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Abstract 

Hydrogen sulfide contaminates the geothermal brines that are encountered in the drilling of wells. It promotes the corrosion of the drilling 
equipment, pipelines, vessels, forms sulfide scales, which plug tubulars, and degrades the quality of the produced oil. This work aims to study the 
feasibility of electrochemical removal of H2S from such brines by anodic oxidation. Porous graphite electrode was used to achieve electrochemical 
oxidation of sulfide ions in chloride brines in an autoclave under high temperature and pressure. The X-ray photoelectron spectroscopy (XPS) and 
Energy Dispersive Spectroscopy (EDS) proved that sulfur was identified as the final reaction product under various potentials and temperatures. In 
low temperature, the sulfur was detected on the electrode surface, while in high temperature the resulting sulfur flows out in the electrolyte so 
that it is not detected on the electrode surface. The rate of sulfide oxidation depends on the potential, temperature and the sulfide concentration. 
The obtained limiting currents are lower than those predicted from mass transfer correlations, which result from the effects of the deposited sulfur 
on the internal surface of the porous graphite electrode. The large internal surface area of the used electrodes improved the removal efficiency of 
sulfide ions and this is very clearly noticed from the current transient's results. In high temperature, the limiting current is re-increased due to the 
liberation of sulfur from the electrode surface, which reactivates electrode surface and the rate of oxidation is increased again. 
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1. Introduction 

Hydrogen sulfide is considered as one of the extremely hazardous substances due to its toxicity for humans and its dangerous effect 
on metallic materials [1,2]. It promotes the corrosion of metallic materials, which exist specially in oil and gas industry, since it 
contaminates the geothermal brines [2,3]. It is also present in wastewater of several industries [4-7] and in production of energy 
[8,9]. There have been many trials to detect, control and/or remove hydrogen sulfide from the polluted media. The efforts have 
been directed into two methods, precipitation and oxidation. These include chemical, biological and electrochemical oxidation, and 
adsorption. The scavengers were used to remove the H2S, particularly in oil and gas fields. The scavengers such as ZnCO3, Na2CrO4, 
Fe3O4, etc are well known for removing hydrogen sulfide from industrial polluted water. The amount of scavengers depends on the 
level of sulfide content and the properties of the fluid [10-13]. The used scavengers are very expensive and cause environmental 
pollution. Electrochemical oxidation is an attractive technique for sulfide ion removal. The oxidation of sulfide is attributed to 
formation of less toxic products [14-16]. The oxidation reaction on the electrode can be represented by: 

HS-                S + H+ + 2e                     (1) 

The anodic oxidation might also be pursued as a means of using H2S as a fuel in fuel cells, obtaining sulfur from sour gas or for the 
sole purpose of ridding the media of H2S and its effects [17-19]. The elemental sulfur from sulfide oxidation accumulates on the 
electrode surface and so it passivates progressive decay of its activity.  The sulfur is highly reactive and has many oxidation states, so 
it is expected to give polysulfides, elemental sulfur or oxysalts such as thiosulfates and sulfates as reaction products [20,21].  

The experiments were performed under conditions of high temperature and pressure, which simulates the geothermal fluids but the 
range of temperature exceeds the melting point of sulfur (115oC). The previous condition required a closed system due to the 
temperature under experiment being higher than the boiling point of water, so autoclave was used to give the required conditions 
of temperature and pressure. The porous electrodes possess some attractive features for this purpose due to high specific surface 
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areas, and can be operated continuously [22,23]. The oxidation of the sulfide ions to produce elemental sulfur at high temperature 
and pressure gives soluble reaction products; hence, this method can be applied continuously for removing sulfide ions from 
geothermal fluid. If this technique can be achieved, it can provide an easy and safe method for removing sulfide ions from 
contaminated brines. This technique can be linked to wastewater treatment, e.g. for the recovery of metal ions [24-34], the 
destruction of organic and inorganic wastes [35-38], the removal of dissolved oxygen [39], the production of polysulfides from white 

liquor [40], the storage of energy [41], the formation of hydrogen peroxide [42] and the recovery of bromine [43,44]. The oxidation 
of sulfide ions was carried out by using pyrolytic graphite in stagnant conditions, the sulfur was detected on the electrode surface at 
room temperature, and there is no detection at high temperatures more than its melting point [45]. The objective of this paper is to 
investigate the capability of achievement of the anodic oxidation of sulfide ions using porous electrodes in batch condition and to 
assess the effects of some operating parameters on the rate of oxidation. 

