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Abstract
Aphasia is a language and communication disorder caused by damage to the brain, usually occurring after stroke or 

traumatic brain injury. Two MATLAB computer programs are presented for encoding and assessing the sung melodies 
of stroke patients. The first MATLAB program, Sung Melody to Matrix (SMM.m), converts a patient’s sung melody into a 
matrix containing the frequency and corresponding duration of each note sung. To find when the patient moves from one 
note to another, a novel method called Visual Audio Signal Envelope (VASE) is used, which determines an audio signal’s 
envelope through visual cues. Other existing envelopes that were tested did not work as well with the voice of post-
stroke patients recorded in a noisy environment. The second MATLAB program, Melodic Fidelity Evaluator (MFE.m), 
compares this matrix to the matrix of the tune that the patient was trying to imitate. This second program provides a fair 
assessment of the note interval error and the time interval error of the patient. In addition, these programs are easy-to-
use and can be automated for large data sets to correlate with brain lesions in stroke patients.
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Introduction 
Aphasia is a language and communication disorder that can take 

away one’s ability to speak. Ongoing research focuses on the relationship 
between singing abilities of post-stroke patients and damage in their 
brain. Moreover, singing has been used as a treatment for aphasic patients 
as in Melodic Intonation Therapy [1]. To evaluate the abilities of post-
stroke patients to repeat melodies, simple melodies were first provided 
to the patients and they were asked to repeat them. The patients were 
recorded in a casual (not noiseless) environment as they attempted to 
repeat the melodies. The assessment of the patients’ sung melodies can 
be a demanding task if many patient recordings need to be analyzed, 
and therefore a computer program would be more efficient and 
consistent. However, currently, there is no existing computer program to 
fairly assess a sung melody of a post- stroke individual in a  noisy real-world 
environment. The fair assessment of the singing voice, that is, finding and 
assessing the notes that a person most likely sung, has been a subjective 
matter. This assessment becomes even more subjective with post-stroke 
patients since many have difficulties speaking and singing. Therefore, 
the automatic and objective assessment of sung melodies of post-stroke 
patients is very important. The purpose of this project is to provide 
this automatic and objective assessment, which can be used to correlate 
brain imaging findings to melodic repetition impairment.

This project consists of two codes written in MATLAB: Sung Melody 
to Matrix (SMM.m) and Melodic Fidelity Evaluator (MFE.m). These 
programs are available in GitHub [2]. The first code, SMM.m, encodes 
a sung melody into a matrix. The task of encoding a clear singing voice 
of non-aphasic individual in an ideal noiseless environment has been 
addressed by many automatic pitch detection algorithms [3]. This task 
is similar to monophonic singing transcription based on hysteresis 
of pitch-time curve, intonation, auditory models, and probabilistic 
methods [4-9]. Although there are speech recognition programs and 
even machine-learning algorithms to recognize the words of aphasic 
patients [10,11], these programs do not apply to melodies sung by post-
stroke patients. The program presented here is based on a new envelope 
that I constructed using visual cues. The second code, MFE.m, gives a 
fair (and consistent) assessment of the attempt of a post- stroke patient 
to imitate a certain original tune. Although there exists a program that 
can evaluate the difference between two audio inputs [12], the presented 

program gives a fair and informative evaluation of the singing ability of 
the stroke patients. This program is informative since it gives separate 
error evaluations on note intervals, time durations, and number of 
notes added or subtracted. Other singing assessment programs which 
are mainly designed for singers who seek to improve their singing 
abilities can be found in [13-15], which use dynamic time warp (DTW) 
and use machine learning based on pitch interval accuracy and vibrato. 
Our approach uses simple rules that I find to be fair based on abilities 
of aphasic patients [16,17].

Implementation and Architecture
The outline of how the two programs SMM.m and MFE.m work 

together along with example inputs and outputs is shown in Figure 1. 

Figure 1: The input of the SMM.m is an audio file and the output is a matrix 
containing the frequencies and corresponding durations for each note sung. 
The inputs of MFE.m are the output matrix of the SMM.m as well as a matrix 
of the frequencies and corresponding durations of the notes of the tune the 
patient was attempting to repeat. The outputs of MFE.m are duration error, 
note interval error and number of notes added or deleted.
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The implementation of the two programs to evaluate the repetition 
ability of a post- stroke patient is as follows:

1)	A simple melody is played to the post-stroke patient. Examples of 
such melodies are the following (Figure 2):

 

Figure 2: The WAV files for these tunes can be found in GitHub [2], and they are 
named tune1.wav, tune2.wav and tune3.wav, respectively.

