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Introduction
Literature and related studies

There are number of efforts to build robotics system modeling and 
simulation environments using Mat lab. For example, in reference [1], 
a Mat lab Toolbox for the iRobot Create (MTIC) was reported. It was 
mentioned that, “The toolbox replaces the native low level numerical 
commands, with a set of high level, intuitive, Mat lab functions (aka 
"wrappers")” [1]. In terms of modeling complexity, furthermore, 
Shaoqiang et al. [2] have mentioned that, “Biped robots are often treated 
as inverted pendulums for its simple structure. But modeling of robot 
and other complex machines is a time-consuming procedure. A new 
method of modeling and simulation of robot based on SimMechanics 
is proposed”, Shaoqiang et al. [2]. Over number of years, Corke [3], 
has been working towards a MATLAB based robotic arm simulation. 
Hence, Corke [3], has introduced the well-known book for MATLAB 
environment with associated libraries. This is known as “Robotics 
Toolbox for Matlab”, Corke [3]. The environment was a very useful 
tool for modeling robotic arms. It was also an easy methodology and 
coding for modeling and simulation different robotics arm structures. 
Jambak, et al. [4], mentioned the importance and paramount of Robot 
Simulation Software nowadays. This is to increase the accuracy and 
efficiency of industrial robot. They adopted a project using “virtual 
reality interface design methodology and utilizes MATLAB/Simulink 
and V-Realm Builder as the tools”. They also mentioned that, “a robot 
model has been developed and a Robot Simulation Software life cycle 
has been implemented”, Jambak et al. [4].

Furthermore, in reference to Olivier [5], Cyberbotics, it was 
reported that, Webots TM has a number of essential features intended 
to make such simulation tool both easy to use and powerful:

- Models and simulates any mobile robot, including wheeled,
legged and flying robots.

- Includes a complete library of sensors and actuators.

- Lets you program the robots in (C, C++ and Java), or from third
party software through TCP/IP.

- Transfers controllers to real mobile robots, including Aibo®,
Lego®, Mindstorms®, Khepera®, Koala®, and Hemisson®.

- Uses the ODE (Open Dynamics Engine) library for accurate
physics simulation.

- Creates AVI or MPEG simulation movies for web and public
presentations.

- Includes many examples with controller source code and models
of commercially available robots.

- Lets you simulate multi-agent systems, with global and local
communication facilities”, Olivier [5].

Gourdeau [6] has indicated that, “Using an object-oriented 
programming approach, ROBOOP, a robotic manipulator simulation 
package which is both platform and vendor independent, compares 
favorably against a package requiring similar coding effort”, Gourdeau 
[6]. In fact, he also indicated that, the performance tests show that with 
ROBOOP, the routine (with a class), inverse dynamics of a 6-DOF 
robot was made faster, can be computed and simulated in less than (5 
ms) with a Pentium (100 MHz) computer.

Ramasamy and Arshad, [7] have both developed a robotic hand 
simulator. They indicated that “This robotic hand simulation is 
divided into three main parts. The main objective is to design a three 
dimensional graphic of a robotic hand and its movement animation 
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Abstract
Modeling and simulation of robotics hands are significant topics that have been looked into by many robotics 

Specialists and programming experts. This is due to a demand to build a friendly platform for analyzing proposed 
hand design and movements, earlier to hand physical construction. For meeting such demands, a dexterous robotic 
hand software simulator was synthesized. The developed code is dexterity characterized robotic hand modeling 
and simulation software environment. The simulator was developed for robotics hands research purposes. This 
manuscript is presenting a brief documentation of such a modeling and simulating environment for simulating 
dynamic movements of multi-finger robotics hand. The environment is named as the e_GRASP. To make use of other 
supporting environments, e_GRASP is a Mat lab based simulator, with a quite large number of linked functionalities 
and routines that helps in simulating hand movements in a defined 3D space. e_GRASP was built after a number of 
years of experience while dealing with robot hands, hence it is a comprehensive Mat lab based Toolbox that makes 
use of other Mat lab defined Toolboxes. e_GRASP can also be interfaced to real-time hand control, with an ability 
to be linked with even higher levels of hierarchy. This includes Mat lab AI Tools, optimization, as considered useful 
toolboxes for dexterous hands for grasping and manipulation.
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that imitates the movement of a human hand”. They used the graphic 
design as a foundation to find the kinematics and dynamic properties 
of the robotic hand.

Furthermore Miller and Allen [8] have both presented the 
GRASPIT! In reality, GRASPIT! is a dexterous robotic hand simulation 
code. It was reported that the work focus of the grasp analysis, has been 
on force-closure grasps, which are useful for pick-and-place type tasks. 
Miller and Allen in [8], have also reported that, “This work discusses 
the different types of world elements and the general robot definition, 
and presented the robot library”.

Miller et al [9]. have furthermore developed a simulation platform, 
where they focused on (Design/methodology/approach), as they are 
unlike other simulation systems. However, the simulation system was 
built specifically to analyze grasps by robotics hand. Miller et al. [9] also 
reported that, “It can import a wide variety of robot designs by using 
standard descriptions of the kinematics and link geometries. Various 
components support the analysis of grasps, visualization of results, 
dynamic simulation of grasping tasks, and grasp planning”. 

Jagdish et al. [10], have proposed and presented in their chapter, 
a fast as well as automatic hand gesture detection and recognition 
system. It was worked towards a reorganization of a hand gesture, 
hence an appropriate command is to be sent to the robot hand. Jagdish 
et al. [10], also mentioned that, once robot receives a command, it does 
a pre-defined work and keeps doing until a new command arrives.

Corrales et al. [11], have developed a kinematic, dynamic and 
contact models of a three-fingered robotic hand. The hand name was 
(BarrettHand), as this to obtain a complete description of the system 
which is required for manipulation tasks and simulation. Corrales 
et al. [11] have also stated that, “The developed models have been 
implemented on a software simulator based on the EASY JAVA 
simulations platform. Several experiments have been performed in 
order to verify the 3 accuracy of the proposed models with regard to 
the real physic system”.

Gourret et al. [12], have addressed the problem of simulating 
deformations between objects and the hand of a synthetic character 
during a hand grasping progression. Hence, a numerical method based 
on finite element theory was developed and used to allow considering 
into account active forces of the each finger on the object and the 
reactive forces of the object on the fingers. Magnus [13], stated that, 
“before the implementation of the controller was made on the real hand 
it was tested and development on a simulation created in MATLAB/
simulink with help from a graphic physics engine called GraspIt!”.

