Electrochemical Study of the Hydrogenation of LaZr$_2$Cr$_4$Ni$_5$-Based Alloys

Ines Sahli*, Mouna Elghali, Marwa Ayari, Ouassim Ghodbane and Mohieddine Abdellaoui

Laboratory of Useful Materials, National Institute for Research and Physical-Chemical Analysis, Technological Pole of Sidi Thabet, 2020 Sidi Thabet, Tunisia

Abstract

The electrochemical behavior of LaZr$_2$Cr$_4$Ni$_5$-based alloys applied as negative electrode materials for Ni–metal hydride (Ni–MH) batteries was investigated by cyclic voltammetry (CV), chronocoulometry and electrochemical impedance spectroscopy (EIS) techniques. The hydrogen diffusion coefficient, determined by CV, was equal to 1.28×10^{-8} cm2s$^{-1}$ reflecting an appropriate electrochemical hydrogenation kinetic of the LaZr$_2$Cr$_4$Ni$_5$-based compound. The evolution of the hydrogen diffusion coefficient was also investigated by EIS first at different state of charge (10% and 100%) and second as function of charge/discharge cycling. Upon the first cycle, the diffusion coefficient increases from 31.72×10^{-6} cm2s$^{-1}$ to reach a maximum value of 13.14×10^{-6} cm2s$^{-1}$ at the fifth cycle. A further cycling leads to a sharp decrease of the diffusion coefficient to 82.14×10^{-6} cm2s$^{-1}$ after 30 cycles. The hydrogen diffusion coefficient values determined by electrochemical impedance spectroscopy after 50 charge-discharge cycles are equal to 4.41×10^{-6} cm2s$^{-1}$ for the α phase (10% state of charge) and 1.12×10^{-4} cm2s$^{-1}$ for the β phase (100% state of charge). As compared to the mean value determined by cyclic voltammetry, these values are higher for α phase and less for the β phase.

The exchange current densities of the electrodes were estimated as a function of the charge/discharge cycling by EIS. The charge transfer kinetic is faster at the beginning of cycling. The chronocoulometry measurements indicate that the size of the cluster of particles involved in the electrochemical reaction (the depth or the degree of the material impregnation by the electrolyte) decreases from 63 to 6.2 μm after 50 cycles.

Keywords: Intermetallic compound; Mechanical alloying; AB$_3$-type compound; Hydrogen storage properties; Electrochemical measurements

Introduction

Among a series of AB$_x$ (0.5 ≤ x ≤ 5) intermetallic compounds investigated for the reversible hydrogen storage, the AB$_3$-type alloys have shown promising performances as negative electrode materials for Ni-MH batteries [1-3]. They gained a great attention owing to their elevated hydrogen storage capacity of 400 mAh g$^{-1}$ [3-7]. Comparatively to the commonly used AB$_2$-type alloys, the AB$_3$-type alloys are distinguished by their longer electrochemical stability in highly alkaline media and faster charge/discharge kinetics [2,8-10]. In our previous work [11], a novel AB$_3$-type LaZr$_2$Cr$_4$Ni$_5$-based alloy was successfully elaborated by mechanical alloying from LaNi$_5$ and ZrCr$_2$ precursors according to eqn. (1).

$$\text{LaNi}_5 + 2 \text{ZrCr}_2 \rightarrow \text{LaZr}_2\text{Cr}_4\text{Ni}_5$$ (1)

The as-prepared AB$_3$ compound crystallizes in a Rhombohedral LaMgNi$_5$-type structure with R-3m space group.

The electrochemical discharge capacity determined at ambient conditions for LaZr$_2$Cr$_4$Ni$_5$-based alloy was equal to 152 mAh g$^{-1}$ and the capacity retention was 100% upon 50 charge-discharge cycles in alkaline media [11].

In our previous work [11], the hydrogen diffusion rate (D_H) values are located in the range of 10^{-6} cm2s$^{-1}$. Comparatively to the literature data [5,12,13], the obtained D_H values reflect a faster kinetic of the electrochemical reaction in the LaZr$_2$Cr$_4$Ni$_5$-based materials in terms of diffusibility of hydrogen.

