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Introduction
Electromagnetic scattering takes place due to undisciplined ways 

of the movement of charge carrier which results from the forces in 
the fields around them. As the requirement in high power needs 
high current density, the confinement of beams in waveguides takes 
most importance. This leads to the application of more and more and 
eventually large and not exact values of magnetic fields. Therefore, the 
motivation to study the magnetic field and the various parameters of the 
system involved at high power where efficiency lowers with application 
of infinite magnetic fields has urged. In order to apply justified or 
exact magnetic fields, we need to relate the axial magnetic fields in 
terms of parameter like the dimensions of SWS, input parameters 
like voltage, operation frequency and beam velocity, involved in the 
process of high power microwave generation. So far, it has been clear 
that infinite magnetic fields lead to poor efficiency [1-4]. Ever since 
Maragos et al. [5], showed the thought of high energy existed and 
tuning over wide range of frequencies was appreciated, low efficiency 
was a matter of concern. The efficiency posed such serious inhibitions 
that further development took a very low pace several times.  However 
a very brief relation of magnetic field with electromagnetic waves is 
merely mentioned so far. No specific relation on modes of field, input 
parameters of waveguide with magnetic field exists. 

The proper combination of frequency, power and compactness 
cannot be separated under any circumstances. In reference [2], an 
extensive overview for generation of different kinds of electromagnetic 
waves for various modern and strategic applications is mentioned 
extensively. In the reference [2], it was compactness that started to 
find practical possibility. Clear theories on waveguide modes with 
dispersion characteristics were made. At the same period, various 
other aspects to search every aspect in order to improve efficiency were 
done [6]. A very fundamental relation, that classifies the arrangements 
of magnets is mentioned i.e. wiggler or PPM, has experimentally 
shown that efficiency can be significantly be improved with wiggler 
arrangements [3,7]. This is shown through simulation. The calculation 

of exact value of magnetic field with the derived relation will lead to 
finite application of magnetic field.

Advanced axial magnetic field equation

For high current electron beam transport, solenoid magnets are 
applied conventionally. Most uncommonly, the beam will remain 
within the magnetic field throughout acceleration and transport 
processes. More commonly, electron source is outside the magnet. We 
thus have the electron source outside and for high current electron 
beam transport, we wish to make use of permanent magnets that require 
no current to become functional. It is thus essential to understand the 
motion of electrons in transition region between magnetic field and 
free space. If a finite length magnetic field is applied then magnetic field 
will drop over a distance, i.e. beyond the point where force ceases to 
exist. So, to reduce the transition region, or to decrease the area where 
the magnetic field effect seen is same, opposite field polarity know as 
magnetic cusp can be applied. Actually, the opposing current leads 
to the generation of magnetic field that consequently creates strong 
radial fields in narrow intervening regions. We must note that total 
energy of electrons is constant, the force arises from static magnetic 
field. Deflection results from Vz x  Br force. When a particle is into a 
perpendicular magnetic field, it starts to follow a path of closed circle 
due to magnetic field effect. There is a sideway force known as Lorentz 
force. 
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 F qv B=                                                   		                (1)

A charge q, in a uniform magnetic field B at radius r, and having 
tangential velocity v, sees a centripetal force at right angles to the 
direction of motion.

2

 mv qv B
r

=                                                  		                 (2)

Angular frequency of rotation is independent of velocity.
qB
m

ω =                                                       		                 (3)

An electron beam leaving the injector does not have a balance of 
radial forces. As discussed in reference [7], when electrons have no 
azimuthal velocity vo, the axial magnetic field exerts no radial force on 
the beam. The beam expands radially because of unbalanced space-
charge. The axial magnetic field will convert the radial velocity of 
electrons to azimuthal velocity resulting in focusing force. Ultimately, 
the beam results to its original radius and expansion begins anew. 
We look forward to calculate the value of total magnetic field and 
generation of formula. Thus, let us now consider the gyrofrequency of 
electrons.

gb
qB                                                   		                 (4)

←𝜔gb    is known as gyro-frequency of electrons.

m is the mass of electrons 

q is the charge on an electron 

and B is the total magnetic field.

m = γm0                               			                 (5)

mo = me = m = mass of electron       

γ is known as relativistic factor 

0 gbm w
B

q
γ

=                                                     		                 (6)

B, the total magnetic field is thus related as above
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v is known as beam velocity 

c is the velocity of light in free space
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=     	     		     	               	                (8)

V is applied voltage.  