In this context, Magnus [13], have also looked into movements 
of the hand finger, and found how this is affected by the force from a 
leaf spring and a tendon that bends the finger. They also exposed the 
hand fingers to contact forces. They used these results and all these 
components to create models that are used in the simulation, hence to 
make the finger perform accurately.

Tarmizi et al. [14], as justified by increasing demands robotics 
hands both modeling and simulation, and due to the increasingly 
gaining importance amongst researchers for industrial and medical 
applications. Tarmizi et al. also stated that, “a multifinger robot hand 
with five fingers is modeled and simulated for grasping task. This was 
done using a CAD tool known as SOLID WORKS, and an analytical tool 
known as SimMechanics of MATLAB”. In fact, obtained simulation 
results, indicated that the improved performance of grasping functions 
for robotics hands. 

Ramasamy and Arshad [7], used animation techniques, hence, this 
to facilities designs and three dimensional graphic of an robotic hand, 
and its movement animation that imitates movements of the human 
hand. Such graphic designs, are hence, used as a foundation to find the 
kinematics and dynamic properties of the robotic hand. The end result 
is a robotic hand simulation that comes with analyses of the kinematics 
and dynamic properties”.

Boughdiri et al. [15], have mentioned that there are numerous 
simulation results that shown, the derived dynamic model can predict 
the motion of the multi-fingered hand in free motion without holding 
any object. Additionally they have developed dynamic model that used 
and led to decoupling dynamic characteristics, by which the control 
of different parts of the system are simulated. They have reported a 
model-based computed torque technique, as for tracking control of the 
multi-fingered hand. 

Ohol and Kajale [16] have looked into a number of issues related to 
robotic hand simulation. This includes; required task for the robots, as 
this becoming more complicated. In addition, handling of objects with 
various properties, e.g. material, size, mass, and physical interaction 
between the finger and an object. Ohol and Kajale [16] have stated in 
their research that, “Design procedure, solid modeling, force analysis 
and simulation have been discussed for further dynamic analysis 
towards confirmation of the viability”.

Chan and Yun-Hui [17], have further looked into the issue of a 
dynamic simulator, that can helps and facilitates developments and 
applications of a multi-fingered robot hand. They indicated that, the 
existing dynamic simulators cannot effectively simulate dexterous 
manipulation of a multi-fingered robot hand. This is due to the lack 
of capability to cope with frequent changes in contact constraints and 
grasping configurations as well as impulsive collision occurring during 
manipulation. Chan and Yun-Hui, [17] also mentioned that, “We 
propose a unified framework to model free motions, collisions, and 
different contact motions including sticking, rolling, and sliding”. Hence 
they proposed a innovative transition model for handling transitions 
between these contact motions. Finally, a 3D dynamic simulator has 
been developed to simulate dexterous robotic manipulation tasks, 
while involving combination of different contacts. That was based on 
a unified dynamic model. Simulation results indicated and confirmed 
the validity of the dynamic model and the simulator efficiency.

Main article contribution

In an effort to synthesis a dexterous multi-finger robotic hand 
MODELING and SIMULATION environment, this research 
framework was thoroughly focused towards the utilization and 
employment of Matlab-based platform coding, for a kinematics and 
dynamic simulation of an (n) number of fingers hand, with (m) number 
of joint within each finger dexterous robot hand. 

The coding software is referred to as the “e_Grasp”. e_Grasp was 
coded using Matlab functions and routine, with some associated 
Matlab libraries. The main motivation for selecting Matlab as the 
programming environment, this due to the availability of extended 
libraries and the ability to link Matlab with other external libraries. 
The simulator was built to be even supportive for complicated model-
based control algorithms for hand-object movements. Examples of 
which include the Computed Torque approach, and adaptive control. 
The simulator was also linked with MATLAB AI tools, as an attempt to 
make use of available AI techniques for implementing intelligent hand 
manipulation.
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Manuscript organization

Within this manuscript, we shall be introducing e_Grasp simulator, 
where the main features of such modeling and simulation space are 
presented. We shall also show how this environment is linked to other 
internal Matlab main Toolboxes and external C++ libraries. Particularly, 
this manuscript is presenting a long term research framework, which is 
actually focused for dexterous robotics manipulation that have gained 
experience and achieved over a number of years, where it was totally 
dedicated towards building a robotic hand modeling and simulation 
environment. The manuscript was divided into six sections. Section 3 
gives a brief introduction and literatures related to this research theme. 
In Section 4 we present he simulator integrated structure and blocks. 
Robotics hand model building, as in relation to hands kinematics and 
dynamics, are therefore introduced in Section 5. Section 6 gives the 
simulator HIERARCHCY and DATA_STRUCTURE. This focuses 
on coding features for dexterous hand simulation. In Section 7 we 
show few e_Grasp simulation results. Finally, in Section 8, we provide 
conclusions and draw few concluding remakes.

Simulator Integrated Structure and Blocks
Multi finger robotics hands do represent complicated dynamic and 

interrelated closed chain kinematics system. Therefore, modeling and 
simulation of such systems, always represent challenging tasks. This is 
illustrated in Figure 1. Here we show the top level building blocks of 
the e_Grasp simulator hierarchy. It composes of five building units. 
The first is the top level (which includes the hand motion planning and 
higher USER commands), within such environment task definition 
is developed. In this top unit an appropriate supervisory software 
has been developed to facilitate the communication with the various 
functions of the hand. Typically the user can state the needed motion 
parameters, like velocities and positions. The second level of hierarchy, 
is the controllers array box; motion and force control hardware aspects 
are mainly located within this unit. The third level of hierarchy is 
dedicated towards the mechanical hand and the drive box used for 
actuation. Finally, the last level of hierarchy is dedicated towards the 
level hand motion sensing and instrumentations. Within Section 5, the 
theme of hand design will be further expanded; hence, kinematic and 
dynamic modeling matters are therefore discussed in further details.