The aim of the present work is to investigate 1) the kinetic properties of the hydrogenation reaction such as charge transfer coefficient and hydrogen diffusion coefficient by cyclic voltammetry technique, 2) the depth of the impregnation of the electrode material by the electrolyte using chronocoulometry technique and 3) the electrochemical properties of the electrolyte/electrode interface and the kinetic properties of the hydrogen storage processes by electrochemical impedance spectroscopy (EIS) measurements. The depth of the electrolyte impregnation at the electrode material during electrochemical reaction, estimated by chronocoulometry, was calculated after 50 charge/discharge cycles.

For impedance spectroscopy, the Nyquist diagrams were recorded after various charge/discharge cycles at the same states of charge (SOC).

Experimental Section

LaZr$_2$Cr$_4$Ni$_5$ alloy was prepared by mechanical alloying (MA) starting from LaNi$_5$ and ZrCr$_2$. These precursors were synthesized by ultra-high frequency (UHF) induction melting from corresponding elements (La 99.9%, Ni 99.9%, Zr 99.99%, Cr 99.99%) [11]. Briefly, the MA process was performed in a Retsh PM400 planetary ball mill with alloying condition corresponding to an injected shock power of 6.175 W/g [11,14,15]. A mixture of the LaNi$_5$ and ZrCr$_2$ powders, in a molecular ratio of 1:2, was introduced in a cylindrical steel vial (50 cm3 in volume). The container was then loaded with five stainless steel balls (12 mm in diameter and 7.0 g in mass). The alloying duration was varied until 50 hours. After 50 h of alloying, the alloy was formed only by the AB$_3$ type phase, the ZrCr$_2$ precursor and the residual Cr.

*Corresponding author: Ines Sahli, Laboratoire des Matériaux Utiles, Institut National de Recherche et d’Analyses Physico-Chimiques, Pôle Technologique de Sidi Thabet, 2020 Sidi Thabet, Tunisia, Tel: +21622591502; E-mail: sahli.ines86@yahoo.fr

Received September 19, 2019; Accepted November 10, 2019; Published November 15, 2019

Copyright: © 2019 Sahli I, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

J Material Sci Eng, an open access journal
ISSN: 2169-0022
Additionally, new peaks of low intensity, corresponding to La$_2$O$_3$ oxide, were observed upon 40 h of milling. The XRD pattern refinement of the sample obtained after 50 h of milling time is shown in Figure 1.

For the electrochemical measurements, the alloys were first grounded and sieved to less than 63 µm in a glove box under an argon atmosphere. The preparation of the working electrodes were based on the "Latex" technology and performed by mixing the active material with carbon black and PTFE in the weight ratio of 90:5:5 [16]. Two square pieces of 0.5 cm2 of this Latex were pressed on each side of a nickel grid that constitutes the current collector and prevents the electrode plate from breaking into pieces during the charge-discharge cycling [17]. All the electrochemical measurement was performed at room temperature in a conventional three-electrode cell using a multipotentiostat-galvanostat bio-logic VMP system. The electrolyte consisted in a 1M KOH aqueous solution de-aerated by a continuous argon flow through the cell during each measurement. The counter electrode was formed by Ni oxhydroxide Ni(OH)$_2$, and the reference electrode was Hg/HgO immersed in 1 MKOH aqueous solution [18-21]. All potentials quoted in the text are referred to this electrode. Prior to the electrochemical impedance spectroscopy measurements (EIS), the electrodes were cycled galvanostatically at C/3 and D/6 regimes of charge and discharge, respectively. Every cycle was carried out by fully charging at 150 mAg$^{-1}$ for 3 h (C/3) up to 50% overcharge, then discharging at 75 mAg$^{-1}$ for 6 h (D/6) at room temperature until the potential reaches the cut off voltage $E_{oc}=−0.6$V. After 50 cycles of charge/discharge of the electrode, the cyclic voltammetry was applied between −1.3 and −0.6V vs. Hg/HgO at scan rates varying from 10 to 60 µV/s. The impedance measurements were carried out after charging the electrode at 10 and 100% of the state of charge (SOC). The frequency range was varied from 50 kHz to 1 mHz and the excitation signal was 5 mV peak-to-peak [22]. The impedance spectra were then analyzed with the ZSimplex software, used to fit the EIS spectra in order to determine the values of the components of the equivalent electric circuit of the electrolyte/electrode interface.