The WAV files for these tunes can be found in GitHub [2], and they 
are named tune1.wav, tune2.wav and tune3.wav, respectively.

2)	 While being recorded, the patient attempts to repeat the played tune.
3)	Open a 2018 version of MATLAB. You will need to have these 

two toolboxes: 
•	 Image Processing Toolbox (version 10.2 was used)
•	 Audio System Toolbox (version 1.4 was used)
4)	Clear your workspace variables (using the command clear) and 

close any figures that may be open (using the command close).
5)	Find out the path of the recording of the patient, which will be 

put into a variable called filename as a string. An example of this 
in Mac computers would be:

filename = ' / Users / Androulakis / Recordings / patient tune1.wav';

And likewise, in Windows would be:

filename = 'C : \Users \ Androulakis \ Recordings \ patient tune1.wav';

Note that the apostrophe used (‘) is straight and not curved as in 
(’). Else, MATLAB will give you an error. Of course, your path does not 
have to be identical to the one shown above, so this is just an example. 
This is how your recording will be Note that the apostrophe used (‘) is 
straight and not curved as in (’). Else, MATLAB will give you an error. 
Of course, your path does not have to be identical to the one shown 
above, so this is just an example. This is how your recording will be 
inputted into SMM.m.

6)	Run SMM.m. The output will be in a variable called PHz 
(PHz stands for Patient Hertz) containing the frequencies and 
corresponding durations for each note sung.

7)	Manually create the matrix of the frequencies and durations 
of the melody the patient attempted to repeat. For finding the 
frequencies of the notes, Wikipedia’s Piano Key Frequencies 
chart [18] was used. For finding the durations of the notes, use 
the formula applicable to the tempo of your tune (Table 1).

For example, the matrices of the tunes given above in Step 1 would 

be inputted as follows (OHz Stands for Original Hertz):
Matrix of Tune 1: OHz=[440 493.8833 523.2511 391.9954 440 

391.9954 329.6276;30/95 30/95 30/95 30/95 60/95 60/95 120/95];
Matrix of Tune 2: OHz=[261.6256 293.6648 329.6276 349.2282 

329.6276 391.9954;60/120 30/120 30/120 90/120 30/120 60/120];
Matrix of Tune 3: OHz=[391.9954 349.2282 349.2282 523.2511 

493.8833;90/110 30/110 30/110 30/110 90/110];
Even though these matrices could be attempted to be computed 

through the SMM.m, this program works better with the human voice, 
and thus for better accuracy, manually create the matrices of the origi-
nal tunes. 

8) Now that you have both the variables PHz and OHz in your 
MATLAB workspace, run MFE.m. This program will output the 
Time Error (seconds), Note Interval Error (semi- tones), and 
Number of Notes Added (+)/Deleted (-). The time error and note 
interval error is saved in the variable BR. The number of notes 
added or deleted is saved in the variable Notes added or deleted. 

[y, fs] = audioread(filename);
song = y(:,1);
clear y

The SMM.m Code 
In this section, the MATLAB code SMM.m which encodes a sung 

melody into a matrix, is described. In a melody, two notes never overlap. 
Therefore, the mathematical objects that characterize the melody are 
the frequencies and time durations of the notes. Thus, a matrix of two 
rows suffices where one row is reserved for the frequencies of the notes 
and the other row is reserved for the corresponding time durations. 
To identify this matrix of two rows, the program SMM.m first cuts 
the sung melody into intervals where each interval contains a single 
note and then computes the median frequency and time length in each 
of those intervals. The input of the SMM.m program is an audio file. 
Acceptable formats are .wav, .ogg, .flac, .au, .aiff, .aif, .aifc, .mp3, .m4a, 
.mp4. The program has been tested extensively with 1,269 recordings of 
human singing, each of length up to 3.6 seconds. Only one channel of 
the audio recording is considered.

