
Volume 2 • Issue 2 • 1000109

Open AccessResearch Article

Mattar, Adv Robot Autom 2013, 2:2
DOI: 10.4172/2168-9695.1000109

Keywords: Dexterous robotic manipulation; Modeling; Real-time
simulation; Control; Matlab

Introduction
Literature and related studies

There are number of efforts to build robotics system modeling and
simulation environments using Mat lab. For example, in reference [1],
a Mat lab Toolbox for the iRobot Create (MTIC) was reported. It was
mentioned that, “The toolbox replaces the native low level numerical
commands, with a set of high level, intuitive, Mat lab functions (aka
"wrappers")” [1]. In terms of modeling complexity, furthermore,
Shaoqiang et al. [2] have mentioned that, “Biped robots are often treated
as inverted pendulums for its simple structure. But modeling of robot
and other complex machines is a time-consuming procedure. A new
method of modeling and simulation of robot based on SimMechanics
is proposed”, Shaoqiang et al. [2]. Over number of years, Corke [3],
has been working towards a MATLAB based robotic arm simulation.
Hence, Corke [3], has introduced the well-known book for MATLAB
environment with associated libraries. This is known as “Robotics
Toolbox for Matlab”, Corke [3]. The environment was a very useful
tool for modeling robotic arms. It was also an easy methodology and
coding for modeling and simulation different robotics arm structures.
Jambak, et al. [4], mentioned the importance and paramount of Robot
Simulation Software nowadays. This is to increase the accuracy and
efficiency of industrial robot. They adopted a project using “virtual
reality interface design methodology and utilizes MATLAB/Simulink
and V-Realm Builder as the tools”. They also mentioned that, “a robot
model has been developed and a Robot Simulation Software life cycle
has been implemented”, Jambak et al. [4].

Furthermore, in reference to Olivier [5], Cyberbotics, it was
reported that, Webots TM has a number of essential features intended
to make such simulation tool both easy to use and powerful:

- Models and simulates any mobile robot, including wheeled,
legged and flying robots.

- Includes a complete library of sensors and actuators.

- Lets you program the robots in (C, C++ and Java), or from third
party software through TCP/IP.

- Transfers controllers to real mobile robots, including Aibo®,
Lego®, Mindstorms®, Khepera®, Koala®, and Hemisson®.

- Uses the ODE (Open Dynamics Engine) library for accurate
physics simulation.

- Creates AVI or MPEG simulation movies for web and public
presentations.

- Includes many examples with controller source code and models
of commercially available robots.

- Lets you simulate multi-agent systems, with global and local
communication facilities”, Olivier [5].

Gourdeau [6] has indicated that, “Using an object-oriented
programming approach, ROBOOP, a robotic manipulator simulation
package which is both platform and vendor independent, compares
favorably against a package requiring similar coding effort”, Gourdeau
[6]. In fact, he also indicated that, the performance tests show that with
ROBOOP, the routine (with a class), inverse dynamics of a 6-DOF
robot was made faster, can be computed and simulated in less than (5
ms) with a Pentium (100 MHz) computer.

Ramasamy and Arshad, [7] have both developed a robotic hand
simulator. They indicated that “This robotic hand simulation is
divided into three main parts. The main objective is to design a three
dimensional graphic of a robotic hand and its movement animation

*Corresponding author: Ebrahim Mattar, College of Engineering, University of
Bahrain 32038, Kingdom of Bahrain, E-mail: ebmattar@ieee.org

Received August 21, 2013; Accepted October 14, 2013; Published October 16,
2013

Citation: Mattar E (2013) e_GRASP: Robotic Hand Modeling and Simulation
Environment. Adv Robot Autom 2: 109. doi: 10.4172/2168-9695.1000109

Copyright: © 2013 Mattar E, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Abstract
Modeling and simulation of robotics hands are significant topics that have been looked into by many robotics

Specialists and programming experts. This is due to a demand to build a friendly platform for analyzing proposed
hand design and movements, earlier to hand physical construction. For meeting such demands, a dexterous robotic
hand software simulator was synthesized. The developed code is dexterity characterized robotic hand modeling
and simulation software environment. The simulator was developed for robotics hands research purposes. This
manuscript is presenting a brief documentation of such a modeling and simulating environment for simulating
dynamic movements of multi-finger robotics hand. The environment is named as the e_GRASP. To make use of other
supporting environments, e_GRASP is a Mat lab based simulator, with a quite large number of linked functionalities
and routines that helps in simulating hand movements in a defined 3D space. e_GRASP was built after a number of
years of experience while dealing with robot hands, hence it is a comprehensive Mat lab based Toolbox that makes
use of other Mat lab defined Toolboxes. e_GRASP can also be interfaced to real-time hand control, with an ability
to be linked with even higher levels of hierarchy. This includes Mat lab AI Tools, optimization, as considered useful
toolboxes for dexterous hands for grasping and manipulation.

e_GRASP: Robotic Hand Modeling and Simulation Environment
Ebrahim Mattar*
College of Engineering, University of Bahrain, Kingdom of Bahrain

Advances in Robotics
& Automation

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Ad
va

nc
es

 in
Robotics &Autom

ation

ISSN: 2168-9695

Citation: Mattar E (2013) e_GRASP: Robotic Hand Modeling and Simulation Environment. Adv Robot Autom 2: 109. doi: 10.4172/2168-9695.1000109

Page 2 of 11

Volume 2 • Issue 2 • 1000109

that imitates the movement of a human hand”. They used the graphic
design as a foundation to find the kinematics and dynamic properties
of the robotic hand.

Furthermore Miller and Allen [8] have both presented the
GRASPIT! In reality, GRASPIT! is a dexterous robotic hand simulation
code. It was reported that the work focus of the grasp analysis, has been
on force-closure grasps, which are useful for pick-and-place type tasks.
Miller and Allen in [8], have also reported that, “This work discusses
the different types of world elements and the general robot definition,
and presented the robot library”.

Miller et al [9]. have furthermore developed a simulation platform,
where they focused on (Design/methodology/approach), as they are
unlike other simulation systems. However, the simulation system was
built specifically to analyze grasps by robotics hand. Miller et al. [9] also
reported that, “It can import a wide variety of robot designs by using
standard descriptions of the kinematics and link geometries. Various
components support the analysis of grasps, visualization of results,
dynamic simulation of grasping tasks, and grasp planning”.

Jagdish et al. [10], have proposed and presented in their chapter,
a fast as well as automatic hand gesture detection and recognition
system. It was worked towards a reorganization of a hand gesture,
hence an appropriate command is to be sent to the robot hand. Jagdish
et al. [10], also mentioned that, once robot receives a command, it does
a pre-defined work and keeps doing until a new command arrives.

Corrales et al. [11], have developed a kinematic, dynamic and
contact models of a three-fingered robotic hand. The hand name was
(BarrettHand), as this to obtain a complete description of the system
which is required for manipulation tasks and simulation. Corrales
et al. [11] have also stated that, “The developed models have been
implemented on a software simulator based on the EASY JAVA
simulations platform. Several experiments have been performed in
order to verify the 3 accuracy of the proposed models with regard to
the real physic system”.

Gourret et al. [12], have addressed the problem of simulating
deformations between objects and the hand of a synthetic character
during a hand grasping progression. Hence, a numerical method based
on finite element theory was developed and used to allow considering
into account active forces of the each finger on the object and the
reactive forces of the object on the fingers. Magnus [13], stated that,
“before the implementation of the controller was made on the real hand
it was tested and development on a simulation created in MATLAB/
simulink with help from a graphic physics engine called GraspIt!”.