Results and Discussion

Cyclic voltammetry

Previous XRD measurements (Figure 1) showed that LaNi$_5$ precursor was completely consumed after 50 h of milling time. For this alloying duration, the LaZr$_2$Cr$_4$Ni$_5$ is formed with 60 wt%. Additionally, residual ZrCr$_2$ is still present in the alloy with 7 wt%. New peaks of low intensity, corresponding to La$_2$O$_3$ oxide (2.35 wt%), were observed. The Cr precipitates with an amount of 30 wt% [11].

In our experimental conditions, i.e. at room temperature and atmospheric pressure, only LaZr$_2$Cr$_4$Ni$_5$ and LaNi$_5$ phases absorb hydrogen in the electrochemical reaction. However, as LaNi$_5$ phase disappeared after 50 h of milling time, the hydrogen will be absorbed only by LaZr$_2$Cr$_4$Ni$_5$ phase [11]. For these reasons, all the electrochemical tests were carried out for alloy obtained after 50 h milling duration. The cyclic voltammograms (CVs) of LaZr$_2$Cr$_4$Ni$_5$-based electrodes, recorded at different scan rates, are shown in Figure 2. The CV curves were recorded after 50 charge/discharge cycles. The cathodic scan shows the beginning of the hydrogen reduction (absorption reaction) at about -0.85 V followed by a continuous decrease of the cathodic potential until -1.1 V. The absorbed hydrogen atoms diffuse in the interstitial sites of the alloy lattice [18,23]. When the potential is reversed to the opposite direction, the current increases and an anodic peak was observed for positive current. This peak corresponds to the oxidation (desorption) of the hydrogen atoms absorbed previously during the charge sweep.

Figure 3a shows that the potential value of the anodic peak (E_{ap}), corresponding to the maximum current value, is linearly dependent on log (ϑ) while Figure 3b shows that the value of the anodic current corresponding to the maximum current value, is linearly dependent on log (ϑ) while Figure 3b shows that the value of the anodic current.

\[
\frac{dE_{ap}}{d\log(\vartheta)} = \frac{2.3RT}{nF} \alpha F
\]

where R is the constant of rare gas, T the temperature of the electrochemical cell, α the charge transfer coefficient, n the number of exchanged electrons and F the Faraday constant.

\[
I_{ap} = 0.496\alpha\frac{C}{S} \times 10^{-3} \left(\frac{D_C}{RT} \right)^{1/2}
\]

where S is the geometric surface of the electrode (cm2), C_0 the concentration of diffusion species (mol.cm$^-2$) and D the hydrogen diffusion coefficient (cm2.s$^{-1}$).

So, the values of the charge-transfer coefficient (α) and the hydrogen diffusion coefficient (D_C) of LaZr$_2$Cr$_4$Ni$_5$-based alloy are...
calculated respectively from the slope of the curves $E_{ap}=f(\log(\vartheta))$ and $I_{ap}=f(\vartheta^{1/2})$ \[11\]. The hydrogen diffusion coefficient (D_H) value is equal to $1.28 \times 10^{-8} \text{ cm}^2 \text{s}^{-1}$. Comparatively to the literature data (Table 1), the D_H value of LaZr$_2$Cr$_4$Ni$_5$-based alloy reflects a faster kinetic for the electrochemical reaction in terms of diffusibility of hydrogen.

The charge transfer coefficient is equal to 0.38 ranges between 0.3 and 0.7 and can be approximated to 0.5, suggesting that the charge and discharge reactions are reversible and the system presents the same tendency for the charge and the discharge processes \[24,26\].

Chronoamperometry

Figure 4 shows the variation of the semilogarithmic discharge current $\log(i)$ versus time for LaZr$_2$Cr$_4$Ni$_5$-based alloy.