 

2. Methods 

Working electrodes were prepared from carbon felt obtained from Alfa Aesar. It has a thickness of 6.35 mm, a density of 0.076 gcm-3 
and a BET area of 1.61 m2g-1. All measurements were performed in a supporting electrolyte of 3.5% NaCl containing 0.01 M sodium 
sulfide. The test solutions were prepared from deionized water and analytical grade chemicals. The cell was equipped with a 
platinum wire counter electrode positioned downstream, facing porous electrode. Experiments were performed in a Teflon cell 
contained in an autoclave made from 316 L stainless steel. The autoclave is composed of a main body (Figure 1), and the main body 
houses the PTFE electrolytic cell. The head of the autoclave has four more openings for a thermocouple and contacts to the working, 
counter and reference electrodes. To ensure gas-tight sealing of the head onto the autoclave, the head was machined to 
accommodate two o-rings. Six threaded openings accommodate the studs, which attach the two parts together. The electrolytic cell 
was fabricated from a block of PTFE to fit tightly in the main body of the autoclave. Figure 1 shows the autoclave and the used Teflon 
cell and the cell is also composed of a main body which contains the salt solution and a cover. After the cell was assembled and the 
autoclave sealed, it was placed in a specially designed electric furnace equipped with a temperature regulator and the temperature 
of the electrolyte was controlled to ±1o C. Attainment of constant temperature required about 3 hours. Electrochemical 
measurements were performed using a Gamry PC4/750 Potentiostat. The potential was scanned from cathodic towards anodic 
potentials against an Ag/AgCl reference electrode. The porous graphite electrodes were subjected to surface analysis by using a 
scanning electron microscope (JSM-6300JEOL) and an X-ray photoelectron spectrometer (XPS), FISON Instruments, Model ESCA-lab 
200 (VG instruments). After the experiment, rotary vapor instrument was used to evaporate the electrolyte and the residual powder 
is applied for detection of sulfur by XPS and EDS techniques. 
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Figure 1: (A) Shows the autoclave and the used Teflon cell. (B) Represents the sealed autoclave placed in a specially designed electric 
furnace equipped with a temperature regulator. 

 

 

 

3. Results and Discussion 

3.1 Electrochemical measurements 

Figure 2a illustrates the effect of temperature on the potentiodynamic current-potential relations obtained on an electrode 
operated at 3.5 % NaCl at 25oC and 150oC measured at scan rate of 1 mVs-1. The upper part of the curve, at the more noble 
potentials, describes anodic oxidation while the lower part refers to cathodic reduction. The two parts fall on either side of the open 
circuit potential. The anodic current increases gradually with potential reaching a well-defined limiting value, 20 and 120 mA at 25oC 
and 150oC respectively. The magnitude of limiting current (iL) increases with the rise of the temperature up to 6 times, which 
indicates that the reaction rate is affected by the temperature of the electrolyte. The obtained result shows that the limiting current 
is reached at potentials a few hundred mV more noble than the open circuit potential, which indicates that the process is associated 
with significant levels of electrochemical polarization.  

Figure 2b shows the effect of temperature on the potentiodynamic current-potential relations obtained on an electrode operated at 
3.5 % NaCl + 0.01M HS- at 25 o C and 150o C measured at scan rate of 1 mVs-1. The anodic current increases gradually with potential 
reaching a well defined limiting value, 3 and 30 mA at 25 o C and 150o C respectively. The magnitude of limiting current (iL) increases 
with the temperature rising 10 times, which indicates that the reaction rate is affected by the temperature of the electrolyte and 
presence of sulfide ions. The obtained result proved that the electrochemical oxidation of sulfide ions is attributed to 
electrochemical polarization on the electrode surface. 
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Figure 2 (a, b): Effect of temperature on current-potential relation of the porous graphite electrode at a voltage scanning rate of 1 
mVs-1 in (a) 3.5% NaCl only and (b) 3.5% NaCl + 0.01 M HS- at 25 C and 150 C. 

 

Figure 3a and b illustrate the effect of sulfide ions on the current-potential relation at 25o C and 150o C and it is well known that the 
limiting current is increased in presence of sulfide ions at low and high temperature, which indicates that the reaction is going in the 
direction of oxidation of sulfide ions. The obtained results prove that the limiting current is affected by increasing temperature and 
the lowering of limiting current at low temperature is attributed to the formation of elemental sulfur on the porous electrode 
surface, which lowers the rate of reaction due to the passivation of electrode surface. In high temperature, the limiting current is re-
increased due to the liberation of sulfur from the electrode surface as the used temperature is higher than the melting point of 
sulfur (115o C) that reactivates electrode surface and the rate of oxidation is increased again. 