[y, fs] = audioread(filename);
song = y(:,1);
clear y

The properties of the formations created by the amplitude graph are 
usually very oscillatory, as can be seen in Figure 3.

Which note gets the beat Formula
Half Note 120/(beats per minute)

Quarter Note 60/(beats per minute)
Eight Note 30/(beats per minute)

Sixteenth Note 15/(beats per minute)
Table 1: For finding the durations of the notes, use the formula applicable to the 
tempo of your tune.

 

Figure 3: The highly oscillatory graph of the amplitude graph of the 
sung melody of a post- stroke patient can be seen here.
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Therefore, the amplitudes are first converted into decibels for better 
readability. Figure 4 shows the graph of the sung melody of a post-
stroke patient, converted into decibels and shifted above the x- axis for 
better image processing.

 
Figure 4: The graph of the sung melody converted into decibels and shifted 
above the x-axis   is shown here. The decibels graph is not as oscillatory as 
the amplitude graph.

decibelsSong = mag2db(song);
decibelsSong(decibelsSong == -Inf) = NaN;
decibelsSong(isnan(decibelsSong)) = min(decibelsSong);
decibelsSong = decibelsSong - min(decibelsSong);

During singing, at the point of the passage from one note to the 
next, the loudness of the human voice usually dips. Unfortunately, the 
decibels graph is still slightly oscillatory and thus obscures the voice 
dips which occur when the post-stroke patient changes notes. To reveal 
and exemplify the voice dips which occur at the note changes, a simple 
graph is constructed which outlines the graph of the decibels. This 
simple graph is called an envelope. The envelope should not be prone 
to err from oscillations created by noise. There exist signal enveloping 
functions in MATLAB such as peak, Hilbert, and rms (Root-Mean-
Square), but none performed well when tested on post-stroke singing. 
Also, currently existing voice enveloping functions that were tested, 
erroneously signified sudden unintended sounds such as taps or door 
slams. Here a novel envelope function is presented called Visual Audio 
Signal Envelope (VASE) that uses visual cues of an audio signal’s graph 
to identify a rough outline (envelope) of the decibels graph. VASE is 
described next. First the picture of the decibels graph is extracted with 
a line thickness of 1 without the axes. The reason for thickening the 
lines is to fill the spaces that are between the almost vertical lines of the 
decibels graph.

saveas(plot(1: length(decibelsSong),decibelsSong, ,1), )
saveas(plot(1: length(

'lineWidth' 'MelodyTask.png'
'W' 'MelodecibelsSong),decibelsSong, ), )

imageDecibelsGraph = imread
dyTaskaxes.png'

'MelodyTask.png'( );
imageAxes = imread( );
decibelsGraphNoAxes = imageAxes -

'MelodyTaskaxes.png
imageDecibelsGr

'
aph;

Then this image is blurred with a motion filter at a 45◦ to “fill” small 

oscillatory dips that occur in the graph. Next, a convolution of the 
blurred picture is taken which further blurs the borders of the already 
blurred object. Finally, the contour of tis blurred object is drawn and 
saved in a variable called contour Data.

grayImage = rgb2gray(decibelsGraphNoAxis);
motionBlurDecibels = imilter(grayImage, fspecial( ,30 - 45));
binarizedMotionBlur = imbinarizeMotionBlurDecibels);
fullyBlurred = conv2(binarizedMotionBlur,o

'mot

ne(

ion'

50) / (50*50), );
newImage = fullyBlurred > 0.5
[contourData,~] = imcontour(newimage,1);

'same'

close

Then, x in frames (which is a time unit) and y in decibels on the 
positive axis are computed from the variable contour Data. This task is 
tedious because one must ensure that the x coordinates of the envelope 
are in increasing order and do not repeat. However, the dimensions 
of the contour are proportional to the original decibels graph and 
therefore can be scaled appropriately (Figure 5).  

xContourCoord = contourData(1,2 : contourData(2,1));
ycontourCoord = contourData(2,2 : contourData(2,1));
shiftedY = -yContourCoord - min(-yContourCoord);
findX = xContourCoord(find(shiftedY > 30));
findY = shiftedY(find(shiftedY > 30));
shiftedX = findX - min(findX);
[sortedX,SortingIndex] = sort(shiftedX)
sortedY = findY(sortingIndex);
hSong = reshape(song,[],1)';
silence = strfind(num2str(hSong == 0, ), )'
removedSilenceSong