In this context, Magnus [13], have also looked into movements
of the hand finger, and found how this is affected by the force from a
leaf spring and a tendon that bends the finger. They also exposed the
hand fingers to contact forces. They used these results and all these
components to create models that are used in the simulation, hence to
make the finger perform accurately.

Tarmizi et al. [14], as justified by increasing demands robotics
hands both modeling and simulation, and due to the increasingly
gaining importance amongst researchers for industrial and medical
applications. Tarmizi et al. also stated that, “a multifinger robot hand
with five fingers is modeled and simulated for grasping task. This was
done using a CAD tool known as SOLID WORKS, and an analytical tool
known as SimMechanics of MATLAB”. In fact, obtained simulation
results, indicated that the improved performance of grasping functions
for robotics hands.

Ramasamy and Arshad [7], used animation techniques, hence, this
to facilities designs and three dimensional graphic of an robotic hand,
and its movement animation that imitates movements of the human
hand. Such graphic designs, are hence, used as a foundation to find the
kinematics and dynamic properties of the robotic hand. The end result
is a robotic hand simulation that comes with analyses of the kinematics
and dynamic properties”.

Boughdiri et al. [15], have mentioned that there are numerous
simulation results that shown, the derived dynamic model can predict
the motion of the multi-fingered hand in free motion without holding
any object. Additionally they have developed dynamic model that used
and led to decoupling dynamic characteristics, by which the control
of different parts of the system are simulated. They have reported a
model-based computed torque technique, as for tracking control of the
multi-fingered hand.

Ohol and Kajale [16] have looked into a number of issues related to
robotic hand simulation. This includes; required task for the robots, as
this becoming more complicated. In addition, handling of objects with
various properties, e.g. material, size, mass, and physical interaction
between the finger and an object. Ohol and Kajale [16] have stated in
their research that, “Design procedure, solid modeling, force analysis
and simulation have been discussed for further dynamic analysis
towards confirmation of the viability”.

Chan and Yun-Hui [17], have further looked into the issue of a
dynamic simulator, that can helps and facilitates developments and
applications of a multi-fingered robot hand. They indicated that, the
existing dynamic simulators cannot effectively simulate dexterous
manipulation of a multi-fingered robot hand. This is due to the lack
of capability to cope with frequent changes in contact constraints and
grasping configurations as well as impulsive collision occurring during
manipulation. Chan and Yun-Hui, [17] also mentioned that, “We
propose a unified framework to model free motions, collisions, and
different contact motions including sticking, rolling, and sliding”. Hence
they proposed a innovative transition model for handling transitions
between these contact motions. Finally, a 3D dynamic simulator has
been developed to simulate dexterous robotic manipulation tasks,
while involving combination of different contacts. That was based on
a unified dynamic model. Simulation results indicated and confirmed
the validity of the dynamic model and the simulator efficiency.

Main article contribution

In an effort to synthesis a dexterous multi-finger robotic hand
MODELING and SIMULATION environment, this research
framework was thoroughly focused towards the utilization and
employment of Matlab-based platform coding, for a kinematics and
dynamic simulation of an (n) number of fingers hand, with (m) number
of joint within each finger dexterous robot hand.

The coding software is referred to as the “e_Grasp”. e_Grasp was
coded using Matlab functions and routine, with some associated
Matlab libraries. The main motivation for selecting Matlab as the
programming environment, this due to the availability of extended
libraries and the ability to link Matlab with other external libraries.
The simulator was built to be even supportive for complicated model-
based control algorithms for hand-object movements. Examples of
which include the Computed Torque approach, and adaptive control.
The simulator was also linked with MATLAB AI tools, as an attempt to
make use of available AI techniques for implementing intelligent hand
manipulation.

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Mattar E (2013) e_GRASP: Robotic Hand Modeling and Simulation Environment. Adv Robot Autom 2: 109. doi: 10.4172/2168-9695.1000109

Page 3 of 11

Volume 2 • Issue 2 • 1000109

Manuscript organization

Within this manuscript, we shall be introducing e_Grasp simulator,
where the main features of such modeling and simulation space are
presented. We shall also show how this environment is linked to other
internal Matlab main Toolboxes and external C++ libraries. Particularly,
this manuscript is presenting a long term research framework, which is
actually focused for dexterous robotics manipulation that have gained
experience and achieved over a number of years, where it was totally
dedicated towards building a robotic hand modeling and simulation
environment. The manuscript was divided into six sections. Section 3
gives a brief introduction and literatures related to this research theme.
In Section 4 we present he simulator integrated structure and blocks.
Robotics hand model building, as in relation to hands kinematics and
dynamics, are therefore introduced in Section 5. Section 6 gives the
simulator HIERARCHCY and DATA_STRUCTURE. This focuses
on coding features for dexterous hand simulation. In Section 7 we
show few e_Grasp simulation results. Finally, in Section 8, we provide
conclusions and draw few concluding remakes.

Simulator Integrated Structure and Blocks
Multi finger robotics hands do represent complicated dynamic and

interrelated closed chain kinematics system. Therefore, modeling and
simulation of such systems, always represent challenging tasks. This is
illustrated in Figure 1. Here we show the top level building blocks of
the e_Grasp simulator hierarchy. It composes of five building units.
The first is the top level (which includes the hand motion planning and
higher USER commands), within such environment task definition
is developed. In this top unit an appropriate supervisory software
has been developed to facilitate the communication with the various
functions of the hand. Typically the user can state the needed motion
parameters, like velocities and positions. The second level of hierarchy,
is the controllers array box; motion and force control hardware aspects
are mainly located within this unit. The third level of hierarchy is
dedicated towards the mechanical hand and the drive box used for
actuation. Finally, the last level of hierarchy is dedicated towards the
level hand motion sensing and instrumentations. Within Section 5, the
theme of hand design will be further expanded; hence, kinematic and
dynamic modeling matters are therefore discussed in further details.

The e_GRASP has developed its awareness, as a result of the
continuous demands to look into the most challenges effort, which
is modeling and simulating dexterous robotic hands. Most computer
controlled systems used for robotics control, have distributed

simulators, which are dedicated to specific tasks. For a six degrees
of freedom arm, six simulators they are usually dedicated for the
production of digitally controlled motion, hence parallel motion of all
the DOF is achieved. All of these DOF are then managed by a single
upper simulator. Multi-simulators are unusual distributed simulators
which may be utilized to share the computational load for the same
task, for providing redundancy in computation, or for sharing the
multi axis controllability load in a system.

For multi-fingered robot hands, a few dedicated simulation
structures have been used in practice. For multi-fingered robot
hands, and due to the large number of actuators to be controlled by a
supervisory software, the design adopted here comprises of (n) linked
motion simulators, simulating the digital control, for hand tendon
displacement control. Furthermore, the simulator is to consider control
of hand distal joints, as each distal joint in the hand is also digitally
force controlled.

Due to the large number of actuators and the need to have a user
friendly software interface, a TOP SUPERVISORY code has been
written for the purpose of hand programming and coordinating the
various units over the hand entire system. Smooth fingertip Cartesian
motion is an essential capability for robot hands in general, therefore
for achieving an (n) path Cartesian point of fingertip motion, the
motion is required to be planned, such that, fingertips pass near to
defined via points without stopping. The e_Grasp hand simulator
should be featuring the below listed features:

(i) Model robotic hand kinematics and dynamics.
(ii) Simulate closed hand-object chain kinematics.
(iii) Simulate constrained hand-object dynamics.
(iv) Perform joint-space inverse kinematics
(v) Plotting and graphing functionalities.
(vi) Linking the simulator to others MATALB toolboxes.
(vii) Optimization, and optimal force distribution.
(viii) Linking to external tools, and others C++ libraries.