The e_GRASP has developed its awareness, as a result of the 
continuous demands to look into the most challenges effort, which 
is modeling and simulating dexterous robotic hands. Most computer 
controlled systems used for robotics control, have distributed 

simulators, which are dedicated to specific tasks. For a six degrees 
of freedom arm, six simulators they are usually dedicated for the 
production of digitally controlled motion, hence parallel motion of all 
the DOF is achieved. All of these DOF are then managed by a single 
upper simulator. Multi-simulators are unusual distributed simulators 
which may be utilized to share the computational load for the same 
task, for providing redundancy in computation, or for sharing the 
multi axis controllability load in a system.

For multi-fingered robot hands, a few dedicated simulation 
structures have been used in practice. For multi-fingered robot 
hands, and due to the large number of actuators to be controlled by a 
supervisory software, the design adopted here comprises of (n) linked 
motion simulators, simulating the digital control, for hand tendon 
displacement control. Furthermore, the simulator is to consider control 
of hand distal joints, as each distal joint in the hand is also digitally 
force controlled.

Due to the large number of actuators and the need to have a user 
friendly software interface, a TOP SUPERVISORY code has been 
written for the purpose of hand programming and coordinating the 
various units over the hand entire system. Smooth fingertip Cartesian 
motion is an essential capability for robot hands in general, therefore 
for achieving an (n) path Cartesian point of fingertip motion, the 
motion is required to be planned, such that, fingertips pass near to 
defined via points without stopping. The e_Grasp hand simulator 
should be featuring the below listed features:

(i) Model robotic hand kinematics and dynamics.
(ii) Simulate closed hand-object chain kinematics.
(iii) Simulate constrained hand-object dynamics.
(iv) Perform joint-space inverse kinematics
(v) Plotting and graphing functionalities.
(vi) Linking the simulator to others MATALB toolboxes.
(vii) Optimization, and optimal force distribution.
(viii) Linking to external tools, and others C++ libraries.

Figure 1: Hand simulator hierarchy and DATA_STRUCTURE, made it an 
easy procedure for interfacing different hand blocks.

Figure 2: (a) We need to simulate a typical hand-object motion in 3D.That was 
made an easy task with e_Grasp, (b) A typical finger Kinematics and (c) Single 
finger geometry and related kinematics.
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Building Simulator Models
Simulator library building: kinematics models

Hand Thumb Finger Model: In reference to Figure 2, and Table 
1, ( )0

3H  is formed by matrix multiplication of all the individual
link matrices. While forming such a product, sub-results can be 
derived. This will be useful while solving hand inverse kinematics. 
By multiplying for simulation purposes, and for a simple situation of 
three joints in a finger, forward kinematics are expressed in terms of 
forward transformation matrix ( )0

3H . Here the ( )0
3H  entries have

been calculated by:

( )
( )

( )

( )
( )
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While describing fingers kinematic, it is also essential to describe 
their kinematics with respect to fixed Cartesian frames in the hand 
palm. These frames are essential elements for a grasped object motion. 
To define the fingertips of the four fingers to a fixed Cartesian frame, 
a permanent palm frame has been placed at the base of the first finger 
sub-system. This is illustrated in Figure 2.

Other hand digits: Each of the fingers is related to the hand 
palm reference coordinate (attached to the root of the first finger) by 
transformations which are designated by d2, d3 and d4 for second, 
third, and fourth fingers respectively. Due to the position of the second 
finger in the hand palm, the fingertip location with respect to the hand 
palm is defined by the kinematics equation, as obtained by multiplying 
the finger transformation matrix ( )0

3H  by the transformation matrix
which represents the displacement of that finger from the origin of the 
palm coordinate frame. If displacement of the second finger is defined 
by ( )2 20− −xd d , the location various hand fingers with respect to a 
fixed hand frame are:

2nd finger: 

( )
( )

( )

1 23 1 23 1 2
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3
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− − 
 

− − =  − + 
 
 

x x

y

z

C C C C S P d

S C S S C P
H

S C d P
  (3)

3rd finger:
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 4th finger:
( ) ( ) ( )
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( ) ( ) ( )
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               (5)

Eq (2)-(5) do constitute the kinematics model of a (n) digits fingers 
hand. They also specify the computation of the position and orientation 
of frame 3 in reference to frame (0, initial), for each finger. These are 
the basic kinematics equations for simulating hand kinematics.

Simulator library building: (inverse kinematics)

In order to describe a finger position, reverse problem must be 
considered. Given a finger posture in terms of 3D components (Px, 
Py, Pz), what are the corresponding joint coordinates? In Section (5.1), 
the issue of computing position and orientation of the fingertip frame 
( )0

3H  was considered relative to a frame fixed at the hand palm. Here 
we are summing a given a set of joint angles of the finger. In this section, 
inverse kinematics is presented. Expressed another way, the inverse 
kinematics problem is given a frame or a homogeneous ( )0

3H  matrix
in the reachable subset, solve for the corresponding values of the joint 
variables that would result in similar ( )0

3H  matrix numerical values.
In contrast to forward kinematics, inverse kinematics problem does 
not have a general analytical solution. Given the desired position and 
orientation of the fingertip relative to the finger root, how we compute 
a set of joint angles which will achieve this desired result within a 
constrained kinematic system? The Cartesians upon which to base a 
decision vary, but a reasonable choice would be the closest solution. A 
finger will be considered kinematically solvable, if joint variables can be 
determined by an algorithm which allows one to determine all the sets 
of joint variables associated with a given position and orientation. We 
shall restrict the attention to closed form solution. In this context closed 
form means a solution method based on analytic expressions or on the 
solution of a polynomial. Within closed form solutions, two methods 
of obtaining a solution are distinguished. FIRST APPROACH: In 

Finger revolute joints Finger 1st joint proximal Finger 2nd joint medial Finger 3rd joint distal  --- --- Finger joint nA (distal)
 θi θ1 θ2 θ3 --- --- θn

αi 90˚ 0˚ 0˚ --- --- 0˚
ai l1 l2 l3 --- ---
di 0 l1 0 --- --- 0˚

Motion range 
45

45

 −
 

↔ 
 + 





45

45

 −
 

↔ 
 + 





45

45

 −
 

↔ 
 + 





--- ---
45

45

 −
 

↔ 
 + 





Table 1: Hand Kinematics and interrelated parameters.
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reference to eq (2), and frame assignment given in Figure 2, we desire 
a solution for joint space vector ( )1 2 3θ θ θΘ =T

i i i i  given a Cartesian 
numeric coordinate of a given fingertip posture. Equate 0

