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Nanofibers are valued for their ultra-high specific surface areas 
(i.e. surface-to-volume or surface-to-mass values), and have been 
found potentially useful in many biomedical applications, such as 
wound dressing and scaffold for tissue engineering [1-3]. Modification 
or functionalization of nanofibers is necessary in order to engineer 
specific features that will help maximize their end-use performance. A 
spectrum of bioactive molecules, including antibacterial agents, anti-
cancer drugs, enzymes, proteins, can be incorporated into nanofibers 
via different approaches. 

Nanofibers Loaded with Antibacterial Agents
Oral administration and venous injection are the most frequently 

used methods for drug delivery, but may not be the most efficient ways 
in some situations. For example, patients with severe burn wounds or 
skin ulcers usually require antibiotics for infection control. However, 
with systemic administration of the antibiotics the patient may run 
the risk of renal or liver toxicity, or only an insufficient portion of 
the prescribed drug reaches the wounded tissues [4]. Furthermore, 
the ischemic wounds with little granulation tissues (i.e. newly formed 
vascular tissue normally produced during healing of wounds) can hardly 
be penetrated by the drug. In these situations topical administration 
may function as a remedy [4-6], with which the antibiotics are applied 
in minimal amounts at the site of infection and make sure that they 
function efficiently there. Accordingly, nanofibers with incorporated 
antibiotics have been studied as potential potent materials for wound 
care [7,8]. Similarly, a lot of work has been concentrated on the 
development of nanofibers loaded with anti-cancer drugs, which, when 
topically administered, may help constitute a remedy for the many side 
effects (e.g. toxicity to healthy cells) and low efficiency that go with 
current chemotherapy. 

Silver ions have long been known for its antimicrobial capacity. 
These positively charged ions are readily bound to the negatively 
charged proteins to favor precipitation and denaturation. Products 
with various silver compounds, including silver nitrate and silver 
sulphadiazine, have been developed for wound care [9]. However, 
there have been concerns about the toxicity caused by the large excess 
amounts of silver released from the dressing and harmful to the wound 
[10]. Reasonably, efforts have been made to develop dressing products 
capable of sustained release of silver ions so that wound dressings can 
be less frequently changed and efficacy of infection control enhanced. 
Among those efforts, nanofibers have been frequently adopted as a 
potential efficient drug carrier for the silver (usually in the form of 
nanoparticles). Two approaches have been used to prepare a silver-
polymer nanofibrous structure: the in situ and ex situ methods. With the 
ex situ approach, nanoparticles are produced first and then dispersed 
into the polymer matrix to form a composite structure. However, this 
process may make it difficult for the silver nanoparticles to distribute 
into the polymer matrix in such a way that they can be expected of their 
best efficacy, as the nanoparticles may easily be aggregated with each 
other to form clusters [11]. Alternatively, in situ approach consists of 
electrospinning of the mixed solution of a silver salt (or compound) and 
a polymer, followed by a reductive reaction to yield silver nanoparticles 
within the nanofiber structure [12].

Generally speaking, if both the drug(s) and the polymer can be 
dissolved in a single solvent, they can be co-electrospun into nanofibers 
from a mixed solution of the drug(s) and the polymer [13]. Otherwise, 
for drugs that are not soluble in any of the solvents for the polymer, or 
can be destroyed by organic solvents, there are two options: emulsion 
electrospining and coaxial electrospinning.

• For emulsion electrospinning, an aqueous solution of the drug
is emulsified in a polymer solution to form a water-in-oil (w/o)
emulation (i.e. a mixture of two immiscible liquids, one of
which is an aqueous solution and dispersed as microscopic or
ultramicroscopic droplets throughout the other oily solution),
and the emulsion is electrospun. This approach produces
electrospun nanofibers with a core/sheath composition: the
drug is encapsulated in the core and the polymer serves as the
sheath [14].