Figure 1: Hand simulator hierarchy and DATA_STRUCTURE, made it an
easy procedure for interfacing different hand blocks.

Figure 2: (a) We need to simulate a typical hand-object motion in 3D.That was
made an easy task with e_Grasp, (b) A typical finger Kinematics and (c) Single
finger geometry and related kinematics.

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Mattar E (2013) e_GRASP: Robotic Hand Modeling and Simulation Environment. Adv Robot Autom 2: 109. doi: 10.4172/2168-9695.1000109

Page 4 of 11

Volume 2 • Issue 2 • 1000109

Building Simulator Models
Simulator library building: kinematics models

Hand Thumb Finger Model: In reference to Figure 2, and Table
1, ()0

3H is formed by matrix multiplication of all the individual
link matrices. While forming such a product, sub-results can be
derived. This will be useful while solving hand inverse kinematics.
By multiplying for simulation purposes, and for a simple situation of
three joints in a finger, forward kinematics are expressed in terms of
forward transformation matrix ()0

3H . Here the ()0
3H entries have

been calculated by:

()
()

()

()
()

()

1 23 1 23

1 23 1 23
1 2

1 1

3 23 2 2 1 1 3 23 2 2 11

+ +
 − − = = −
 + + + +

C C S C
C C S S

R R
S C

C l C l C l S l C l C l

 (1)

()

23

23
3 4

3 23 2 2

0
0

0 0
1

+
 + = =

 +

S
C

R R

l C l C

()
()
()
()

1 23 1 23 1 1 3 23 2 2 1

0 1 23 1 23 1 1 3 23 2 2 1
3

23 23 3 23 2 20
0 0 0 1

 − + +
 − − + + =
 +

C C C C S C l C l C l
S C S S C S l C l c l

H
S C l C l c

 (2)

While describing fingers kinematic, it is also essential to describe
their kinematics with respect to fixed Cartesian frames in the hand
palm. These frames are essential elements for a grasped object motion.
To define the fingertips of the four fingers to a fixed Cartesian frame,
a permanent palm frame has been placed at the base of the first finger
sub-system. This is illustrated in Figure 2.

Other hand digits: Each of the fingers is related to the hand
palm reference coordinate (attached to the root of the first finger) by
transformations which are designated by d2, d3 and d4 for second,
third, and fourth fingers respectively. Due to the position of the second
finger in the hand palm, the fingertip location with respect to the hand
palm is defined by the kinematics equation, as obtained by multiplying
the finger transformation matrix ()0

3H by the transformation matrix
which represents the displacement of that finger from the origin of the
palm coordinate frame. If displacement of the second finger is defined
by ()2 20− −xd d , the location various hand fingers with respect to a
fixed hand frame are:

2nd finger:

()
()

()

1 23 1 23 1 2

1 23 1 23 10
3

23 23 20
0 0 0 1

− −

− − = − +

x x

y

z

C C C C S P d

S C S S C P
H

S C d P
 (3)

3rd finger:

()
()
()

1 23 1 23 1 2

1 23 1 23 10
3

23 23 0
0 0 0 1

− −

− − =

x x

y

z

C C C C S P d

S C S S C P
H

S C P
 (4)

 4th finger:
() () ()

()
() () ()

2 23 23 1 23 23 1 4

1 23 1 23 1

2 23 23 2 23 23 1

0.76 0.64 0.76 0.64 0.76 0.7 0.64

0.64 0.76 0.64 0.76 0.64 0.64 0.76
0 0 0 1

+ + + −

− − = − + + − − +

x z

y
f

x z

C S S C S C S P P d

S C S S C P
H

C S S C S S S P P

 (5)

Eq (2)-(5) do constitute the kinematics model of a (n) digits fingers
hand. They also specify the computation of the position and orientation
of frame 3 in reference to frame (0, initial), for each finger. These are
the basic kinematics equations for simulating hand kinematics.

Simulator library building: (inverse kinematics)

In order to describe a finger position, reverse problem must be
considered. Given a finger posture in terms of 3D components (Px,
Py, Pz), what are the corresponding joint coordinates? In Section (5.1),
the issue of computing position and orientation of the fingertip frame
()0

3H was considered relative to a frame fixed at the hand palm. Here
we are summing a given a set of joint angles of the finger. In this section,
inverse kinematics is presented. Expressed another way, the inverse
kinematics problem is given a frame or a homogeneous ()0

3H matrix
in the reachable subset, solve for the corresponding values of the joint
variables that would result in similar ()0

3H matrix numerical values.
In contrast to forward kinematics, inverse kinematics problem does
not have a general analytical solution. Given the desired position and
orientation of the fingertip relative to the finger root, how we compute
a set of joint angles which will achieve this desired result within a
constrained kinematic system? The Cartesians upon which to base a
decision vary, but a reasonable choice would be the closest solution. A
finger will be considered kinematically solvable, if joint variables can be
determined by an algorithm which allows one to determine all the sets
of joint variables associated with a given position and orientation. We
shall restrict the attention to closed form solution. In this context closed
form means a solution method based on analytic expressions or on the
solution of a polynomial. Within closed form solutions, two methods
of obtaining a solution are distinguished. FIRST APPROACH: In

Finger revolute joints Finger 1st joint proximal Finger 2nd joint medial Finger 3rd joint distal --- --- Finger joint nA (distal)
 θi θ1 θ2 θ3 --- --- θn

αi 90˚ 0˚ 0˚ --- --- 0˚
ai l1 l2 l3 --- ---
di 0 l1 0 --- --- 0˚

Motion range
45

45

 −

↔
 +

45

45

 −

↔
 +

45

45

 −

↔
 +

--- ---
45

45

 −

↔
 +

Table 1: Hand Kinematics and interrelated parameters.

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Mattar E (2013) e_GRASP: Robotic Hand Modeling and Simulation Environment. Adv Robot Autom 2: 109. doi: 10.4172/2168-9695.1000109

Page 5 of 11

Volume 2 • Issue 2 • 1000109

reference to eq (2), and frame assignment given in Figure 2, we desire
a solution for joint space vector ()1 2 3θ θ θΘ =T

i i i i given a Cartesian
numeric coordinate of a given fingertip posture. Equate 0

3 A with
numeric matrix, gives:

11 12 13 14

21 22 23 24

31 32 33 34

0 0 0 1 0 0 0 1

χ χ χ χ η
χ χ χ χ η
χ χ χ χ η

 =

x x x x

y y y y

z z z

o a P
o a P
o a Pz (6)

This result in:

()() ()()1 3 23 2 2 1 1 3 23 2 2 1= + + = + +xP C l C l C l and Py S l C l C l
() ()1 1=y xP P S C (7)

()1
1 tan−Θ = y xP P (8)

Likewise using ()3 23 2 2= +zP l S l C divide by ()2cos θ This results in:

() () () ()2 3 23 2 2 2 2 3 23 2 2tan /θ= + = −z zP C L S l S C and P l S l C (9)

Searching for a suitable value of ()2cos θ in Equ (9):
()3 1 1 2 2 1 1= + +x zP l C O C l C C l

