
Open AccessISSN: 0974-7230

Journal of Computer Science & Systems Biology
Brief Report
Volume 15:3, 2022

Embedded Software and Characteristic Features of 
Embedded Systems
Elisha Stewart*

Department of Information Science, University of Bergen, Norway

*Address for Correspondence: Elisha Stewart, Department of Information 
Science, University of Bergen, Norway, E-mail: ElishaStewart50@gmail.com

Copyright: © 2022 Stewart E. This is an open-access article distributed under the 
terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author 
and source are credited.

Received: 07-Mar-2022, Manuscript No.Jcsb-22-62586; Editor assigned: 
09-Mar-2022, Pre QC No. P-62586; Reviewed: 23-Mar-2022, QC No. 62586; 
Revised: 28-Mar-2022, Manuscript No. R-62586; Published: 04-Apr-2022, DOI: 
10.37421/jcsb.2022.15.404

Introduction

Embedded software is specialized programming that controls the 
functions of an embedded device in a chip or on firmware. To control the 
functions of various hardware devices and systems, hardware manufacturers 
use embedded software. Embedded software controls device functions in the 
same way that a computer's operating system controls software application 
functionality. Embedded software can be found in almost any device, from 
toasters and light bulbs, which are so simple that you'd never guess they were 
controlled by a computer, to complex tracking systems in missiles. Embedded 
software is used to control the limited, predefined functions of hardware devices 
and does not typically require user input; it is not typically interacted with directly 
by users. Its functions are activated by external controls, which can be either 
external device actions or remote input. The complexity of embedded software 
varies as much as the devices it controls. Although the terms are frequently 
used interchangeably, embedded software is often the only computer code 
running on a piece of hardware, whereas firmware hands control over to an 
operating system, which then launches and controls programmes [1-3].

Embedded software is used to control the limited, predefined functions of 
hardware devices and does not typically require user input; it is not typically 
interacted with directly by users. Its functions are activated by external controls, 
which can be either external device actions or remote input. The complexity 
of embedded software varies as much as the devices it controls. Although 
the terms are frequently used interchangeably, embedded software is often 
the only computer code running on a piece of hardware, whereas firmware 
hands control over to an operating system, which then launches and controls 
programmes. Embedded software is software that is installed in hardware or 
non-PC devices. It is written specifically for the hardware, on which it runs, and 
it typically has processing and memory constraints due to the devices limited 
computing capabilities. Embedded software can be found in dedicated GPS 
devices, factory robots, calculators, and even modern smartwatches.

About the Study

Embedded software is similar to firmware in that they both perform the 
same function. The latter, on the other hand, is a type of embedded software 
written in non-volatile memory (such as ROM or EPROM) that cannot be easily 
modified hence the name "firm" and is primarily used for running or booting 
up the device. Embedded software [4,5] on the other hand, is used for the 
overall operation of a device. Embedded software can be very simple, such as 
that used to control lighting in homes, and can run on an 8-bit microcontroller 
with only a few kilobytes of memory, or it can be quite complex, such as the 
software that runs all of the electronic components of a modern smart car, 

complete with climate controls, automatic cruising, collision sensing, and 
control navigations. Complex embedded software is also found in aircraft 
avionics systems, very complex fly-by-wire systems used in fighter planes, and 
missile guidance systems.

Future Prospective

The primary distinction between embedded software and application 
software is that the former is usually tied to a specific device, serving as 
the OS itself, with restrictions tied to that device's specifications, so updates 
and additions are strictly controlled, whereas application software provides 
functionality in a computer and runs on top of an actual full OS, so it has fewer 
resource restrictions. These components are arranged into a system that 
runs embedded software in almost every device made with circuit boards and 
computer chips. As a result, embedded software systems are commonplace 
in consumer, industrial, automotive, aerospace, medical, commercial, 
telecommunications, and military technology. The embedded software's 
resource requirements should never exceed the capacity of the hardware on 
which it is installed, and the hardware's specifications should never exceed the 
bare minimum requirements of the embedded software.

Complex real-time interactions occur in automotive electronics across 
multiple embedded systems that each control functions such as braking, 
steering, suspension, powertrain, and so on. An electronic control unit is the 
physical housing that houses each embedded system (ECU). Each ECU and 
its embedded software is a component of a distributed system, which is a 
complex electrical architecture. The ECUs that comprise a vehicle's distributed 
system can communicate with one another and perform a variety of functions 
such as automatic emergency braking, adaptive cruise control, stability control, 
adaptive headlights, and much more. A single function may necessitate 
interactions between 20 or more embedded software applications distributed 
across multiple ECUs linked by multiple networking protocols.

Conflict of Interest

None.

Acknowledgement

None.

References

1. Roscoe, A.W and G. M. Reed. "A timed model for communicating sequential 
processes." Theor Comput Sci 58 (1988).

2. Kim, Hye Yeon and Frederick T. Sheldon. "Testing software requirements 
with z and state charts applied to an embedded control systemt0t1." Softw 
Qual J 12 (2004): 231-264.

3. Yin, Yongfeng, Bin Liu and Zhen Li, et al. "The integrated application based 
on real-time extended UML and improved formal method in real-time 
embedded software testing." J Netw 5 (2010): 1410.

4. Metsä, Jani, Shahar Maoz and Mika Katara, et al. "Using aspects for testing 

https://ora.ox.ac.uk/objects/uuid:58a40075-6e5f-4144-a879-addca9dd3cc5/download_file?file_format=pdf&safe_filename=23.pdf&type_of_work=Journal+article
https://ora.ox.ac.uk/objects/uuid:58a40075-6e5f-4144-a879-addca9dd3cc5/download_file?file_format=pdf&safe_filename=23.pdf&type_of_work=Journal+article
https://link.springer.com/article/10.1023/B:SQJO.0000034710.86897.16?noAccess=true
https://link.springer.com/article/10.1023/B:SQJO.0000034710.86897.16?noAccess=true
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.6655&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.6655&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.464.6655&rep=rep1&type=pdf
https://link.springer.com/article/10.1007/s11219-012-9193-8


J Comput Sci Syst Biol, Volume 15:3, 2022Stewart E.

Page 2 of 2

of embedded software: experiences from two industrial case studies." Softw 
Qual J 22 (2014): 185-213.

5. Braione, Pietro, Giovanni Denaro and Andrea Mattavelli, et al. "Software 

testing with code-based test generators: data and lessons learned from a 
case study with an industrial software component." Softw Qual J 22 (2014): 
311-333.

How to cite this article: Stewart, Elisha. “Embedded Software and Characteristic 
Features of Embedded Systems.” J Comput Sci Syst Biol 15 (2022): 404.

https://link.springer.com/article/10.1007/s11219-012-9193-8
https://link.springer.com/article/10.1007/s11219-013-9207-1
https://link.springer.com/article/10.1007/s11219-013-9207-1
https://link.springer.com/article/10.1007/s11219-013-9207-1