3 A  with 
numeric matrix, gives:

11 12 13 14

21 22 23 24

31 32 33 34

0 0 0 1 0 0 0 1

χ χ χ χ η
χ χ χ χ η
χ χ χ χ η

   
   
   =
   
   
   

x x x x

y y y y

z z z

o a P
o a P
o a Pz    (6)

This result in:

( )( ) ( )( )1 3 23 2 2 1 1 3 23 2 2 1= + + = + +xP C l C l C l and Py S l C l C l  
( ) ( )1 1=y xP P S C                    (7)

( )1
1 tan−Θ = y xP P   (8)

Likewise using ( )3 23 2 2= +zP l S l C  divide by ( )2cos θ  This results in:

( ) ( ) ( ) ( )2 3 23 2 2 2 2 3 23 2 2tan /θ= + = −z zP C L S l S C and P l S l C  (9)

Searching for a suitable value of ( )2cos θ  in Equ (9):
( )3 1 1 2 2 1 1= + +x zP l C O C l C C l

( )( )2 2 1 3 1/= − −x zl C P C l O l

( ) ( )( )1
2 3 1 3 1tan / /θ −= − − −z z x zP l n P C l O l               (10)

( )1
3 2tan /θ θ−= −z zn O                  (11)

The initial solution is that which corresponds to a known 
orientation vectors. SECOND APPROACH: A geometric approach for 
solving the inverse kinematic problem is a technique of decomposing 
the spatial geometry of the finger into several plane geometry problems. 
Joint space vectors is solved for, using tools of plane geometry. Figure 
2b also displays the kinematics and geometric configuration of one 
finger. Applying rules of geometry to one finger shape, this results in 
the following equations describing the joint space vector in terms of the 
given (Px) (Py) (Pz) fingertip vector. From Figure 2c, and for the triangle 
as due to finger geometry:

( ) ( ) ( ) ( )1
1 1tan / tan /θ θ −= =y x y xP P and P P     (12)

Furthermore, from the figure:

( ) ( )2 2
r 1P= − = +q t z qP l and P P P

( ) ( )1 1 2 2 2
3 2 2tan / / 2θ − −= = − − −z z q a t tP P W C l P l Pl

Having found θ z , then ( ) :θ −z aW  ( )( )1 2 2 2
3 2 3 2 3180 cos 2θ −= − − −

tP l l l l
             (13)

Motion Finger. Using the geometric model of the finger for the 
simulator is an easy and quick approach to obtaining the joint space 
vector. One drawback of the geometric method is that: at a definite 
finger posture the geometric configuration of the finger fails to give 
a solution. Refer to Figure 1 to observe that certain configurations of 
the fingertip where the solution is not well defined, hence multiple 
solutions may appear. However as θ gets large enough, the fingertip 
location Pt goes to a position with respect to (0) and Tr angles where the 
cosine rule used in eq (13) is not applicable. To achieve realistic finger 
solutions, hand simulator source code has been designed in such a way 
as, to get the inverse kinematic for the finger model using the geometric 
approach. Subsequently, once joint space vector are evaluated for, 
orientation vectors are evaluated, as they constitute columns of the 
well-known finger Jacobian matrix of Jθ We shall use two known 

methods in literature to find the inverse kinematics geometric and 
algebraic approaches of solutions fail to give definite solution.

Simulator library building: building hand Jacobian

The Jacobian matrix plays important role in hand simulation. 
Differential changes in finger end locations, are caused by as results 
of joint differential changes. The number of rows in a Jacobian is 
determined by the number of degrees of freedom in Cartesian space 
required by the task which is, in turn, determined by the degrees of 
mobility of a task. In fact, the JACOBIAN is a multi-dimensional form 
of the derivative of a function of several variables. Since the Jacobian is 
a differential formula of a matrix, hence it is possible to obtain elements 
of that matrix using the CHAIN FORMULA as far as the functions of 
independent variables. For the finger Jacobian Jθ there are a number 
of techniques which have been developed for the Jacobian calculation 
by: Waldron Algorithm, Renand Algorithm, Paul's Algorithm, [18,19]. 
Location of a fingertip is characterized by relative positioning of frame 
fi+1 attached to the fingertips, with respect to a frame f0. In addition, a 
fingertip velocity is always a vector in the tangent space of the frame 
space, which is related by the Jacobian matrix Jθ. Such framings are 
illustrated in details in Figure 3.

Simulator library building: jacobian singularities avoidance

Due to the fact the Jacobian is a position dependent matrix, in 
particular finger configurations, the matrix becomes not full of rank. 
When this occurs the Jacobian rows and column vectors are linearly 
dependent, thus do not span the ( )3 1×∈ℜ  vector space of X. Therefore, 
there exists at least one direction in which the fingertip cannot be 
moved no matter how the joint velocities θ1, through θ3 are chosen. 
Here we shall introduce the derivation of a finger Jacobian matrix in 
terms of D-H matrices. In Eq (5), the Jacobian is defined with respect 
to the reference frame, frame (0) at the finger root. However, for our 
purpose it has been assumed that the points of contact are stationary on 
the grasped object and another algorithm can be implemented based 
upon the kinematic model of the finger. Such algorithm is based on the 
method shown by Paul [19]. From the time when all joints are revolute, 
the three columns of the matrix are given by:

Figure 3: Simulator deals with diverse classes of fingertip contact 
models. The default type, is the (frictional point of contact).

Adv Robot Autom, an open access journal 
ISSN: 2168-9695 



Citation: Mattar E (2013) e_GRASP: Robotic Hand Modeling and Simulation Environment. Adv Robot Autom 2: 109. doi: 10.4172/2168-9695.1000109

Page 6 of 11

Volume 2 • Issue 2 • 1000109

( ) ( ) ( )( )
( )

3

3δ

= − − + − + 


= 

i x y x y y x x y y x

i z z z

A d n P i o P o P j a P a P k

A n i o j a k

While using this algorithm, it is necessary to evaluate the orientation 
vectors of a finger posture, which are assumed to be known by using the 
geometric finger model and the forward transformation matrix. Paul's 
algorithm can be used to calculate the Jacobian of an (n) degrees of 
freedom arm, where each degree of freedom corresponds to one joint. 
Thus, each column in the Jacobian is a vector which describes the 
differential motion of a joint. A revolute joint has a differential rotation 
around the axis of rotation Z axis:

( ) ( )
( ) ( )
( ) ( )
( ) ( ) ( )

1 1 1 1
1

1 1 1 1
2

1 1 1 1
3

1 1 1
4 5 6

/

/

/

/ / /

θ

θ

θ

δ θ δ θ δ θ

− − − −

− − − −

− − − −

− − −

∂ ∂ = = −

∂ ∂ = = − 


∂ ∂ = = − 


∂ ∂ = = ∂ ∂ = = ∂ ∂ = = 

n n n n
x n n y x x y

n n n n
y n n y x x y

n n n n
z n n y x x y

n n n
x n n z y n n z z n n z

P J n P n P

P J o P o P

P J a P a P

J n J o J a

             (15)

To relate a fingertip position to a set of joint angles of the fingers, 
one may make use of the forward solution and obtain the fingertip 
matrix ( )0

3H . Paul [19] has presented a routine that relates differential 
changes in joint variables, to the differential changes in the tip position 
and orientation. This is summarized here as:

( )
( )
( )

1 23 1 23 1 1 3 23 2 2 1

0 1 23 1 23 1 1 3 23 2 2 1
3

23 23 3 23 2 20
0 0 0 1

 − + + 
 − − + + =
 +
 
 

C C C C S C l C l C l
S C S S C S l C l c l

H
S C l S l S               (16)

( )
( )

23 23 3 23 2 2

1 23 23 3 23 2 2
3
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0
0
1 0
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 − + =
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H
S C

           (17)          

( )
( )

3 3 3 3

2 3 3 3 3
3

0
0

0 0 1 0
0 0 0 1

 − 
 − =
 
 
 

C S l C
S C l S

H             (18)

Further application of the algorithm, and using the relation defined 
by eq (17) gives: (1st) column of Jθ

( )
( )
( )

1 1 1 23 1 23

1 1 1 23 1 1 23

2 2
1 1 1

1 1 10 0 0

ψ

ψ

ψ ψ

∂ = − 


∂ = + 


∂ = − − 
∂ = ∂ = ∂ = 

x S C C S C

y C S S S C S

z C S

x y z

 (19)

1 23

1 23
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∂ = 
∂ = 

x S
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z

               (20)

(2nd) column of Jθ 

( )( ) ( )
( )( ) ( )

2 23 3 23 2 2 23 3 23 2 2

2 23 3 23 2 2 23 3 23 2 2

2

2 2 2

0
0 0 0

∂ = + − +


∂ = + − + 


∂ = 
∂ = ∂ = ∂ = 

x S l C l C C l S l S

y C l C l C S l S l S

z
z y z

Leading to (2nd) column of Jθ to be ( )2 2 3 2 3 2 2 0∂ = ∂ = + ∂ =x l S y l l C z

               (21)

Third Column: 
( )( )3 3 3 3 3 3 3 3 3 3

3 3 3

0

0 0 1δ δ δ

∂ = − ∂ = ∂ = 


= = = 

x l C S l S C y l z

x y z
  

             (22)

Hence ΘJ  is finally written as:
( ) ( )1 2 3 1 2, 0 0 ,ψΘ = = −T TJ u u u u u

( ) ( )( ) ( )2 3 3 2 3 3 30 , 0 0= + =Tl S l l C u l       (23)

Eq (23) has been verified using Matlab software, and using 
velocity cross product (VCP) technique used by Fu et al. [20]. Since 
each finger has a 3-DOF mechanism responsible for producing 
translational differentials motion at the fingertip, the Jacobian matrix 
can be rewritten in terms of differentials motion of the fingertip. The 
methodology taken here is to divide the simulation environment into 
(n) main blocks of simulators. Respectively, individual blocks have
been dedicated for the simulation and control of the (m) joints of one 
finger. This is shown in Figure 4.

Simulator Hierarchicy
Top level: simulator data structure

Configuration of hand simulating software was based on an 

Figure 4: e_GRASP, a MULTI-FINGER robot hand comprehensive 
modeling and simulator MATLAB based environment. 

Figure 5: e_Grasp simulator cascaded levels. The simulator deals with 
both top level control laws, in addition to the lower level finger joints laws.
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assumption, of using discrete time joint-space controllers. This is 
clearly illustrated in Figure 5. That was also based on using a model 
of MOTION CONTROLLER. There a number of available real-tome 
DSP controllers. Example of which is the national semiconductor 
product, (LM628) motion processor. For simulation purposes, there 
are up to (n×m) motion processors that have been employed for the 
overall hand control. Individual single processors were dedicated 
control an individual DOF in the hand. Overall MatLab supervisory 
coding and software designing for the entire hand simulation, is to be 
run on high speed machine. However, it was also achieved while using 
an up-to-date high speed Laptops. High speed machine is needed, as 
this requires communicating with (n×m) separated controllers blocks 
via (n×m) processors hardware. From software viewpoint, simulating 
coordinated hand control, takes place at different computational 
levels. The hand hierarchical nature leads inherently to a bottom-up 
supervisory simulation design. Top level of concurrency, looks at entire 
hand simulation.

e_GRASP hand data structure and classes

At start, we shall define a finger data structure to contain a finger 
name. The "." operator, used in the case of Structure. Field tells mat lab 
to access the field named field in the structure.

% Creating Hand Data Structure And Classes..
Finger_Data.First='Finger_1';
Finger_1Data.Hand='Joint_1';
NameData.Last='Joint_m';
% Creating a HandData structure with a name field. HandData.

Finger=FingerData;
% Initializing rest of the hand structure …
Finger_1.Status=Finger_1_Data';
Finger_1Data.x_pos=10;
Finger_1Data.y_pos=40;
Finger_1Data.z_pos=-60;
Finger_1Data.q_1=-60°;
Finger_1Data.q_m=30°;
HandData.Fingers=linspace(60,30,45,…);
% View contents of the data_structure FingerData FingerData.