()()2 2 1 3 1/= − −x zl C P C l O l

() ()()1
2 3 1 3 1tan / /θ −= − − −z z x zP l n P C l O l (10)

()1
3 2tan /θ θ−= −z zn O (11)

The initial solution is that which corresponds to a known
orientation vectors. SECOND APPROACH: A geometric approach for
solving the inverse kinematic problem is a technique of decomposing
the spatial geometry of the finger into several plane geometry problems.
Joint space vectors is solved for, using tools of plane geometry. Figure
2b also displays the kinematics and geometric configuration of one
finger. Applying rules of geometry to one finger shape, this results in
the following equations describing the joint space vector in terms of the
given (Px) (Py) (Pz) fingertip vector. From Figure 2c, and for the triangle
as due to finger geometry:

() () () ()1
1 1tan / tan /θ θ −= =y x y xP P and P P (12)

Furthermore, from the figure:

() ()2 2
r 1P= − = +q t z qP l and P P P

() ()1 1 2 2 2
3 2 2tan / / 2θ − −= = − − −z z q a t tP P W C l P l Pl

Having found θ z , then () :θ −z aW ()()1 2 2 2
3 2 3 2 3180 cos 2θ −= − − −

tP l l l l
 (13)

Motion Finger. Using the geometric model of the finger for the
simulator is an easy and quick approach to obtaining the joint space
vector. One drawback of the geometric method is that: at a definite
finger posture the geometric configuration of the finger fails to give
a solution. Refer to Figure 1 to observe that certain configurations of
the fingertip where the solution is not well defined, hence multiple
solutions may appear. However as θ gets large enough, the fingertip
location Pt goes to a position with respect to (0) and Tr angles where the
cosine rule used in eq (13) is not applicable. To achieve realistic finger
solutions, hand simulator source code has been designed in such a way
as, to get the inverse kinematic for the finger model using the geometric
approach. Subsequently, once joint space vector are evaluated for,
orientation vectors are evaluated, as they constitute columns of the
well-known finger Jacobian matrix of Jθ We shall use two known

methods in literature to find the inverse kinematics geometric and
algebraic approaches of solutions fail to give definite solution.

Simulator library building: building hand Jacobian

The Jacobian matrix plays important role in hand simulation.
Differential changes in finger end locations, are caused by as results
of joint differential changes. The number of rows in a Jacobian is
determined by the number of degrees of freedom in Cartesian space
required by the task which is, in turn, determined by the degrees of
mobility of a task. In fact, the JACOBIAN is a multi-dimensional form
of the derivative of a function of several variables. Since the Jacobian is
a differential formula of a matrix, hence it is possible to obtain elements
of that matrix using the CHAIN FORMULA as far as the functions of
independent variables. For the finger Jacobian Jθ there are a number
of techniques which have been developed for the Jacobian calculation
by: Waldron Algorithm, Renand Algorithm, Paul's Algorithm, [18,19].
Location of a fingertip is characterized by relative positioning of frame
fi+1 attached to the fingertips, with respect to a frame f0. In addition, a
fingertip velocity is always a vector in the tangent space of the frame
space, which is related by the Jacobian matrix Jθ. Such framings are
illustrated in details in Figure 3.

Simulator library building: jacobian singularities avoidance

Due to the fact the Jacobian is a position dependent matrix, in
particular finger configurations, the matrix becomes not full of rank.
When this occurs the Jacobian rows and column vectors are linearly
dependent, thus do not span the ()3 1×∈ℜ vector space of X. Therefore,
there exists at least one direction in which the fingertip cannot be
moved no matter how the joint velocities θ1, through θ3 are chosen.
Here we shall introduce the derivation of a finger Jacobian matrix in
terms of D-H matrices. In Eq (5), the Jacobian is defined with respect
to the reference frame, frame (0) at the finger root. However, for our
purpose it has been assumed that the points of contact are stationary on
the grasped object and another algorithm can be implemented based
upon the kinematic model of the finger. Such algorithm is based on the
method shown by Paul [19]. From the time when all joints are revolute,
the three columns of the matrix are given by:

Figure 3: Simulator deals with diverse classes of fingertip contact
models. The default type, is the (frictional point of contact).

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Mattar E (2013) e_GRASP: Robotic Hand Modeling and Simulation Environment. Adv Robot Autom 2: 109. doi: 10.4172/2168-9695.1000109

Page 6 of 11

Volume 2 • Issue 2 • 1000109

() () ()()
()

3

3δ

= − − + − +

=

i x y x y y x x y y x

i z z z

A d n P i o P o P j a P a P k

A n i o j a k

While using this algorithm, it is necessary to evaluate the orientation
vectors of a finger posture, which are assumed to be known by using the
geometric finger model and the forward transformation matrix. Paul's
algorithm can be used to calculate the Jacobian of an (n) degrees of
freedom arm, where each degree of freedom corresponds to one joint.
Thus, each column in the Jacobian is a vector which describes the
differential motion of a joint. A revolute joint has a differential rotation
around the axis of rotation Z axis:

() ()
() ()
() ()
() () ()

1 1 1 1
1

1 1 1 1
2

1 1 1 1
3

1 1 1
4 5 6

/

/

/

/ / /

θ

θ

θ

δ θ δ θ δ θ

− − − −

− − − −

− − − −

− − −

∂ ∂ = = −

∂ ∂ = = −

∂ ∂ = = −

∂ ∂ = = ∂ ∂ = = ∂ ∂ = =

n n n n
x n n y x x y

n n n n
y n n y x x y

n n n n
z n n y x x y

n n n
x n n z y n n z z n n z

P J n P n P

P J o P o P

P J a P a P

J n J o J a

 (15)

To relate a fingertip position to a set of joint angles of the fingers,
one may make use of the forward solution and obtain the fingertip
matrix ()0

3H . Paul [19] has presented a routine that relates differential
changes in joint variables, to the differential changes in the tip position
and orientation. This is summarized here as:

()
()
()

1 23 1 23 1 1 3 23 2 2 1

0 1 23 1 23 1 1 3 23 2 2 1
3

23 23 3 23 2 20
0 0 0 1

 − + +
 − − + + =
 +

C C C C S C l C l C l
S C S S C S l C l c l

H
S C l S l S (16)

()
()

23 23 3 23 2 2

1 23 23 3 23 2 2
3

23 23

0
0
1 0

0 0 0 1

 − +
 − + =

C S l C l C
C C l C l c

H
S C

 (17)

()
()

3 3 3 3

2 3 3 3 3
3

0
0

0 0 1 0
0 0 0 1

 −
 − =

C S l C
S C l S

H (18)

Further application of the algorithm, and using the relation defined
by eq (17) gives: (1st) column of Jθ

()
()
()

1 1 1 23 1 23

1 1 1 23 1 1 23

2 2
1 1 1

1 1 10 0 0

ψ

ψ

ψ ψ

∂ = −

∂ = +

∂ = − −
∂ = ∂ = ∂ =

x S C C S C

y C S S S C S

z C S

x y z

 (19)

1 23

1 23

1 0

∂ =
∂ =
∂ =

x S
y C
z

 (20)

(2nd) column of Jθ

()() ()
()() ()

2 23 3 23 2 2 23 3 23 2 2

2 23 3 23 2 2 23 3 23 2 2

2

2 2 2

0
0 0 0

∂ = + − +

∂ = + − +

∂ =
∂ = ∂ = ∂ =

x S l C l C C l S l S

y C l C l C S l S l S

z
z y z

Leading to (2nd) column of Jθ to be ()2 2 3 2 3 2 2 0∂ = ∂ = + ∂ =x l S y l l C z

 (21)

Third Column:
()()3 3 3 3 3 3 3 3 3 3

3 3 3

0

0 0 1δ δ δ

∂ = − ∂ = ∂ =

= = =

x l C S l S C y l z

x y z

 (22)

Hence ΘJ is finally written as:
() ()1 2 3 1 2, 0 0 ,ψΘ = = −T TJ u u u u u

() ()() ()2 3 3 2 3 3 30 , 0 0= + =Tl S l l C u l (23)

Eq (23) has been verified using Matlab software, and using
velocity cross product (VCP) technique used by Fu et al. [20]. Since
each finger has a 3-DOF mechanism responsible for producing
translational differentials motion at the fingertip, the Jacobian matrix
can be rewritten in terms of differentials motion of the fingertip. The
methodology taken here is to divide the simulation environment into
(n) main blocks of simulators. Respectively, individual blocks have
been dedicated for the simulation and control of the (m) joints of one
finger. This is shown in Figure 4.