'%d'
= so

'00'
ng(silence(1) : (silence(end) +1));

scale0fx = length(removedSilenceSong) / (max(sortedX) - min(sortedX));
decibelsSong = mag2db(removedSilenceSong);
decibelsSong(decibelsSong == -Inf) = NaN;
decibelsSong(isnan(decibelSong)) = min(decibelsSong)
decibelsSong = decibelsSong - min(decibelsSong);
scale0fy = ((max(decibelssong) - min(decibelsSong)) / (max(sortedY) - min(sortedY) + 30));
scaledX = sortedX*scale0fX;
scaledY = sortedY*scale0fy;
nonRedundantX = scaledX(find(sclaedX ~= θ));
nonRedundantY = scaledY(find(scaledX ~= θ));
[~, xIndex,~] = unique(nonRedundantX);

 n = 1: length(xIndex) -1
loc = find(nonRedndantY == max(nonRedndantY(xIndex(n) : xIndex(n +1) -1)
for

));
x(1,n) = nonRedundantX(loc(find(loc >= xIndex(n) & loc <= (xIndex(n +1) -1))));
y(1,n) = nonRedundantY(loc(find(loc >= xIndex(n) & loc <= (xIndex(

LocationsofM
n = 1) -1))));

c aximus
end
lear 

clear n  
 

 
Figure 5: The graph of the decibels above the x-axis and the Visual Audio 
Signal Envelope (VASE) is shown here. VASE is graphed by plotting the 
variable y against the variable x.
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VASE does not erroneously outline sharp unintended sounds as 
Figure 6 shows.

 

Figure 6: Another signal graph with its corresponding VASE is shown here. The 
sharp un-intended door slam approximately at frame 0.4 × 105 is not effecting 
VASE.

This completes the description of VASE. Then the local 
minima of the envelope are found. These are controlled by a 
min separation parameter of 50 frames and a min prominence 
parameter of 1. The locations of these minima are the points 
when the patient changes notes.

Finally, the time matrix is defined, which contains the 
beginning and ending in frames of each note sung. In each 
interval, the fundamental frequency (f0) is estimated. Using 
MATLAB’s pitch function from the Audio System Toolbox, this 
task is done by utilizing the Pitch Estimation Filter (PEF) [19]. 
The frequencies and time intervals of each note are then saved 
as the first and second rows of the final matrix, respectively. In 
the program below, the matrix created from the patient audio is 
called PHz.

TimeMatrix = [1 round(frameWhenNoteChanges) length(song)];
n = 1: length(TimeMatrix) -1
[f0, ~] = pitch(song(Ti
'Method' PEF'
'Ra

meMatrix(n) : TimeMatrix(n +1)),Fs,
, ' ,

,[nge'
'WindowLe

for
.

ngth

..
...

.50 800],
, round(Fs'

..
*0.08),

, round(Fs*0.05));
FrequencyMatrix(1,n) = median(f0);
clear

clear
PHz(1,:) = FrequencyMatrix;
PHz(2,

'OverlapLen

:) = diff(Tim

gth

eMa

.

t

'

f

ri

..

end
0

n

x) / Fs;

The MFE.m Code 

In this section, the MATLAB code MFE.m which gives a fair (and 
consistent) assessment of the attempt of a post-stroke patient to repeat 
a certain original tune, is described. The inputs of MFE.m are two 

matrices: the PHz matrix (produced by the SMM.m code described 
in the previous section) and the OHz matrix (produced manually) 
containing the frequencies and time durations of the tune and the 
patient recording respectively. In order to change the subjective matter 
of the assessment of a sung melody into an objective matter, the 
following rules are adapted:

1.	 The patient should not be penalized for not singing on the exact 
pitch as long as s/he produces the correct semitone intervals.

2.	 The patient should not be penalized if he/she sings at a faster or 
slower tempo as long as the patient preserves the correct ratios 
of note durations.

3.	 If the patient produces the original tune correctly with added 
notes, then for computing the error of the patient, the time 
durations of the original song and the note intervals when the 
patient was adding notes are both set equal to zero.