Name FingerData.deatils
% Operating on Elements of the Structure.
FingersData.X_Y_Z(3)=0;
FingerData.X_Y_Z FingertData.X.First='First_Finger'; Finger_

Data.First
% Creating arrays of structures for each hand finger.
num_fingers=4; % depends on hand number of fingers
for i=1:num_Fingers
ClassData(i)=FingerData;
end
ClassData
ClassData(2)

Joints space and fingers simulation: non closed chain 
dynamics simulation

For simulating whole hand dynamics, either in open or closed 
loops, it is therefore important to have a model of the individual joint 
dynamics. This consists of a model of a single discrete time motion 
closed controller. A good model is an (n) bit controller, connected with 
a D/A converter, driving current amplification. The digital closed loop 
system also requires a simulation for measuring the individual joint 
displacement and position. In order to create an entire closed loop 
simulator model of the individual joints, and for describing the whole 

closed chain system, the following sub-sections will rather focus on the 
dynamics of a single joint controller, as this will be leading to a finger 
simulation, hence, leading to entire hand simulation.

Discrete time simulation of a single axis joint

Digital simulation of the lower level of individual joints, is discussed 
and simplified. That is because the control input for ith joint depends 
only on locally measured variables, not on the variables of the other 
joints. Moreover, computations are easy and do not involve solving 
the complicated derived nonlinear hand inverse dynamics. Contrary 
to this, for manipulation and exertion of forces points of view, an 
additional joint torque control has to be added, this is for an exertion 
of grasping forces throughout object motion. From literature, a typical 
PID controllers expressed by:

( ) ( ) ( ) ( )
0

1 τ
τ

  
= + +     

∫
t

d
i

de t
u t k e t e t dt

dt             (24)

In eq (24), u(t) is input to the joint controller, and e(t) is the 
controller output. Digitizing eq (24), resulting in:

( ) ( ) ( ) ( )1
1

1
1

−
−

 
 = + + −
 − 

ip
p

K
U z K Kd z E z

z
  (25)

A simplified dynamical model of the joint with the electric actuator 
may be written as:

( ) ( )2 θ θ
⋅+ +   

+ + + = −   
  



a m b i i
ia m i L i i i

i

B B k k kJ J n J n d
R Rv    

             (26)

( ) ( ) ( )2τ θ= +a T Ts J S B S S

In eq (26), the ( )2+ +a m i LJ J n J  terms are effective inertia and 
effective damping coefficients of actuators shafts. This also includes the 
joint inertia. The joint position trajectory is calculated by a trajectory 
planning routine. This is passed to the digital control as number of 
pulses.

A typical joint space closed loop transfer function, relating an input 
to the joint, to its output, (block diagram shown in Figure 6, this is 
expressed by:

( )
( )

( )
2

θ

θ

θ
θ

 
 

   =         +   + +          

m PID i T

d T i b PID i

T T

S nk k k RJ
S RB k k nk k kS S

RJ RJ

           (28)

Figure 6: e_GRASP detailed discrete-time controller synthesis for a 
single joint closed loop control. 
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( ) ( )( )
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θ
θ α α

 
=   − − 

m

d

z z
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Individual joint space controllers synthesis, was achieved using and 
supported by Matlab. Matlab environment, with its control toolbox 
synthesis and facilities, provided an aid to the controller testing and 
simulation. Typical design tools do include, Nyquist diagram, Modulus 
Frequency response, and time step response. For achieving a discreet 
time simulation within Matlab, the finger joints were being controlled 
digitally rather than in analog approach. Moving from continuous time 
domain to discrete time domain, Within (Z) domain, sampling time 
has an important role in determining the system stability. We start to 
do that by initially modeling the D/A converter in terms of sampling 

rate, ( )1 − −
  
 

TSe
s , hence the corresponding (Z) transform of the (D/A), 

including actuator, is evaluated. In addition, the computed discrete-
time poles of eq (29) are, as well, function of the variable factor in the 
system, the scalar value of the proportional gain (kp). 

Simulation of joints-space controllers

Furthermore, in Figure 6 we show the bottom low-level controller 
block diagram, and the associated parameters. This is to avoid a joint 
dynamic behavior that is not desirable, as due to the amount of joint 
motion disturbances. Therefore we need to overcome any undesirable 
effects. The use of adjusted parameters control law have the effect of 
making the response behavior enhanced. The location of adjusting the 
full PID control parameters can be seen in enhancing fingers motion. 
As this will be rather simulated later; the choice of low proportional gain 
in addition to the integral and derivative has the effect of decreasing the 
corresponding (rise time) as compared with the result for a purely high 
proportional gain.

N Configuration hand motion: (creation of arrays, pointers, 
and records)

The simulator has a large data structure. This is to comprehend 
the complicated fingers motion. System points of contact motions 
are generated by specifications of (r) direction of motion. From an 
object to be moved within the work-space of the hand, principle axes 
of motions are defined in addition to Cartesian fingertips paths. If 
fingertips paths are specified as (H, K, L, U,......), for the (n) fingers, 
then for (n) segments path, the Cartesian segment (localities in space), 
are passed and download to the entire hand controller coding. This is 
based on the use of such data structure:

( )
( )
( )
( )
( )

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4

1 2 3 4= 
 =  = 

 = 
=  

Aconfiguration
H H H H HFirst finger
K K K K KSecond finger

L L L L LThird finger
U U U U UFourth finger

(30)

As indicated earlier, every finger segment vector consists of an 
ARRAY (Data_Type). This is for storage of finger joints positions 
and velocities. In accordance to the specified path coordinates, hand 
controller creates array of Matlab based records. At the ending phase of 
the (RECORDS) and (POINTERS) creation, the hand controller holds 
(n × n) of records containing the Cartesian motion information of (n) 
segment paths for the individual fingers.

Simulation of joint force control

For simulating a joint torque dynamics and control, this requires a 

continuous measurement of the joint torque via some typical sensors. 
It is an essential for a joint torque sensor to be enclosed within a 
closed loop system. Furthermore, this is to be incorporated within 
the position control loop. While discussing the simulating aspects of 
a joint force control, the mechanism of transmission at joints do play 
an important role in the performance of the servo system itself. The 
problem of closing a joint force control feedback loop is the non-ideal 
transmission and drive system, i.e. presence of STICTION, COGGING, 
COULOMBIC friction, together with higher order resonance modes 
in the system. Furthermore, equivalent rotational stiffness do play an 
essential role in force control simulation. It relates the change in joint 
torque with changes in joint displacement and has to be computed for a 
rotational system. For a specific geometry of joint pulley and cantilever 
beam, a joint space rotational stiffness is mathematically expressed:

( ) ( ) ( ) ( )( )θ γ α α β α β χ= − +k c s s t              (31)