Simulator Hierarchicy
Top level: simulator data structure

Configuration of hand simulating software was based on an

Figure 4: e_GRASP, a MULTI-FINGER robot hand comprehensive
modeling and simulator MATLAB based environment.

Figure 5: e_Grasp simulator cascaded levels. The simulator deals with
both top level control laws, in addition to the lower level finger joints laws.

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Mattar E (2013) e_GRASP: Robotic Hand Modeling and Simulation Environment. Adv Robot Autom 2: 109. doi: 10.4172/2168-9695.1000109

Page 7 of 11

Volume 2 • Issue 2 • 1000109

assumption, of using discrete time joint-space controllers. This is
clearly illustrated in Figure 5. That was also based on using a model
of MOTION CONTROLLER. There a number of available real-tome
DSP controllers. Example of which is the national semiconductor
product, (LM628) motion processor. For simulation purposes, there
are up to (n×m) motion processors that have been employed for the
overall hand control. Individual single processors were dedicated
control an individual DOF in the hand. Overall MatLab supervisory
coding and software designing for the entire hand simulation, is to be
run on high speed machine. However, it was also achieved while using
an up-to-date high speed Laptops. High speed machine is needed, as
this requires communicating with (n×m) separated controllers blocks
via (n×m) processors hardware. From software viewpoint, simulating
coordinated hand control, takes place at different computational
levels. The hand hierarchical nature leads inherently to a bottom-up
supervisory simulation design. Top level of concurrency, looks at entire
hand simulation.

e_GRASP hand data structure and classes

At start, we shall define a finger data structure to contain a finger
name. The "." operator, used in the case of Structure. Field tells mat lab
to access the field named field in the structure.

% Creating Hand Data Structure And Classes..
Finger_Data.First='Finger_1';
Finger_1Data.Hand='Joint_1';
NameData.Last='Joint_m';
% Creating a HandData structure with a name field. HandData.

Finger=FingerData;
% Initializing rest of the hand structure …
Finger_1.Status=Finger_1_Data';
Finger_1Data.x_pos=10;
Finger_1Data.y_pos=40;
Finger_1Data.z_pos=-60;
Finger_1Data.q_1=-60°;
Finger_1Data.q_m=30°;
HandData.Fingers=linspace(60,30,45,…);
% View contents of the data_structure FingerData FingerData.

Name FingerData.deatils
% Operating on Elements of the Structure.
FingersData.X_Y_Z(3)=0;
FingerData.X_Y_Z FingertData.X.First='First_Finger'; Finger_

Data.First
% Creating arrays of structures for each hand finger.
num_fingers=4; % depends on hand number of fingers
for i=1:num_Fingers
ClassData(i)=FingerData;
end
ClassData
ClassData(2)

Joints space and fingers simulation: non closed chain
dynamics simulation

For simulating whole hand dynamics, either in open or closed
loops, it is therefore important to have a model of the individual joint
dynamics. This consists of a model of a single discrete time motion
closed controller. A good model is an (n) bit controller, connected with
a D/A converter, driving current amplification. The digital closed loop
system also requires a simulation for measuring the individual joint
displacement and position. In order to create an entire closed loop
simulator model of the individual joints, and for describing the whole

closed chain system, the following sub-sections will rather focus on the
dynamics of a single joint controller, as this will be leading to a finger
simulation, hence, leading to entire hand simulation.

Discrete time simulation of a single axis joint

Digital simulation of the lower level of individual joints, is discussed
and simplified. That is because the control input for ith joint depends
only on locally measured variables, not on the variables of the other
joints. Moreover, computations are easy and do not involve solving
the complicated derived nonlinear hand inverse dynamics. Contrary
to this, for manipulation and exertion of forces points of view, an
additional joint torque control has to be added, this is for an exertion
of grasping forces throughout object motion. From literature, a typical
PID controllers expressed by:

() () () ()
0

1 τ
τ

= + +

∫
t

d
i

de t
u t k e t e t dt

dt (24)

In eq (24), u(t) is input to the joint controller, and e(t) is the
controller output. Digitizing eq (24), resulting in:

() () () ()1
1

1
1

−
−

 = + + −
 −

ip
p

K
U z K Kd z E z

z
 (25)

A simplified dynamical model of the joint with the electric actuator
may be written as:

() ()2 θ θ
⋅+ +

+ + + = −

a m b i i
ia m i L i i i

i

B B k k kJ J n J n d
R Rv

 (26)

() () ()2τ θ= +a T Ts J S B S S

In eq (26), the ()2+ +a m i LJ J n J terms are effective inertia and
effective damping coefficients of actuators shafts. This also includes the
joint inertia. The joint position trajectory is calculated by a trajectory
planning routine. This is passed to the digital control as number of
pulses.

A typical joint space closed loop transfer function, relating an input
to the joint, to its output, (block diagram shown in Figure 6, this is
expressed by:

()
()

()
2

θ

θ

θ
θ

 = + + +

m PID i T

d T i b PID i

T T

S nk k k RJ
S RB k k nk k kS S

RJ RJ

 (28)

Figure 6: e_GRASP detailed discrete-time controller synthesis for a
single joint closed loop control.

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Mattar E (2013) e_GRASP: Robotic Hand Modeling and Simulation Environment. Adv Robot Autom 2: 109. doi: 10.4172/2168-9695.1000109

Page 8 of 11

Volume 2 • Issue 2 • 1000109

()
() ()()

2

1 2

θ
θ α α

= − −

m

d

z z
z z z (29)

Individual joint space controllers synthesis, was achieved using and
supported by Matlab. Matlab environment, with its control toolbox
synthesis and facilities, provided an aid to the controller testing and
simulation. Typical design tools do include, Nyquist diagram, Modulus
Frequency response, and time step response. For achieving a discreet
time simulation within Matlab, the finger joints were being controlled
digitally rather than in analog approach. Moving from continuous time
domain to discrete time domain, Within (Z) domain, sampling time
has an important role in determining the system stability. We start to
do that by initially modeling the D/A converter in terms of sampling

rate, ()1 − −

TSe
s , hence the corresponding (Z) transform of the (D/A),

including actuator, is evaluated. In addition, the computed discrete-
time poles of eq (29) are, as well, function of the variable factor in the
system, the scalar value of the proportional gain (kp).