 

  http://astonjournals.com/csj 

5 Chemical Sciences Journal, Volume 2010: CSJ-10 

Current / A
10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

Po
te

nt
ia

l /
 V

  v
s 

A
g/

 A
gC

l

-0.5

0.0

0.5

1.0

1.5
3.5 % NaCl at 25oC SR 1mVS-1

3.5 % NaCl+0.01MHS- at 25oC SR 1mVS-1

 

Current / A
10-7 10-6 10-5 10-4 10-3 10-2 10-1 100

Po
te

nt
ia

l /
 V

  v
s 

A
g/

 A
gC

l

-0.5

0.0

0.5

1.0

1.5

2.0
3.5 % NaCl at 150oC SR 1mVS-1

3.5 % NaCl+0.01MHS- at 150oC SR 1mVS-1

 

Figure 3 (a, b): Effect of sulfide ions on current-potential relation for the porous graphite electrode at a voltage scanning rate of 1 
mVs-1 in 3.5% NaCl only and 3.5% NaCl +0.01 M HS- at (A) 25 C (B) 150 C.  

 

Figure 4a illustrates the current transients supported by the porous graphite electrode at a potential of 0.8 V (Ag/AgCl) in 3.5% NaCl 
at 25o C and 150o C. The results show that the current is increased with increasing temperature and it is previously noticed from the 
potentiodynamic results. The increasing current shows higher value, more than that obtained in case of presence of sulfide, and the 
results are shown in Figure 4b. The results indicate that the current depends on the existence of sulfide and the temperature of the 
electrolyte. There is no gradual decrease of current with time, which attributed to the melting of elemental sulfur from the internal 
surface of the porous electrode and so the reaction rate is continuously activated. This indicates that the porous electrode has a 
higher capacity for removing the sulfide ions from the polluted brines. The potential distribution within a porous electrode is non-
uniform. In view of the three dimensional nature of the porous electrodes, there is always a potential shift within the electrode, the 
magnitude of which depends on the resistivity of the pore electrolyte (q), the thickness of the electrode (L) and the distribution of 
the current produced within the electrode. The potential distribution can only be obtained upon development of a mathematical 
model of the process and solution of the model equation [31–33]. By assuming that the current (i) is generated entirely near the 
bottom face of the porous electrode, the estimation of the maximum possible shift in potential ∆Emax can be obtained from the 
following equation: 

∆Emax = iLρ/a                       (2) 
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By using L = 0.635 cm, ρ = 22 ohm cm and a = 5.3 cm2, a value of ∆E (max) ≈ 100 mV is obtained. For a current of 10 mA, ∆E (max) 
amount to only 26.4 mV. Normally, the actual potential drop is much less than ∆E (max). It is found that under certain conditions 
about 80% of the current was generated in the top 20% of the thickness of the porous electrode [32], and the actual potential shift is 
only about 20% of the value given by Equation 2. For a current at 2000 s in Figure 4 (a,b) amount to only 4 and 40 mA or less, so the 
potential at various locations inside the porous electrode is less noble than the 400 mV (Ag/AgCl) at the top surface by an amount 
that ranges from a few to 100 mV, which is considered as a limiting value. It was shown elsewhere that elemental sulfur formed on 
solid graphite electrodes at potentials as low as 180 mV (SCE) [16]. This indicates that the potential inside the porous electrode is 
favorable for the formation of elemental sulfur. Equation 3 shows the formation of elemental sulfur:  

HS- = S + H+ + 2e-           (3) 

The sulfur has high reactivity and many oxidation states, which affects the electrochemical behavior of the sulfide ions in aqueous 
media [20, 21]. As shown above, the rate of the process is affected by charge transfer across the interface, which is also affected by 
the diffusion through the electrolyte towards the graphite surface. Under the ambient conditions, the stable form S8 is formed by 
the polymerization of atomic sulfur. 
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Figure 4 (a, b): Current transients supported by the porous graphite electrode at a potential of 0.8 V (Ag/AgCl) in (a) 3.5% NaCl at 25 
C and 150 C, and (b) 3.5% NaCl+0.01 M HS- at 25 C and 150 C. 
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3.2 Characterization of the reaction products 