Next,

Let us put the value of v of (7) in B of (6) we get

2
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Let us put the value of v from (8) in above expression
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Also, 

𝜔gb = 2 π 𝑓

mo = me = mass of electron
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where 
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Total magnetic field B is thus obtained.

Next, the magnetic field in axial direction is required.

As per [5], the magnetic field for either a wiggler or PPM 
configuration is of the following form:

B = ―𝛻 Xm                                                                                                                                	                     (16)

( ) ( ) ( )( )cos asinhw x z y y
m

z

B cosh k x k z k y bcosh k y
X

k

 + =                         (17)
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field that can be generated through wiggler arrangement of 
permanent magnets. In the above diagram, the axial magnetic field 
propagates along z–direction, x and y the dimensions of waveguide. 
While in Figures 1-3, are the generalized cusp and permanent magnetic 
field respectively, generated through our equation, as we start to put 
specifications in the equation that we developed, we accordingly see 
more cusp kind of axial magnetic field as in Figure 4. Next is the 
simulation for the PPM which is the other kind of arrangements of 
magnets. In Figure 5 clearly shows a corrugationless, flat and disciplined 
beam when we put the specifications of our proposed model, in our 
developed magnetic field equation [3]. Thus, a magnetic field relation 
involving various parameters of waveguide involved during generation 
of microwaves for magnetic field calculations is developed. 

If a=1 and b=0, a vertical field periodically varying with beam 
slightly moving back and forth horizontally is observed. If a=0 and b=1, 
the  field is periodic permanent magnet (PPM) with axial field  varying 
and  beam rocking  back and forth .

kx, ky and kz are known as wave numbers in x, y&z directions  
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y

z
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 Bz = Bω coshkx xcoskz z(asinhky y +bcoshky y)

0  x
npik kx
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p is known period of SWS
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 above equation (25), gives relation of magnetic field with various 
parameters extensively involved in microwave generation like 
waveguide dimensions, specification of SWS and input parameters like 
voltage and operation frequency [8].

Results and Discussions
The relation has been validated theoretically and through simulation 

Zhaliang Wang et al. has taken an operational frequency of 36.6 GHz, 
SWS dimensions as 0.03 m,0.02 m, and 0.05 m, beam voltage as 160 
Kev. A total magnetic field of 2.5 T(Tesla) & axial magnetic field of 
1.3 T has been found experimentally. The same has been theoretically 
verified with the derived relation. The verification of the above results 
is done in following two ways

Theoretical validation
The experimental results, have been verified with the total applied 

magnetic field of 2.5 T and axial magnetic field is 1.37 T by standard 
8 mm waveguide is taken [2]. Input voltage of 160 KV sheet beam is 
taken operating frequency is 36.6 GHz. Dominant TM01 is considered. 
We can see good match in the values obtained experimentally and 
through the developed relation for calculation of axial magnetic field.

Verification through simulation
The pattern of axial magnetic field as per application is obtained 

from the developed relation. Figure 1 shows the axial magnetic 

Figure 1: Simulation of axial magnetic field that propagates along z-direction, 
x and y are the dimensions of waveguide.

Figure 2: Simulation of axial magnetic field-more cusped in nature with 
increase in input voltage.
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Figure 3: Simulation of axial magnetic field along z-direction-the flat field 
starts to appear.

Figure 4: Simulation of axial magnetic field along z-direction-the PPM field 
is seen.

Figure 5:  Simulation of axial magnetic field along z-direction with 160kev 
input-corrugation less, flat, disciplined axial magnetic field is observed.

Conclusion 
This with the derived expressions, exact value of axial magnetic 

field can be taken under vision for a desired frequency while planning 
experiments. The expression for axial magnetic field that extensively 
covers all parameters of waveguide is derived for the first time. The 
relation has been established to find the exact magnetic field for 
a desired operational frequency in terms of parameters like SWS 
dimensions, and beam voltage involved in the process of microwave 
generation. 
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