When we assume that the hydride alloy particles have a spherical form \[18-29\], the diffusion of hydrogen in the bulk of these particles can be given, in the spherical coordinate, by the following equation (4) as:

$$\frac{\partial (rC)}{\partial t} = D \frac{\partial^2 (rC)}{\partial r^2}$$

where t is the time, c is the hydrogen concentration in the alloy, D is the average diffusion coefficient of hydrogen in the bulk and r is the distance from the center of the sphere.

Eqn. (5) gives the solution of the diffusion equation given by Crank as indicated by Weixiang \[30\], under different boundaries, as:

$$\frac{C - C_s}{C_i - C_s} = 1 + \frac{2a}{\pi n} \sum_{n=1}^{\infty} \frac{n \sin(na \pi r)}{a^2} \exp\left(-\frac{n^2 \pi^2 D t}{a^2}\right)$$

where C_s and C_i are, respectively, the initial hydrogen concentration in the bulk material and the hydrogen concentration in the surface of the alloy and a is the sphere radius and n. So, the diffusion current will vary with the time according to eqn. (6):

$$i = \pm \frac{6FDB}{\pi d a^2} (C - C_s) \sum_{n=1}^{\infty} \frac{n^2 \pi^2 D t}{a^2}$$

where, F is the Faraday constant and d the density of material.

For a long time, eqn. (6) can be rewritten as follows:

$$\log(i) = \log \left[\pm \frac{6FDB}{a^2 \pi d} (C - C_s) \right] - \frac{n \pi DB}{2.303a^2} t$$

The ± sign in eqns. (6) and (7) indicates the charge state for the minus sign and the discharge state for the plus sign. According to eqn. (7), $\frac{DB}{a^2}$ can be evaluated from the slope of the plot of $\log(i)$ versus time t. Taking into account that the value of the hydrogen diffusion coefficient D is determined by the cyclic voltammetry, the radius "a" of the particles involved in the electrochemical reaction for each alloy (supposed as spherical shaped), can be calculated from the value the slope $\frac{DB}{a^2}$ of the corresponding chronoamperograms.

Table 1: Summary of literature data on electrochemical performances of AB$_3$-type intermetallic alloys.

<table>
<thead>
<tr>
<th>Compound</th>
<th>Diffusion coefficient $D \times 10^{-16} \text{ cm}^2 \text{s}^{-1}$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>LaZr$_2$Cr$_4$Ni$_5$</td>
<td>128</td>
<td>This work</td>
</tr>
<tr>
<td>La$_2$Ti$_2$Cr$_4$Ni$_5$</td>
<td>717</td>
<td>[12]</td>
</tr>
<tr>
<td>Ca$_2$Zr$_2$Cr$_4$Ni$_5$</td>
<td>200</td>
<td>[27]</td>
</tr>
<tr>
<td>La$_2$Mg$_2$Cr$_4$Ni$_5$</td>
<td>7.1</td>
<td>[29]</td>
</tr>
<tr>
<td>La$_2$Mg$_2$Cr$_4$Ni$_5$</td>
<td>7.1</td>
<td>[29]</td>
</tr>
<tr>
<td>La$_2$Mg$_2$Cr$_4$Ni$_5$</td>
<td>7.6</td>
<td>[29]</td>
</tr>
</tbody>
</table>

Figure 3: a) Variation of E_{ap} as function of $\log(\vartheta)$ and b) I_{ap} as function of square root of potential scan rate (ϑ).

Figure 4: Variation of the diffusion current as a function of time recorded after 50 charge-discharge cycles for the LaZr$_2$Cr$_4$Ni$_5$- based electrode.
The plot can be divided into two regions: for $t<2000$ s, the current decreases rapidly under a charge-transfer control [19]. For $t>2000$ s, the diffusion current decreases linearly with time. The average radius of individual or agglomerated material, involved in the electrochemical reaction, are calculated from the slope of $I=f(t)$ for $t>2000$ s (Table 1) [19].