Simulation of joints-space controllers

Furthermore, in Figure 6 we show the bottom low-level controller
block diagram, and the associated parameters. This is to avoid a joint
dynamic behavior that is not desirable, as due to the amount of joint
motion disturbances. Therefore we need to overcome any undesirable
effects. The use of adjusted parameters control law have the effect of
making the response behavior enhanced. The location of adjusting the
full PID control parameters can be seen in enhancing fingers motion.
As this will be rather simulated later; the choice of low proportional gain
in addition to the integral and derivative has the effect of decreasing the
corresponding (rise time) as compared with the result for a purely high
proportional gain.

N Configuration hand motion: (creation of arrays, pointers,
and records)

The simulator has a large data structure. This is to comprehend
the complicated fingers motion. System points of contact motions
are generated by specifications of (r) direction of motion. From an
object to be moved within the work-space of the hand, principle axes
of motions are defined in addition to Cartesian fingertips paths. If
fingertips paths are specified as (H, K, L, U,......), for the (n) fingers,
then for (n) segments path, the Cartesian segment (localities in space),
are passed and download to the entire hand controller coding. This is
based on the use of such data structure:

()
()
()
()
()

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4=
 = =

 =
=

Aconfiguration
H H H H HFirst finger
K K K K KSecond finger

L L L L LThird finger
U U U U UFourth finger

(30)

As indicated earlier, every finger segment vector consists of an
ARRAY (Data_Type). This is for storage of finger joints positions
and velocities. In accordance to the specified path coordinates, hand
controller creates array of Matlab based records. At the ending phase of
the (RECORDS) and (POINTERS) creation, the hand controller holds
(n × n) of records containing the Cartesian motion information of (n)
segment paths for the individual fingers.

Simulation of joint force control

For simulating a joint torque dynamics and control, this requires a

continuous measurement of the joint torque via some typical sensors.
It is an essential for a joint torque sensor to be enclosed within a
closed loop system. Furthermore, this is to be incorporated within
the position control loop. While discussing the simulating aspects of
a joint force control, the mechanism of transmission at joints do play
an important role in the performance of the servo system itself. The
problem of closing a joint force control feedback loop is the non-ideal
transmission and drive system, i.e. presence of STICTION, COGGING,
COULOMBIC friction, together with higher order resonance modes
in the system. Furthermore, equivalent rotational stiffness do play an
essential role in force control simulation. It relates the change in joint
torque with changes in joint displacement and has to be computed for a
rotational system. For a specific geometry of joint pulley and cantilever
beam, a joint space rotational stiffness is mathematically expressed:

() () () ()()θ γ α α β α β χ= − +k c s s t (31)

() ()()()1 8γ β α β= +s s (32)

and χ is a parameter representing the force sensor stiffness. For an ideal
actuator characteristic, the system force control transfer function is
given by:

2

2

θ θτ
 = +

a T T

d dJ B
dt dt (33)

Hence, for simulation of the force proportional control system, a
typical control law is considered:

τ τ= ∆a psk (34)

In eq (34), ()psk is the force loop controller gain, () ()() ,τ τ τ∆ = −r ft t

where ()τ r is the desired behavior, whereas the term ()τ f is the
finger actual joint torque. Furthermore, Eq (34) represents an ideal
mechanism for controlling a joint torque. While examining a real
typical physical construction of a force sensor, joint transmission
system, and grasped object compliance, do add complexity to force
control system. There is also variation in the dynamics of the finger
due to its configuration dependence, however such changes are masked
by the actuator dynamics. A grasped object compliance plays an
important role in the response of the force controller. There exists the
following linkage between ()τ f and ()θ∆ , the angular displacement of
the driving pulley. This is expressed by:

()τ δ θ= ∆f (35)

In eq (35), δ is the compound rotational stiffness of the finger
mechanical structure, as expressed in terms of: (i) sensor rotational
stiffness, (ii) the grasp rigidity characteristics, (iii) and stiffness of the
tendon. This is expressed by:

() () ()1 1 1 1
δ υ η

 = + +
 pv (36)

While considering eq (34) and eq (35), a relation between τ f and
τ r is expressed by:

()
()

()
2

δτ
τ δ

 = + +

pf

r a a i p

ks
s J s B s k k

 (37)

Eq (37) gives the torque response of the closed loop system is
controllable by υ and kp parameters. The simulation behavior of the
designed force servo system, does not remain uniform even for constant
gains kp. This is due to the fact, that δ involves some varying quantities
η and vp. For instance increases from a very stiff environment while
it decreases for a compliant object surface. Additionally vp, tendon

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Mattar E (2013) e_GRASP: Robotic Hand Modeling and Simulation Environment. Adv Robot Autom 2: 109. doi: 10.4172/2168-9695.1000109

Page 9 of 11

Volume 2 • Issue 2 • 1000109

stiffness, might change if a greater stretching force is applied to its
ends. The behavior could be further simplified by taking into account
that the robot hand has been categorized to be grasping a rigid object,
hence η is having a very high value. vp is quite a high quantity for the
routed tendon due to the short length of the tendon and the use of
high stiffness tendon characteristics. An equivalent rotational stiffness
υ, by itself is a function of the physical construction of the sensor and
its location in the finger. Having considered such assumptions, Eq
(36) is totally dominated by an equivalent rotational stiffness. Here υ
is a function of the sensor physical parameters. Finally, for real time
simulation of the force closed loop system (feedback control), we
transform the dynamics from time domain to frequency domain, i.e.
relying on Laplace transform of the entire force closed loop control
transfer function. This is expressed as:

Finally, for real time simulation of the force closed loop system
(feedback control), we transform the dynamics from time domain to
frequency domain, i.e. relying on Laplace transform of the entire force
closed loop control transfer function. This is expressed as:

()
() () ()()

0
2

Θ

Θ Θ

 = + + +

c i i

T

r T i b T c i p i T

nk Pk
RJF S

F S S RB k k RJ S nk k Pk k RJ
 (38)

In eq (38), pi, is a conversion ratio. It relates the a conversion from
a desired fingertip force, into a volts within the loop. The expressed
relation of Eq (38), does indicate the changing parameters that do
affect the force closed loop dynamics. Therefore, the built simulator
environment is to take care of such parameters while simulating a
typical a joint closed loop system.

Closed chain hand-object simulation: advanced control laws
(computed torque method)

One of the great benefits of such a simulation instrument, is an
ability to simulate robotics hands, under advanced control laws.
Typical example is the Cartesian computed torque control law. In
addition, other advanced control laws is the sliding mode control. In
reality, such control methodologies are complicated, and do require
massive computational requirements. However, they were made easy
while using e_Grasp simulator. More results will be shown over the
next Section. In addition, adaptive or even ANN based nonlinear
control can also be simulated through the e_Grasp simulator. For (m)
joints (in a finger), with (n) fingers robotic hand, the individual fingers
are modeled by the time varying equation of motion:

() () () (),θ θ θ θ θ θ θ τ σ+ + = +

i i i i iA B C (39)

In eq (39), (θ) is a trajectory of finger joint in rad. ()θ is joint

speed trajectory in (rad/sec). ()θ is joint acceleration in (rad/sec2).
() () (), ,θ θ θ θ

i i iA B and c are the hand concatenated dynamics.