4.	 Likewise, if the patient reproduces only a subsection of the 
original tune, then it is assumed that the notes the patient failed 
to produce have time durations and note intervals containing at 
least one missed note are both equal to zero.

First, the MFE.m program converts the frequencies into notes by 
corresponding A4 to 0.

*

*

(log(OHz(1, i) / 440) / log(2)) +1) / 2);
O(2, i) = OHz(2, i);

end
for i = 1: size(PHz, 2)

P(1, i) = floor)((24 (log(PHz(1, i) / 440) / log(2)) +1) / 2);

end

for i = 1: size(OHz,2)
O(1,i) = floor((24

P(2,i) = PHz(2,i);

There are three cases which are based on the number of notes the 
patient makes relative to the number of notes of the original tune.

Case 1: If the patient produces the same number of notes as the 
original tune, first rescale uniformly the   durations of the time intervals 
of the patient’s recording to minimize the Euclidean distance between 
the original durations and the uniformly scaled durations of the patient. 
Given two time vectors (T1, . . . , Tk) and (t1, . . . , tk) of same length and non-
negative coordinates, then by the Pythagorean Theorem it can be seen 
that the uniform rescaling factor x of (t1, . . . , tk) that makes the Euclidean 
distance (T1 − xt1)

2 + · · · + (Tk − xtk)
2 minimum, is given by x = (T1t1 + · · 

· + Tktk)/(t2 + · · · + t2). This uniform rescaling of the time intervals of the 
patient ensures that the patient will not be penalized if he/she sings at 
a different tempo than the original song, as long as the correct ratios 
of the durations of the individual notes of the original tune are kept. 
After this time interval rescaling, compute the Euclidean distance of the 
uniformly rescaled time intervals of the notes of the patient’s recording 
from the time intervals of the original tune. This is the time error of the 
patient. Also compute the Euclidean distance of the note intervals of 
the patient’s recording from the note intervals of the original tune. This 
is the note interval error of the patient.
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Case 2: If the patient produces more notes than the original tune, 
then first select a submatrix of the matrix of the patient that has the 
same number of columns (each column corresponds to one note made) 
as the original and minimizes the Euclidean distance of the note interval 
error. Second, scale the time intervals of the matrix of the original tune 
to minimize the Euclidean distance of the time intervals between these 
two matrices of the same size. Third, enlarge the matrix of the original 
tune by adding auxiliary columns where the patient added notes. Each 
such auxiliary column contains a zero for the time interval and contains 
the same tone as the column on its left. Now the augmented matrix 
of the original song and the matrix of the patient’s recording have the 
same size, so the Euclidean distance of their top rows gives the note 
error, and the Euclidean distance of their bottom rows gives the time 
duration error. To understand the mentioned augmentation in the third 
step, assume for example that the patient produces the matrix

1 2 3 4 5
1 2 3 4 5

N N N N N
T T T T T
 
 
 

While the matrix of the original song was merely

1 2 4
1 2 4

N N N
T T T
 
 
 

 (here N 1, N 2, . . . stand for notes and T 1, T 2, . . . stand for time durations). 
Then the matrix of the original song is augmented to

1 2 2 4 4
1 2 0 4 0

N N N N N
T T T
 
 
 

The note error becomes

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

2 2

2 2

2 1 2 1 3 2 2 2

4 3 4 2 5 4 4 4

N N N N N N N N

N N N N N N N N

− − − + − − − +

− − − + − − −

The time error becomes

2 2 2

2 2

( 1 2) ( 2 2) ( 3 0)
( 4 4) ( 5 0)

T T T T T
T T T
− + − + −

+ − + −

if  size(p, 2) > size(0, 2)
disp(['notes added(positive)or (negative) : 'num2str(p,2) - size(0,2))'])

C = nchoosek(1: size(p,2),size(0,2));
for k =: size(C,1)

Sk = P(:,C(k,:);
if size(Sk, 2) == 1
SQJE = 0;

else
 SQJE = 0;

      for L = 1(size(Sk,2) -1)
         SQJE = SQJE + ((0(1,L +1) - 0(Sk(1,L +1) -Sk(1,L))) ^ 2;
      end
    end
     JEMATRIX(k,1) = SQJE;
end
MINJE = min(JEMATRIX);

if  size(p,2) > size(0,2)
disp(['notes added(positive)or (negative) : 'num2str(p,2) - size(0,2))'])