• In coaxial electrospinning, use is made of a special coaxial
spinneret [15]. Two coaxial capillaries allow the electrospinning
of two components simultaneously: solution (either in water or
organic solvents) of the medication in the core capillary, and the
polymer solution in the outer capillary, hence the fabrication of
nanofibers also of a core/sheath structure: the medication in the
core and the polymer on the surface [16].

Nanofibers prepared via emulsion or coaxial electrospinning 
usually has a core/sheath structure, the fiber-forming polymer 
comprising the sheath and the drug(s) encapsulated in the core. Such a 
structure provides sustained release of drugs from the nanofiber drug 
carrier.

Nanofibers Loaded with Other Bioactive Molecules
Nanofibrous structures have been identified as an excellent choice 

for scaffolds in tissue repair and regeneration. In these applications, 
there must be a favorable environment for the cells to attach to the 
scaffold, to migrate, to proliferate and to differentiate into the target 
tissues. To that end, the scaffolds should have appropriate physical 
properties, including high porosity, structural stability, controllable 
degradability, and, if necessary, desirably tailored orientations. 
Furthermore, the scaffolds are expected to provide an optimum 
biochemical environment for the growth of the cells/tissues. Most of 
the bioactive agents able to guide or stimulate the cellular activities (e.g. 
the growth factors) are proteins that have larger molecular weight (i.e. 
over tens of thousands) than the drugs (usually hundreds to thousands) 
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as discussed in the previous section. Hence the extensive studies on 
the incorporation of such bioactive agents into/onto the nanofibrous 
structures. 

Proteins contain both acidic (e.g. carboxyl/-COOH) and basic (e.g. 
amine/-NH2) functional groups, which combine to decide the overall 
charge of a protein molecule (e.g. positively or negatively charged). It 
follows that a polyelectrolyte (i.e. a charged macromolecule formed in 
an aqueous solution by dissociation of its charged units), like chitosan, 
may have its advantage as a nano-carrier for the bioactive protein, 
because electrostatic interactions between the polymer and protein 
help to entrap the protein into the nanofibrous structure [17]. 

Different methods have been adopted to incorporate proteins 
into nanofibers. If both the bioactive agents and the polymer can be 
dissolved in a single solvent, they can be co-electrospun into nanofibers 
from a mixed solution [18]. Otherwise, co-axial electrospinning will 
be the option, with which nanofibers of the core/sheath structure 
are produced, usually with the bioactive agent(s) in the core and the 
polymer as the sheath. This structure has become well-known for its 
capacity to make for sustained and prolonged release of bioactive agents 
from the drug-carrier than nanofibers incorporated with randomly 
dispersed bioactive agents [19]. 

Another alternative method is to immobilize bioactive proteins 
onto the fiber-forming polymer via the zero-length cross-linking 
agents, EDAC (1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 
hydrochloride) and NHS (N-hydroxysulfosuccinimide), which may 
be removed completely after the reaction [20]. Such functionalized 
nanofibers with bioactive agents immobilized on their surface have been 
demonstrated to be effective in promoting cell adhesion, proliferation, 
and differentiation or wound healing [8,21,22]. 

Conclusion
Electrospun nanofiber is becoming an interest in biomedical 

applications. Electrospun nanofiber scaffolds provide temporary spaces 
with tunable porosity for cells to grow and exchange metabolites/ 
nutrients with their environment. They can also be fabricated as a 
drug carrier to release therapeutic agents to wounds in a controlled 
manner, rather than using direct injections of drugs of high cost 
and low efficiency. Co-axial and emulsion electrospinning produce 
nanofibres with sheath-core structures and provide a more sustained 
release of drugs. Nanofibres can be immobilized with a variety of 
regulators (like growth factors) to change cell fates. Despite much 
research on functionalized nanofibres, there has been little work on 
the development of nanofibres having more than two incorporated 
bioactive molecules. However, multi-functions are desirable for the 
application of nanofibres in wound healing to protect the wound from 
infection, to inhibit non-specific adsorption, and to promote tissue 
reconstruction.
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