XRD characterization shows that the synthesized material is nanostructured with a diffraction crystallite size ranging from 7 to 5 nm [11]. Nevertheless, SEM micrographs show that nanoparticles are agglomerated in micrometric clusters [11]. Prior to the charge/discharge process, the alloy powder was ground mechanically and was saved to less than 63 µm in a glove box for the preparation of the negative electrode.

The calculated radius (a) of material involved the electrochemical reaction after 50 charge–discharge cycles, is equal to 6.2 µm. So, chronoamperometry measurements can inform on the depth degree of reaction after 50 charge–discharge cycles, is equal to 6.2 μm. Hence, it is assumed that 1) the electrolyte cannot penetrate until the nanometer scale of the material or it surrounds only the micrometer clusters. Hence, it is assumed that 2) the micrometric clusters size decreases during the hydrogen absorption/desorption processes from 63 to 6.2 µm. This decrease is assumed to be due to the pulverization of powders induced by the expansion of the lattice volume (Table 2) [18,31].

EIS measurements

The (EIS) measurements are performed to investigate the kinetics of hydrogen diffusion in LaZr$_2$Cr$_4$Ni$_5$-based alloys. Typical Nyquist diagrams are reported in Figure 5 for 100% state of charge (SOC) after 50 h of mechanical alloying. The observed spectra (Figure 5) can be divided into three regions: a small semicircle in the high frequency region (50 Hz–50 kHz). The diameter of the high frequency semicircle characterizes the electrical properties of the double layer. The calculated radius (a) of material involved the electrochemical reaction at the electrode surface is more efficient in the first 10 cycles, which can be attributed to the generation of new active surface sites with high electrocatalytic activity during the activation of the alloy.

The exchange current density I_0 for LaZr$_2$Cr$_4$Ni$_5$ sample at 100% SOC increases gradually from 398,83 µF at the first cycle to until 943,13 µF.

The slope of about 45° in the medium frequency range (4–50 Hz) allows the calculation of the Warburg impedance which depends on the diffusion phenomenon of hydrogen in the material. The radius of the semicircle at low frequency (1 mHz–4 Hz) gives the resistance of particles in the bulk of the material. It exhibits marked dependence on the cycle number.

Table 3 summarizes the values of parameters determined by the fitting of Nyquist plots. The fit accuracy is confirmed by the χ² value lower than 5.10⁻¹ [32].

High frequencies region: At high frequencies region, the small semicircle characterizes the electrical properties of the double layer (C_{dl}) which materialize the interface between the electrolyte and the material. It give the charge transfer resistance (R_{ct}) and the capacity (C_{dl}) of the double layer [33-35]. Table 3 gives the charge transfer resistance R_{ct}, the capacity of the double layer C_{dl}, the electrolyte resistance R_{e} and the exchange current density I_0 for LaZr$_2$Cr$_4$Ni$_5$ sample at 100% SOC during the cycling process. The exchange current density I_0 and the double layer capacity C_{dl} are calculated as follows:

$$I_0 = \frac{RT}{nFSR_{ct}},$$

$$C_{dl} = \frac{1}{2\pi f^2 R_{ct}}$$

where n is the number of the exchanged electrons, T is the working temperature, F is the Faraday constant, S is the geometric area of the electrode, P is the proper frequency and R_{ct} is the charge transfer resistance.

The electrolyte resistance values (R_{e}) are independent of the cycle number. The R_{e} value (Table 3) decreases initially from 2 Ω (1st cycle) to 0.43 Ω (10th cycle). This result suggests that the hydrogen diffusion reaction at the electrode surface is more efficient in the first 10 cycles, which can be attributed to the generation of new active surface sites with high electrocatalytic activity during the activation of the alloy. So, the phenomena of the charger–transfer begin more easy when the material is activated [36]. While the double layer capacitance (C_{dl}) increases gradually from 398,83 µF at the first cycle to until 943,13 µF.

Table 2: Values of α, D_h, and "a" of LaZr$_2$Cr$_4$Ni$_5$-based electrodes.