C = nchoosek(1: size(p,2),size(0,2));
for k =: size(C,1)

Sk = P(:,C(k,:);
if size(Sk,2) == 1
SQJE = 0;

else
 SQJE = 0;

      for L = 1(size(Sk,2) -1)
         SQJE = SQJE + ((0(1,L +1) - 0(Sk(1,L +1) -Sk(1,L))) ^ 2;
      end
    end
     JEMATRIX(k,1) = SQJE;
end
MINJE = min(JEMATRIX);

Case 3: If the patient produces fewer notes than the original tune, 

if size(p,2) == size(O,2)
disp('notes added (positive)or deleted (negative) : 0')

numerator = 0
fori = 1: size(P,2)

numerator = numerator + P(2,i)*O(2,i);
end
denominator = 0;
for i = 1: size(P,2)

denominator = denominator + P(2,i) ^ 2;
end
x = numerator / denominator;
SCALEDP(1,;) = P(1,:);
SCALEDP(2,;) = P(2,:);
TE = 0;

for i = 1: size(P,2)
TE = TE + (O(2,i) -SCALEDP(2,i)) ^ 2;

end
TTE = sqrt(TE);
JE = 0;
for i = 1: size(P,2) -1

JE = JE + ((O,(1, i +1) - O(1,i)) - (P(1,i +1) - P(1, i))) ^ 2;
end

TJE = sqrt(JE);
BR = [TTE,TJE];
disp('The results are :")
disp('Timeerror (sec) Note Intervalerror (semitones)')
disp(BR)

end
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R(r, 2) = TJE;
        r = r +1;
    end
  end
if size(R,1) == 1
    BR = R;
    disp('The results are : ')
    disp('Timeerror (sec) Noteintervalerror (semitones)')
    disp(BR)
  else BR = min(R);
    disp('The results are')
    disp('Timeerror (sec) Noteintervalerror (semitones)')
    disp(BR)
  end
end

then first select a submatrix of the matrix of the original tune that has the 
same number of columns (each column corresponds to one note made) 
as the matrix of the patient’s recording and minimizes the Euclidean 
distance of the note interval error. Second, scale the time intervals of 
the matrix of the patient’s recording to minimize the Euclidean distance 
of the time intervals between these two matrices of the same size. Third, 
enlarge the matrix of the patient recording by adding auxiliary columns 
where the patient missed notes. Each such auxiliary column contains a 
zero for the time interval and contains the same tone as the column on 
its left. Now the augmented matrix of the patient’s recording and the 
matrix of the original tune have the same size, so the Euclidean distance 
of their top rows gives the note error, and the Euclidean distance of 
their bottom rows gives the time duration error.

Quality Control

To check that VASE has faithfully created an envelope of the decibels 
graph of the patient’s sung melody, run the program graphing.m, 
which can be found in GitHub [2]. The SMM.m code has been tested 
in 1064 patient wav files and their envelopes have been checked using 
graphing.m with very satisfactory results.

System requirements

Operating system: macOS: El Capitan (10.11) Windows: Server 2012

Ubuntu: 14.04 LTSx

Debian: 8
Red Hat: Enterprise Linux 6 (minimum 6.7) SUSE: Linux Enterprise 

Server 12 (minimum SP2)
Programming language: MATLAB 2018a
Additional system requirements: Minimum processor: Any Intel 

or AMD x86-64 processor 
Recommended disk space: 4-6 GB
Minimum RAM: 4 GB
Dependencies: Image Processing Toolbox Audio System Toolbox 

Software location
Code repository
Name: GitHub	
Location: https://git.io/fx8rp 
License: BSD 3-Clause ”New” or ”Revised” License 
Date published: October 23, 2018

Conclusion
The significance of the presented MATLAB codes is that they can 

be easily implemented in other stroke research labs to evaluate the 
singing abilities of post-stroke patients. At the time of this writing, the 
computer programs described here are being used in an ongoing study 
to examine correlations between brain lesions and melodic repetition 
errors. Future studies to combine these computer programs with neural 
networks to investigate the correlation between melodic repetition 
errors and treatment recovery are of great interest.
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