( ) ( )( )( )1 8γ β α β= +s s              (32)

and χ is a parameter representing the force sensor stiffness. For an ideal 
actuator characteristic, the system force control transfer function is 
given by:

2

2

θ θτ
    = +    

   
a T T

d dJ B
dt dt              (33)

Hence, for simulation of the force proportional control system, a 
typical control law is considered:

τ τ= ∆a psk                      (34)

In eq (34), ( )psk  is the force loop controller gain, ( ) ( )( ) ,τ τ τ∆ = −r ft t

where ( )τ r  is the desired behavior, whereas the term ( )τ f  is the
finger actual joint torque. Furthermore, Eq (34) represents an ideal 
mechanism for controlling a joint torque. While examining a real 
typical physical construction of a force sensor, joint transmission 
system, and grasped object compliance, do add complexity to force 
control system. There is also variation in the dynamics of the finger 
due to its configuration dependence, however such changes are masked 
by the actuator dynamics. A grasped object compliance plays an 
important role in the response of the force controller. There exists the 
following linkage between ( )τ f  and ( )θ∆ , the angular displacement of 
the driving pulley. This is expressed by:

( )τ δ θ= ∆f  (35)

In eq (35), δ is the compound rotational stiffness of the finger 
mechanical structure, as expressed in terms of: (i) sensor rotational 
stiffness, (ii) the grasp rigidity characteristics, (iii) and stiffness of the 
tendon. This is expressed by:

( ) ( ) ( )1 1 1 1
δ υ η

  = + +  
  pv                 (36)

While considering eq (34) and eq (35), a relation between τ f  and 
τ r  is expressed by:

( )
( )

( )
2

δτ
τ δ

  
 =    + +   

pf

r a a i p

ks
s J s B s k k

 (37)

Eq (37) gives the torque response of the closed loop system is 
controllable by υ and kp parameters. The simulation behavior of the 
designed force servo system, does not remain uniform even for constant 
gains kp. This is due to the fact, that δ involves some varying quantities 
η and  vp. For instance  increases from a very stiff environment while 
it decreases for a compliant object surface. Additionally vp, tendon 
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stiffness, might change if a greater stretching force is applied to its 
ends. The behavior could be further simplified by taking into account 
that the robot hand has been categorized to be grasping a rigid object, 
hence η is having a very high value. vp is quite a high quantity for the 
routed tendon due to the short length of the tendon and the use of 
high stiffness tendon characteristics. An equivalent rotational stiffness  
υ, by itself is a function of the physical construction of the sensor and 
its location in the finger. Having considered such assumptions, Eq 
(36) is totally dominated by an equivalent rotational stiffness. Here υ  
is a function of the sensor physical parameters. Finally, for real time
simulation of the force closed loop system (feedback control), we
transform the dynamics from time domain to frequency domain, i.e.
relying on Laplace transform of the entire force closed loop control
transfer function. This is expressed as:

Finally, for real time simulation of the force closed loop system 
(feedback control), we transform the dynamics from time domain to 
frequency domain, i.e. relying on Laplace transform of the entire force 
closed loop control transfer function. This is expressed as:

( )
( ) ( ) ( )( )

0
2

Θ

Θ Θ

       =     + + +    
 

c i i

T

r T i b T c i p i T

nk Pk
RJF S

F S S RB k k RJ S nk k Pk k RJ
      (38)

In eq (38), pi, is a conversion ratio. It relates the a conversion from 
a desired fingertip force, into a volts within the loop. The expressed 
relation of Eq (38), does indicate the changing parameters that do 
affect the force closed loop dynamics. Therefore, the built simulator 
environment is to take care of such parameters while simulating a 
typical a joint closed loop system.

Closed chain hand-object simulation: advanced control laws 
(computed torque method)

One of the great benefits of such a simulation instrument, is an 
ability to simulate robotics hands, under advanced control laws. 
Typical example is the Cartesian computed torque control law. In 
addition, other advanced control laws is the sliding mode control. In 
reality, such control methodologies are complicated, and do require 
massive computational requirements. However, they were made easy 
while using e_Grasp simulator. More results will be shown over the 
next Section. In addition, adaptive or even ANN based nonlinear 
control can also be simulated through the e_Grasp simulator. For (m) 
joints (in a finger), with (n) fingers robotic hand, the individual fingers 
are modeled by the time varying equation of motion:

( ) ( ) ( ) ( ),θ θ θ θ θ θ θ τ σ+ + = +  

i i i i iA B C             (39)

In eq (39), (θ) is a trajectory of finger joint in rad. ( )θ  is joint

speed trajectory in (rad/sec). ( )θ  is joint acceleration in (rad/sec2).
( ) ( ) ( ), ,θ θ θ θ

i i iA B and c  are the hand concatenated dynamics.

Additionally, ( )σ i  is equivalent of externally added forces. Hand 
wrenches and forces are found by:

( )1 λη+= − +hand bf G M               (40)

Mb the grasp dynamics, and G+1 1 is the hand grip transform 
inverse. For a balanced motion, the resulting forces and moments of 
the entire closed chain dynamics is equal to zero. Hence, equating hand 
dynamics with object dynamics, this gives:

( ) ( )1 1τ λη− +− + + = + + + − 

    

T T T
h h h h h h h h h o o o hA J G u J q B q C J G A u B u C J

              (41)

Furthermore, in eq (40), 
handf  is a set fingertips forces. Calculating 

fingertip forces using pseudo inverse of grip transform G. In Equ 
(41), λη  is part of the force solution, and λ  is an adjusting vector. 
Furthermore, the vector c

du  is the position and orientation of the 
grasped object. For non-slipping contacts, there is no change at contact 

points, i.e. 0∂Γ  = ∂ 
h

t , though there might be rotational change at each 

point of contact. eq (41) also represents a typical and the entire hand-

object dynamics. Hand fingertips forces, 
handf  are playing major roles 

in such balancing equation. Defining a Cartesian based posture error 

(e) of an object in 3D as 6 1×∈ℜ , as the error between a defined posture 
( )c

au , and the real object posture ( )c
au  as ( )≅ −c c

a ae u u . Object-hand

closed chain system is described in terms of hand joint-space torques  
( )τ h  joint torques and Euler dynamics. In Cartesian space, and for the 
three terms Cartesian based controller, this is expressed by:

( )1τ −= +h h h h exA J X T (42)