The electrode surface and the residual powder of the used electrolyte were inspected microscopically by using SEM and subjected to 
XPS and EDS spectrum after performing the electrolysis at 25o C and 150o C. Figure 5a shows an XPS spectrum of the residual powder 
of the used electrolyte after evaporation of the residual polluted brine by using rotary vapor device. The solution containing 3.5% 
NaCl and 0.01M HS- was subjected to polarization by using porous graphite electrode at 0.8 V (Ag/AgCl) for 3 h at 25o C. It is well-
known that the elemental sulfur appears at the values ranging from 163.6 to 164.2 eV [46]. Figure 5a shows a prominent S2p peak at 
a binding energy of 164.8 eV, which is attributed to the presence of elemental sulfur at intensity of about 1080 CPS. The results 
prove that the obtained intensity is lower than in case of high temperature and the obtained species is different from the low 
temperature. Figure 5b illustrates two prominent peaks at about 161.8 eV and 168.5 eV corresponding to the sulfide ions and sulfate 
ions, respectively [45,47] at intensity of 2300 and 2100, respectively. The results prove that at 25o C not all of formed elemental 
sulfur is present in the residual powder, but some of it is also present on the electrode surface. Further confirmation of these 
findings is provided by the results of SEM and EDS measurements on powder and porous graphite electrode. Figure 6a shows the 
SEM and EDS for the residual powder of the used electrolyte, which was polarized by porous graphite electrode for 3 h at 25o C. The 
obtained result shows strong signal at about 2.5 KeV, which indicates to the elemental sulfur. Figure 6b shows the SEM and EDS for 
the porous electrode surface in the conditions similar to Figure 6a and we note that a clear signal at about 2.5 KeV, which is ascribed 
to sulfur. 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

Figure 5 (a, b): XPS spectrum of the residual powder of an evaporated used electrolyte by rotary vapor device, the electrolyte is subjected for 
polarization at a potential of 0.8 V (Ag/AgCl) by using porous graphite electrode for 3 h, in presence of 3.5% NaCl + 0.01 M HS- at (a) 25o C and (b) 
150o C. 
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Figure 6 (a, b): (a) SEM and EDS of powder of evaporated used electrolyte containing 0.01M HS- at a potential of 0.8 V(Ag/AgCl), 
which was polarized by porous graphite electrode for 3 h at 25o C. (b) SEM and EDS of fibers of porous graphite electrode after it was 
polarized in a solution containing 0.01M HS- at a potential of 0.8 V(Ag/AgCl) for 3 h at 25o C. 
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Figure 7 (a, b): (a) SEM and EDS of powder of evaporated used electrolyte containing 0.01M HS- at a potential of 0.8 V(Ag/AgCl), 
which was polarized by porous graphite electrode for 3 h at 150o C. (b) SEM and EDS of fibers of porous graphite electrode after it 
was polarized in a solution containing 0.01M HS- at a potential of 0.8 V(Ag/AgCl) for 3 h at 150o C. 

 

Figure 6 (a, b) give a second proof for the previously obtained results. The reaction rate at room temperature is lower than at high 
temperature and this is clearly noticed from the intensity of the XPS spectrum. Figure 5b shows the XPS spectrum of the residual 
powder of the used electrolyte in the previous conditions, but at 150o C, which elucidates two clear peaks for sulfide and sulfate ions 
with higher intensity than the produced peak in Figure 5a. On the other hand, the thermodynamic calculations predict that 
elemental sulfur can produce soluble oxyanions, and in principle, undergo further oxidation [20, 21]. Furthermore, elemental sulfur 
can also dissolve in the presence of sulfide ions to give several polysulfides [14, 15, 48]. The EDS of porous graphite electrode shows 
very small signal at 2.5 KeV, which proves that the presence of elemental sulfur on the electrode surface is negligible at high 
temperature (Figure 7b) and that, is in agreement with the obtained results. That is why the reaction rate is approximately constant 
and the majority of sulfur species is present in the residual powder (Figure 7a), so this process can be used in the field continuously 
for removing the sulfide ions through the electrochemical oxidation by using porous graphite electrode under severe conditions of 
temperature and pressure. 

 

4. Conclusion 

The present work revealed that in geothermal conditions it is possible to oxidize sulfide ions directly from polluted chloride brines 
into elemental sulfur at porous graphite electrodes. The oxidation process is controlled by both charge transfer at the interface and 
mass transfer within the electrolyte. The results show that at low temperature the elemental sulfur passivates the electrode surface; 
this was attributed to the passivating effects of the deposited sulfur inside the porous medium, which subsequently decreases the 
rate of the oxidation process, which is clearly noticed from the magnitude of limiting current. The porous graphite electrode has high 
capacity for removing sulfide ions, which is attributed to its large internal surface area. The oxidation of sulfide ions to sulfate ions 
serves the objective of this work by decreasing the concentration of sulfide in the brine. Furthermore, in case of over oxidation of 
the brine, the chlorine gas is produced, this has a favorable bactericidal activity, that inhibits the sulfate reducing bacteria. The 
reaction rate of the sulfide removal efficiency increases with temperature. 
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