Additionally, ()σ i is equivalent of externally added forces. Hand
wrenches and forces are found by:

()1 λη+= − +hand bf G M (40)

Mb the grasp dynamics, and G+1 1 is the hand grip transform
inverse. For a balanced motion, the resulting forces and moments of
the entire closed chain dynamics is equal to zero. Hence, equating hand
dynamics with object dynamics, this gives:

() ()1 1τ λη− +− + + = + + + −

T T T
h h h h h h h h h o o o hA J G u J q B q C J G A u B u C J

 (41)

Furthermore, in eq (40),
handf is a set fingertips forces. Calculating

fingertip forces using pseudo inverse of grip transform G. In Equ
(41), λη is part of the force solution, and λ is an adjusting vector.
Furthermore, the vector c

du is the position and orientation of the
grasped object. For non-slipping contacts, there is no change at contact

points, i.e. 0∂Γ = ∂
h

t , though there might be rotational change at each

point of contact. eq (41) also represents a typical and the entire hand-

object dynamics. Hand fingertips forces,
handf are playing major roles

in such balancing equation. Defining a Cartesian based posture error

(e) of an object in 3D as 6 1×∈ℜ , as the error between a defined posture
()c

au , and the real object posture ()c
au as ()≅ −c c

a ae u u . Object-hand

closed chain system is described in terms of hand joint-space torques
()τ h joint torques and Euler dynamics. In Cartesian space, and for the
three terms Cartesian based controller, this is expressed by:

()1τ −= +h h h h exA J X T (42)

() () ()1 1

0

,φ ηλ + ×
= + + − − = Θ − Θ → ℜ

∫
x

T n
ex k k h cd i cd h a h kT B C J F Z X G J

 (43)

In eq (42), 12 1×∈ℜhX and expressed mathematically as in Equ (43).
In addition, ,k k kA B and C are the entire hand augmented dynamics.
Fcd is a commanded set of forces, ()ηλ is an adjustable term, Jh is hand
Jacobain matrix. Each finger maps its joints torque to the object via the

entire hand gasp G which is formulated as ()1 2 ,= → nG G G G

as grab sub-matrices 6 3 ,×∈ℜiG for ()1 2= i n are defined in

terms of contact location by Eq (42):
3 3

γ
× =

 i
i

IG (44)

In eq (44), ()γ i are sub-matrices for contact configuration. They
are performing a skew-matrix of position contact ()γ i over the grasped
object surface. In addition, hand fingertip force distribution depends
completely on dually heavily computed matrices. The first is G+1 witch
is an irregular matrix. The second is the hand Jacobian inverse matrix
as the () ()1 1− −⋅h hJ J is a large matrix, and it is a concatenated matrix,
compromising all the fingers Jacobians, as ()()1 2= h nJ diga J J J . Finally,
eq (43) expresses a typical Cartesian based hand controller using PID,
that will be simulated through the e_Grasp.

Result and Analysis
In particular, e_Grasp has been used successfully as a tool for

motion and manipulation analysis of robotic multifinger hands. In this
respect, for running this environment, this needs a Matlab environment.
The code has been also tested lately on MATLAB Version 7.8.0.347
(R2009a). The simulator has been tested over a number of times. For
validating the e_Grasp simulator potential, we shall present within this
section few simulation results as related to a control for moving while
grasping a grasp by a robot hand. The chosen hand is of four fingers,
where each finger is having three rotational joints, i.e. ()4, 3= =n m .
The simulation environment gives the user an ability to select the hand
configuration, dynamic and kinematics parameters, nature of fingertip
contact, control sampling rate, law of controller, simulation time, in
addition to others simulation parameters. There are large number of
results to be shown, as a result of running the simulator, however, we
shall show only few graphics results. In this respect, in Figure 7a, we

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Mattar E (2013) e_GRASP: Robotic Hand Modeling and Simulation Environment. Adv Robot Autom 2: 109. doi: 10.4172/2168-9695.1000109

Page 10 of 11

Volume 2 • Issue 2 • 1000109

show the simulator graphical interface with other plotting graphics
and the m-editor in Matlab. Furthermore, in Figure 7b we show part
of simulator interfacing with other Matlab related toolboxes. In this
respect, here we show the Matlab optimization toolbox being interfaced
with e_Grasp simulator to compute optimal forces and torques needed
by hand fingers to make an object motion.

For a demonstration, a 3D grasp movement is shown in Figure
8. A grasp object of a known dimension and weight was manipulated
by movements of fingertips, while applying a suitable set of fingertips
forces. The grasp was moved in periodic sinusoidal movement. Results
shown that, simulating a 3D grasp movements was made an easy task
while using the e_Grasp simulator. Dynamics of a grasped object can

Figure 7: (a) The simulator: A screen shot for e_GRASP connection, (b) Part
of simulator interfacing with Mat lab related tool boxes. Here we show the Mat
Lab optimization toolbox to compute optimal forces and torques needed by hand
fingers to achieve an object motion.

be changed while alternating both Cartesian controller parameters and
joints parameters. This leads to make a grasp motion stable, oscillatory,
faster, or slower. Furthermore, Figure 9 displays a finger joint-space
closed loop displacement performance. The simulator has taken
into account fingertip rotations during a course of a grasp motion.
Furthermore, in Figure 10 we show a simulation of hand torques, while
grasping an object in 3-D space. The figure shows how torques are
computed in response to motion. The simulator was able to transform
a grasp from an initial posture to another over a minimum time. For
such a simulation, the simulation environment offers a full adjustment
of the three terms PID controller parameters, hence they have been
selected for minimum overshoot. A grasped object movements can be
made much unstable or even with less overshoot over its movement
path in 3D. In Figure 11 we show a typical simulator capabilities.
The figure is showing the computed error while comparing artificial
neural network output with actual joint-space output. The 2nd finger
joint-space motion simulations are therefore realistic in terms of
displacement and motion. Joint space torques are very realistic in terms
of producing an adequate amount of torques for fingertip movements.
In Figure 12, we also display an important ability of the e_Grasp, which
the ability of linking its output to other Matlab toolboxes. Here we
show a link between e_Grasp with Matlab fuzzy toolbox. The figure
shows an adaptation of fuzzy membership functions for optimal forces

Figure 8: Creating a 3-D grasp movement is an easy task with e_GRASP.

Figure 9: Due to hand motion a 1st finger closed loop simulation.

Figure 10: e-Grasp simulation of hand torques. Simulation includes plotting of
individual torques while grasping in 3-D space.

Figure 11: e-Grasp simulation capabilities: Plotting of individual joint
error, while comparing ANN controlled output with actual joint output.

Adv Robot Autom, an open access journal
ISSN: 2168-9695

Citation: Mattar E (2013) e_GRASP: Robotic Hand Modeling and Simulation Environment. Adv Robot Autom 2: 109. doi: 10.4172/2168-9695.1000109

Page 11 of 11

Volume 2 • Issue 2 • 1000109

learning via fuzzy system. In addition, the package is also able to be
linked with much advanced Matlab functionalities, which is the ANN
tools. In addition to the basic functions, the simulation package can
also provide more analysis of hand movement. For example, Figure 13
shows the ability to plot training patterns for hand ANN training. Such
patterns were also used for learning and understanding the hand for
optimization of fingertips contact forces.

Conclusions
Software simulation of an (n) DOF articulated robotic hand

system is not an obvious task. Specifically, such simulators are truly
needed for testing purposes, and for viewing hand performance before
physical implementation. This manuscript has focused on a developed
simulation software for supervising and controlling a fully described
(kinematically and dynamically) (n) fingers robotic hand. The
simulation environment was achieved via Matlab with a link to other
available Matlab toolboxes. The developed simulator also has the ability
to be linked internally to Matlab toolboxes, in addition, to be externally
linked to other libraries, like (C++), for a possible real-time hand control.
The simulator even has the ability for linking high level commands to
the low-level digital motion processor. The simulator has proved to be

an effective way to look and view kinematics and dynamics models of
robotic hand. These models are found to be essential elements for hand
object dynamic simulation. Next stage, is to take the simulator further,
with graphical interfaces and functionalities.