<table>
<thead>
<tr>
<th>Milling time (h)</th>
<th>C_0 (mol cm$^{-3}$)</th>
<th>D_h (cm2s$^{-1}$)</th>
<th>a (µm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0.034</td>
<td>0.38</td>
<td>1.28 × 10$^{-4}$</td>
</tr>
</tbody>
</table>

Figure 5: a) Typical Nyquist plots for the LaZr$_2$Cr$_4$Ni$_5$ (50 h) electrode at 100% state of charge during the first 30 cycles of charge/discharge and b) Enlarged view of the high frequency region.

at 30th cycle and then decreases to 422.62 µF at 50th cycle showing an irregular trend due to pulverization [36].

After further cycling, the R_c value increases to 5.02Ω (50th cycle). In fact, the reaction of hydrogen at the surface tends to become less efficient due to the surface passivation by the formation of a hydroxide film at the alloy surface [37].

The exchange current density (I_0) is a powerful parameter for measuring the kinetic of the electrochemical hydrogenation [38,39]. The value of I_0 increases from 13.79 mAcm$^{-2}$ and reached its maximum of 67.66 mAcm$^{-2}$ after 10 cycles. A further cycling leads to a decrease of I_0, which again indicates a capacity fading as hydrogen diffusion is becoming less efficient. The variation of R_c and I_0 as a function of the cycle number shows that the charge transfer kinetics is better at the beginning of cycling (Table 3).

Warburg region: The Warburg region is represented by a 45° straight line variation of lnm(Z) as function of Re(Z) in the medium frequency range (4-50 Hz). Under semi-infinite diffusion conditions, the apparent chemical diffusion coefficient of hydrogen (D_H) can be calculated from Warburg's prefactor A_W (slope of the plot Re(Z) versus $w^{-1/2}$) as follows [40]:

$$A_W = \frac{V_m}{nF}\sqrt{2D_H}$$

where V_m is the molar volume of the alloy, $\frac{dE}{dX}$ is the slope of the electrochemical discharge isotherm at each X value, F is the Faraday constant and S is the geometric area (1 cm2 in this work). The variations of I_0, R_c, A_w and D_H during cycling are given in Table 3. According to our previous study [11], LaZr$_2$Cr$_4$Ni$_5$-based alloy is easily activated during the first cycles of absorption/desorption of the hydrogen, the number of vacant sites increases and, consequently, the diffusion of hydrogen becomes faster [11]. The hydrogen diffusion coefficient (D_H) is found to increase from 31.7 × 10$^{-8}$ cm2s$^{-1}$ at the first cycle to 13.14 × 10$^{-6}$ cm2s$^{-1}$ after 5 cycles. By increasing the number of cycles, the values of the hydrogen diffusion coefficient in the bulk material of LaZr$_2$Cr$_4$Ni$_5$ decreases sharply to 1.12 × 10$^{-4}$ cm2s$^{-1}$ after 50 cycles.

Figure 7 shows the electrochemical impedance spectra of the LaZr$_2$Cr$_4$Ni$_5$ electrode after activation during 50 cycles at 10% and 100% states of charge.

The 10% state of charge corresponds to the solid solution α phase whereas the 100% state of charge belongs to the hydride β phase. The hydrogen diffusion coefficient D_H values are higher for the α phase and lower for the β phase. The D_H value determined by cyclic voltammetry is located between those corresponding to 10% and 100% states of charge. It represents a mean value. We assume that the value of the hydrogen diffusion coefficient depends on the hydrogen content in the alloy in a way that it decreases when the state of charge increases. In fact, in the α phase, the number of interstitial sites susceptible to accept the hydrogen atoms is more numerous and consequently the hydrogen diffuses easily. So, the D_H is higher. However, in the β phase, the interstitial sites are almost saturated and the hydrogen diffuses hardly. So, D_H is lower. The value given by the cyclic voltammetry represents a medium value representing a medium state. So, it will be lower than that corresponding to the α phase and higher than that corresponding to the β phase. The values of D_H determined by EIS are in good agreement with those reported in the literature [17].

