.1080/09298210902890299
https://www.wiley.com/WileyCDA/WileyTitle/productCd-0780353862,miniSiteCd-IEEE2.html
https://www.wiley.com/WileyCDA/WileyTitle/productCd-0780353862,miniSiteCd-IEEE2.html
http://dx.doi.org/10.1109/healthcom.2017.8210766
http://dx.doi.org/10.1109/healthcom.2017.8210766
http://dx.doi.org/10.1109/healthcom.2017.8210766
http://dx.doi.org/10.1109/healthcom.2017.8210766
https://www.wolfram.com/language/11/computational-audio/use-dtw-to-compare-recordings.html?product=language
https://www.wolfram.com/language/11/computational-audio/use-dtw-to-compare-recordings.html?product=language
http://dx.doi.org/10.1109/icassp.2013.6637747
http://dx.doi.org/10.1109/icassp.2013.6637747
http://dx.doi.org/10.1109/icassp.2013.6637747
http://dx.doi.org/10.1109/icassp.2013.6637747
http://publica.fraunhofer.de/documents/N-287246.html
http://publica.fraunhofer.de/documents/N-287246.html
http://publica.fraunhofer.de/documents/N-287246.html
https://www.semanticscholar.org/paper/Automatic-Solf%C3%A8ge-Assessment-Schramm-Nunes/38463d8472bd0c18e4977070fc4019b4e78ab6a2
https://www.semanticscholar.org/paper/Automatic-Solf%C3%A8ge-Assessment-Schramm-Nunes/38463d8472bd0c18e4977070fc4019b4e78ab6a2
https://www.semanticscholar.org/paper/Automatic-Solf%C3%A8ge-Assessment-Schramm-Nunes/38463d8472bd0c18e4977070fc4019b4e78ab6a2
https://staff.aist.go.jp/m.goto/PAPER/INTERSPEECH2006nakano.pdf
https://staff.aist.go.jp/m.goto/PAPER/INTERSPEECH2006nakano.pdf
https://staff.aist.go.jp/m.goto/PAPER/INTERSPEECH2006nakano.pdf
https://pdfs.semanticscholar.org/7465/5a89427878ee237b103e657a1651bbf3d497.pdf
https://pdfs.semanticscholar.org/7465/5a89427878ee237b103e657a1651bbf3d497.pdf
https://pdfs.semanticscholar.org/7465/5a89427878ee237b103e657a1651bbf3d497.pdf
https://en.wikipedia.org/w/index.php?title=Piano_key_frequencies&oldid=883827948
https://en.wikipedia.org/w/index.php?title=Piano_key_frequencies&oldid=883827948
https://dl.acm.org/citation.cfm?id=2584501
https://dl.acm.org/citation.cfm?id=2584501
https://dl.acm.org/citation.cfm?id=2584501

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	The SMM.m Code
	The MFE.m Code
	Quality Control

	Conclusion
	Acknowledgements
	References