References

1. Matlab Toolbox for the iRobot Create (MTIC) (2011) Version 2.0.

2. Shaoqiang Y, Zhong L, Xingshan L (2008) Modeling and simulation of robot
based on Matlab/SimMechanics. Control Conference, CCC 2008, 27th Chi-
nese, Kunming.

3. Peter Corke (2008) Robotics Toolbox for Matlab.

4. Jambak MI, Haron H, Nasien D (2008) Development of Robot Simulation Soft-
ware for Five Joints Mitsubishi RV 2AJ Robot Using MATLAB/Simulink and
V-Realm Builder. 5th International Conference on Computer Graphics, Imaging
and Visualisation, Penang.

5. Olivier M (2004) Cyberbotics Ltd WebotsTM: Professional Mobile Robot Simu-
lation. Inernational Journal of Advanced Robotic Systems.

6. Gourdeau R (1997) Object-oriented programming for robotic manipulator simu-
lation. Robotics and Automation Magazine, IEEE 4: 21-29.

7. Ramasamy S, Arshad R (2000) Robotic hand simulation with kinematics and
dynamic analysis. TENCON 2000 3: 178-183.

8. Miller T, Allen K (2004) Graspit! A versatile simulator for robotic grasping. Ro-
botics & Automation Magazine, IEEE 11: 110-122.

9. Miller M, Allen P, Santos V, Valero-Cuevas F (2005) From robotic hands to
human hands: a visualization and simulation engine for grasping research. In-
dustrial Robot: An International Journal 32: 55-63.

10. Jagdish R, Radhey S, Rajsekhar A, Bhanu P (2012) Real-Time Robotic Hand
Control Using Hand Gestures", Robotic Systems – Applications, Control and
Programming. Book. Edited by Dr. Ashish Dutta, ISBN 978-953-307-941-947.

11. Corrales A, Jara A, Torres F (2010) Modelling and simulation of a multi-fingered
robotic hand for grasping tasks.11th International Conference on. Control Auto-
mation Robotics & Vision (ICARCV), Singapore.

12. Gourret J, Thalmann N, Thalmann D (1989) Simulation of object and human
skin formations in a grasping task. 16th annual conference on Computer graph-
ics and interactive techniques.

13. Magnus B (2008) Controlling a Robot Hand in Simulation and Reality. De-
gree Project Department of Management and Engineering LIU-IEI-TEK-
A--08/00336—SE, (2008).

14. Tarmizi W, Adly A, Amirfaiz W, Elamvazuthi I, Begam M (2010) Modeling and
simulation of a multi-fingered robot hand. International Conference on Intel-
ligent and Advanced Systems (ICIAS), Kuala Lumpur, Malaysia.

15. Boughdiri R, Bezine H, Sirdi M, Naamane A, Alimi M (2011) Dynamic modeling
of a multi-fingered robot hand in free motion. 8th International Multi-Conference
on Systems, Signals and Devices (SSD) Sousse.

16. Ohol S, Kajale S (2008) Simulation of Multifinger Robotic Gripper for Dynamic
Analysis of Dexterous Grasping. Proceedings of the World Congress on Engi-
neering and Computer Science,San Francisco.

17. Chan C , Yun-Hui L (1999) Simulating dextrous manipulation of a multi-fingered
robot hand based on a unified dynamic model . IEEE International Conference
on Robotics and Automation Detroit, MI.

18. Orin E, Chao H, Olson W, Schrader W (1985) Pipeline/Parallel Algorithms for
the Jacobian and Inverse Dynamics Computations. Proceedings of the IEEE
International Conference on Robotics and Automation.

19. Paul RP (1981) Robot Manipulators: Mathematics, Programming, And Control.
MIT Press, Cambridge, USA.

20. Fu S, Gonzalez C, Lee S (1987) Robotics Control, Sensing, Vision, and Intel-
ligence. McGraw-Hill International Editions, Singapore.

Figure 12: e_GRASP simulator capabilities: Hand learning simulator
linkage to MATLAB/FUZZY Toolbox. The FUZZY Toolbox was used for
learning of hand motion parameter.

Figure 13: e_GRASP simulator capabilities: Typical integration of
MATLAB/ANN Toolbox hand motion.

Adv Robot Autom, an open access journal
ISSN: 2168-9695

http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4604913&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4604913
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4604913&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4604913
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4604913&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4604913
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4626988&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4626988
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4626988&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4626988
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4626988&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4626988
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=4626988&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D4626988
http://arxiv.org/ftp/cs/papers/0412/0412052.pdf
http://arxiv.org/ftp/cs/papers/0412/0412052.pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=618020&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D618020
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=618020&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D618020
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=892246&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D892246
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=892246&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D892246
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1371616&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1371616
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=1371616&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D1371616
http://www.emeraldinsight.com/journals.htm?articleid=1463674&show=abstract
http://www.emeraldinsight.com/journals.htm?articleid=1463674&show=abstract
http://www.emeraldinsight.com/journals.htm?articleid=1463674&show=abstract
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5707292&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5707292
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5707292&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5707292
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5707292&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5707292
http://dl.acm.org/citation.cfm?id=74335
http://dl.acm.org/citation.cfm?id=74335
http://dl.acm.org/citation.cfm?id=74335
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5716220&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5716220
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5716220&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5716220
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5716220&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5716220
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5993563&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5993563
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5993563&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5993563
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=5993563&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5993563
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.3004&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.3004&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.3004&rep=rep1&type=pdf
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=774057&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D774057
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=774057&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D774057
http://ieeexplore.ieee.org/xpl/login.jsp?tp=&arnumber=774057&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D774057
http://books.google.co.in/books?hl=en&lr=&id=UzZ3LAYqvRkC&oi=fnd&pg=PP9&dq=Robot+Manipulators:+Mathematics,+Programming,+And+Control&ots=zUvkRJw48R&sig=P1Oz24Vzn9Pr9eu24c17zctu_3w#v=onepage&q=Robot%20Manipulators%3A%20Mathematics%2C%20Programming%2C%20And%
http://books.google.co.in/books?hl=en&lr=&id=UzZ3LAYqvRkC&oi=fnd&pg=PP9&dq=Robot+Manipulators:+Mathematics,+Programming,+And+Control&ots=zUvkRJw48R&sig=P1Oz24Vzn9Pr9eu24c17zctu_3w#v=onepage&q=Robot%20Manipulators%3A%20Mathematics%2C%20Programming%2C%20And%

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Literature and related studies
	Main article contribution
	Manuscript organization

	Simulator Integrated Structure and Blocks
	Building Simulator Models
	Simulator library building: kinematics models
	Simulator library building: (inverse kinematics)
	Simulator library building: building hand Jacobian
	Simulator library building: jacobian singularities avoidance

	Simulator Hierarchicy
	Top level: simulator data structure
	e_GRASP hand data structure and classes
	Joints space and fingers simulation: non closed chain dynamics simulation
	Discrete time simulation of a single axis joint
	Simulation of joints-space controllers
	N Configuration hand motion: (creation of arrays, pointers, and records)
	Simulation of joint force control
	Closed chain hand-object simulation: advanced control laws (computed torque method)

	Result and Analysis
	Conclusions
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Table 1
	References