During the charge/discharge cycling, rare earth elements, such as...
as La, segregate to the grain boundaries where they were subjected to
formation in alkaline electrolytes [17]. The corrosion products
are deposited on the surface of the grain particles as needle-shaped
La(OH)₃. This corrosion leads to an increase in resistance between the
alloy grains, which in turn may affects the kinetic properties [17]. Several
authors assumed that the oxygen penetration depth in the surface layers
of the alloys increased with increasing charging cycles [17]. So,
the penetration of oxygen into the surface layers leads to an easy oxidation
of metallic elements during the charging and discharging process.
Such an oxidation phenomenon leads to a limitation of the hydrogen
diffusion from the surface to the bulk of the alloy [17]. Heng et al. [41]
reported that when the oxide film or corrosion layer is formed on the
surface of the alloy particles, the reaction rate should be influenced
more or less by this surface layer. Consequently, it was suggested that
the corrosion phenomenon may affects the kinetic properties and leads
to a decrease of the hydrogen diffusion coefficient in the material.

Low frequencies region: The larger semicircle in the low frequency
region (LF) corresponds to the resistance of the particles in the bulk
of the alloy [35]. The diameter of this large semicircle significantly
decreases upon increasing the cycle number. For LaZr₂Cr₄Ni₅, this
resistance (Rₓ) decreases from 196.6 Ω at the first cycle to 85.5 Ω after
50 cycles. We assume that the decrease of the particle size from 63 to
6.2 μm, occurred during the decrepitation of powder upon hydrogen
absorption/desorption processes [18,32], increases the contact between
the particles and then reduces the Rₓ value. This is reflected by the
reduction of the diameter of the semicircle. Nevertheless, it has been
suggested that this resistance is attributed to the oxide/hydroxide film
formed on the surface, which reduces the electrochemical catalytic
activity of the electrode surface [36]. During repetitive charge–discharge
cycling, the layer thickness becomes active and causes a decrease in the
resistance.

Conclusion

In this work, the electrochemical properties of a novel ABₓ-type
rich alloy, consisting in LaZr₂Cr₄Ni₅-based materials were investigated.
The value of the hydrogen diffusion coefficient estimated after 50 cycles
by cyclic voltammetry is equal to 1.28 × 10⁻⁸ cm² s⁻¹, reflecting
a good absorption/desorption kinetic and a high hydrogen diffusivity
through the LaZr₂Cr₄Ni₅-rich alloy. The effective value of the diffusion
coefficient of hydrogen estimated by EIS through LaZr₂Cr₄Ni₅ electrode
at 10 and 100% SOC determined after 50 cycles are, respectively, equal
to 4.41 and 1.12 × 10⁻⁸ cm² s⁻¹. The exchange current densities of MH
electrodes were estimated by EIS as a function of cycling. The charge
rate on the electrochemical properties of LaZr₂Mn₄Ni₅. Interm
structure characterization of mechanically alloyed ABₓ-type based material:
LaZr₂Mn₄Ni₅. Intermetallics 41: 78-81.

References

29. Liao B, Lei YQ, Chen LX, Lu GL, Pan HG, et al. (2004) Effect of Co substitution for Ni on the structural and electrochemical properties of La$_{2}$Mg(Ni$_{1-x}$Co$_{x}$)$_{9}$ (x=0.1–0.5) hydrogen storage electrode alloys. Electrochim Acta 50:1057–1063.

30. Weixiang C (2000) Cyclic voltammetry and electrochemical impedance of MmNi$_{3.6}$Co$_{0.7}$Mn$_{0.4}$Al$_{0.3}$ alloy electrode before and after treatment with a hot alkaline solution containing reducing agent. J Power Sources 90:201–205.

36. Ben Moussa M, Abdelliaoui M, Mathlouthi H, Lamloumi J, Percheron-Guégan A (2013) Investigation on the structure, thermodynamic and electrochemical properties of the MnNi$_{2.5}$Mn$_{0.5}$Al$_{0.5}$Fe$_{0.5}$ compound used as negative electrode in Ni-MH batteries. J Alloy Compd 575: 414–418.

37. Raju M, Manimaran k, Ananth MV, Renganathan NG (2007) An EIS study on the capacity fades in MnNi$_{1.5}$Mn$_{0.5}$Co$_{0.5}$ metal-hydride electrodes. Int J Hydrogen Energy 32: 1721 – 1727.