( ) ( ) ( )1 1

0

,φ ηλ + × 
= + + − − = Θ − Θ → ℜ 

 
∫
x

T n
ex k k h cd i cd h a h kT B C J F Z X G J

            (43)

In eq (42), 12 1×∈ℜhX  and expressed mathematically as in Equ (43). 
In addition, ,k k kA B and C  are the entire hand augmented dynamics. 
Fcd is a commanded set of forces, ( )ηλ  is an adjustable term, Jh is hand
Jacobain matrix. Each finger maps its joints torque to the object via the 

entire hand gasp G which is formulated as ( )1 2 ,= →   nG G G G  

as grab sub-matrices 6 3 ,×∈ℜiG  for ( )1 2= i n  are defined in

terms of contact location by Eq (42):
3 3

γ
× =  

 i
i

IG              (44)

In eq (44), ( )γ i  are sub-matrices for contact configuration. They
are performing a skew-matrix of position contact ( )γ i over the grasped 
object surface. In addition, hand fingertip force distribution depends 
completely on dually heavily computed matrices. The first is G+1 witch 
is an irregular matrix. The second is the hand Jacobian inverse matrix 
as the ( ) ( )1 1− −⋅h hJ J  is a large matrix, and it is a concatenated matrix, 
compromising all the fingers Jacobians, as ( )( )1 2= h nJ diga J J J . Finally, 
eq (43) expresses a typical Cartesian based hand controller using PID, 
that will be simulated through the e_Grasp.

Result and Analysis
In particular, e_Grasp has been used successfully as a tool for 

motion and manipulation analysis of robotic multifinger hands. In this 
respect, for running this environment, this needs a Matlab environment. 
The code has been also tested lately on MATLAB Version 7.8.0.347 
(R2009a). The simulator has been tested over a number of times. For 
validating the e_Grasp simulator potential, we shall present within this 
section few simulation results as related to a control for moving while 
grasping a grasp by a robot hand. The chosen hand is of four fingers, 
where each finger is having three rotational joints, i.e. ( )4, 3= =n m . 
The simulation environment gives the user an ability to select the hand 
configuration, dynamic and kinematics parameters, nature of fingertip 
contact, control sampling rate, law of controller, simulation time, in 
addition to others simulation parameters. There are large number of 
results to be shown, as a result of running the simulator, however, we 
shall show only few graphics results. In this respect, in Figure 7a, we 
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show the simulator graphical interface with other plotting graphics 
and the m-editor in Matlab. Furthermore, in Figure 7b we show part 
of simulator interfacing with other Matlab related toolboxes. In this 
respect, here we show the Matlab optimization toolbox being interfaced 
with e_Grasp simulator to compute optimal forces and torques needed 
by hand fingers to make an object motion.

For a demonstration, a 3D grasp movement is shown in Figure 
8. A grasp object of a known dimension and weight was manipulated
by movements of fingertips, while applying a suitable set of fingertips
forces. The grasp was moved in periodic sinusoidal movement. Results
shown that, simulating a 3D grasp movements was made an easy task
while using the e_Grasp simulator. Dynamics of a grasped object can

Figure 7: (a) The simulator: A screen shot for e_GRASP connection, (b) Part 
of simulator interfacing with Mat lab related tool boxes. Here we show the Mat 
Lab optimization toolbox to compute optimal forces and torques needed by hand 
fingers to achieve an object motion. 

be changed while alternating both Cartesian controller parameters and 
joints parameters. This leads to make a grasp motion stable, oscillatory, 
faster, or slower. Furthermore, Figure 9 displays a finger joint-space 
closed loop displacement performance. The simulator has taken 
into account fingertip rotations during a course of a grasp motion. 
Furthermore, in Figure 10 we show a simulation of hand torques, while 
grasping an object in 3-D space. The figure shows how torques are 
computed in response to motion. The simulator was able to transform 
a grasp from an initial posture to another over a minimum time. For 
such a simulation, the simulation environment offers a full adjustment 
of the three terms PID controller parameters, hence they have been 
selected for minimum overshoot. A grasped object movements can be 
made much unstable or even with less overshoot over its movement 
path in 3D. In Figure 11 we show a typical simulator capabilities. 
The figure is showing the computed error while comparing artificial 
neural network output with actual joint-space output. The 2nd finger 
joint-space motion simulations are therefore realistic in terms of 
displacement and motion. Joint space torques are very realistic in terms 
of producing an adequate amount of torques for fingertip movements. 
In Figure 12, we also display an important ability of the e_Grasp, which 
the ability of linking its output to other Matlab toolboxes. Here we 
show a link between e_Grasp with Matlab fuzzy toolbox. The figure 
shows an adaptation of fuzzy membership functions for optimal forces 

Figure 8: Creating a 3-D grasp movement is an easy task with e_GRASP.

Figure 9: Due to hand motion a 1st finger closed loop simulation. 

Figure 10: e-Grasp simulation of hand torques. Simulation includes plotting of 
individual torques while grasping in 3-D space.

Figure 11: e-Grasp simulation capabilities: Plotting of individual joint 
error, while comparing ANN controlled output with actual joint output. 
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learning via fuzzy system. In addition, the package is also able to be 
linked with much advanced Matlab functionalities, which is the ANN 
tools. In addition to the basic functions, the simulation package can 
also provide more analysis of hand movement. For example, Figure 13 
shows the ability to plot training patterns for hand ANN training. Such 
patterns were also used for learning and understanding the hand for 
optimization of fingertips contact forces.

Conclusions
Software simulation of an (n) DOF articulated robotic hand 

system is not an obvious task. Specifically, such simulators are truly 
needed for testing purposes, and for viewing hand performance before 
physical implementation. This manuscript has focused on a developed 
simulation software for supervising and controlling a fully described 
(kinematically and dynamically) (n) fingers robotic hand. The 
simulation environment was achieved via Matlab with a link to other 
available Matlab toolboxes. The developed simulator also has the ability 
to be linked internally to Matlab toolboxes, in addition, to be externally 
linked to other libraries, like (C++), for a possible real-time hand control. 
The simulator even has the ability for linking high level commands to 
the low-level digital motion processor. The simulator has proved to be 

an effective way to look and view kinematics and dynamics models of 
robotic hand. These models are found to be essential elements for hand 
object dynamic simulation. Next stage, is to take the simulator further, 
with graphical interfaces and functionalities.
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