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Abstract
Let A be a commutative nilpotent finitely-dimensional algebra over a field F of characteristic p > 0. A conjecture of 

Eggert says that p· dim A(p) dim A, where A(p) is the subalgebra of A generated by elements ap, a ∈ A. We show that 
the conjecture holds if A(p) is at most 2-generated.
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Introduction
Let F be a field of characteristic p>0 and A a commutative 

(associative) nilpotent finite-dimensional algebra over F . Let A(p) be the 
subalgebra generated by the set {ap| a ∈ A}. N. Eggert [1] conjectured 
that

p· dim A(p) ≤ dim A.

This conjecture gives an answer to the problem, when a finite abelian 
group is isomorphic to the adjoint group of some finite commutative 
nilpotent F-algebra. Recall that the adjoint group of A is the set A with 
the operation x○ y=x + y + x y for every x, y ∈ A.

Validity of this hypothesis would also have influence on an 
estimation of a (Prüfer) rank of a product of two (abelian) p-groups.

N. Eggert proved his conjecture only when dim A(p)≤ 2. Five years
later, R. Bautista [2] proved it when dim A(p)= 3. C. Stack confirmed 
this results in Stack et al. [3,4], but provided shorter proofs. Finally, 
Amberg and Kazarin [5] proved the conjecture for the case dim A(p) ≤ 4.

Another type of results presented by McLean [6,7]. He showed that 
this conjecture is true if the algebra A is either radical of a group algebra 
of a finite abelian group or A is graded and at least one of the following 
conditions is fulfilled:

(i) p = 2 and (A(p))4 = 0.

(ii) A(p) is 2-generated.

(iii) (A(p))3 = 0.

(iv) n < 3p and 3 ≤ s - 1 ≤ p, where n is the number of generators
of A(p) and s is the index of nilpotence of A(p).

We also should mention the result of Gorlov [8]. He proved the 
conjecture for nilpotent algebras A with a metacyclic adjoint group.

One paper concerning Eggert's conjecture appeared in 2002 and 
the author L. Hammoudi [9] claimed he proved it. But, as Amberg [10] 
and McLean [7] have shown, his proof was incorrect.

In this short note we sketch out the main steps of the proof that 
Eggert's conjecture is true if the subalgebra A(p) has at most two 
generators. For the details, the reader is referred to Korbelar [11].

Since we will deal with nilpotency and commutativity only, we 
point out that the word 'algebra' will mean a commutative one and not 
necessary possesing a unit.

For an algebra A and a subset X ⊆ A we denote X ([X], resp.) the 
algebra (vector space, resp.) generated by X.

An algebra A is called nilpotent if Am=0 for some m ∈ N.

Through this paper let always F be a field of characteristic p > 0 and 
R = F [x, y] be the ring of polynomials over the variables x, y and the 
field F.

We start with the remark, that the number of any minimal 
generating set of a finite generated nilpotent F -algebra A is equal to 
dim A/A2. This implies the following:

Lemma 1.1. Suppose that Eggert's conjecture holds for every 
nilpotent 2-generated F -algebra. Then it also holds for every nilpotent F 
-algebra A such that A(p) is a 2-generated F -algebra.

In the rest we deal with 2-generated nilpotent algebras.

Bases of Nilpotent Algebras
We will use the well-known concept of monomial ordering and 

standard bases.

For 2
0( , )α = ∈i j put

[ , ].α = ∈i jx x y F x y

Denote 2
0 0[ ] { { }| 0}α α= ∈ ∪X x  the multiplicative monoid with 

the lexicographical ordering ≤ such that
( , ) ( , ) ( )′ ′ ′ ′ ′≤ ⇔ < ∨ = ∧ ≤i j i jx i i i i j jx

and

 x(i,j) ≤ 0

for every 2
0( , ), ( , )′ ′ ∈i j i j  

For 0 [ , ]α
α

α

λ≠ = ∈∑f x F x y put

|m( ) | min{ 0}
(0) 0.

α
αλ= ≠

=

f x
m
Finally, f will be called normal iff λα0 = 1, where m(f) = xα 0, and m(f) 

< π xα implies λα = 0 for every 
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2
0α ∈

This function m: F [x, y] → [X]0 has common properties of a 
valuation:

(i) m(fg) = m(f) m(g). 

(ii) m(f + g) ≥ min{m(f); m(g) g. Moreover, m(f + g) = m(f) if m(f) 
< m(g). 

(iii) m (f(xp, yp)) = m(f)p. 

for every f, g∈ F [x, y].

Finally. a set 2
0}{ |α α⊆ ∈ x will be called upper (lower, resp.) 

if xα ∈  and xα | xβ (xβ | xα, resp.) implies xβ ∈ for every xα, x ∈[X]0.

Definition 2.1. Let A be a nilpotent F -algebra generated by {a1, 
a2}. Put

1 2 0 1 2( , ) { [ ] ( ) ( ) ( , ) 0}m= ∈ ∃ ∈ + = ∧ =AC a a u X f Rx Ry f u f a a

and

1 2 0 1 2( , ) [ ] ( , ).=  A Aa a X a a

Proposition 2.2. Let A be a nilpotent F -algebra generated by {a1, 
a2}. Then:

(i)A(a1, a2) is an upper set and 0∈A(a1, a2). 

(ii)A(a1, a2) is a lower set and 1∈ A (a1, a2). 

(iii)The set { xα (a1, a2)| 1 ≠ xα∈ A (a1, a2)} is a basis of A. In 
particular, A(a1, a2) is finite. 

(iv) A(a1, a2) = {u [X]0| (∃f ∈ Rx + Ry) m(f) = u ^ f(a1, a2) = 0 ^ f is 
normal} {0}.

Definition 2.3. Let A be a nilpotent F -algebra generated by {a1, 
a2}. Denote

( )

( )

0

0

1 2 0

1 2 0

01 2

01 2

#{ ( , ) | {0} 1,

# ( , ) { } ,

# ( , ) {0} 1,

#x (

{ }

{

, ) { }

α

α

α

α

α

α

α

α

= ∈ ∈ × −

= ∈ ∈ ×

= ∈ ∈ × −

= ∈ ∈ ×

















p

p

A

i A
p p

A
p p

i A

d

n

n x a a

x a a i

x

d

a a

a a i

and

1+ −

=

= ∑
pi p

i k
k pi

D d

for 0∈i

Lemma 2.4. Let A be a nilpotent F -algebra generated by {a1, a2}. 
Then:

( )
1 2

0 1 2

(p)
1 2 1 2

( ) | ( , ) | 1 dim .

( ) | ( , ) | 1 dim .

( ) { ( , ) |1 ( , )}isα α

+ + = = +

+ + = = +

≠ ∈

p p

p p p p

i a a A

ii D D a a A

iii The set x a a x a a abasis of A

d d

 

Eggert's Conjecture for 2-generated Algebras
Let I ⊆ Rx + Ry be an ideal in R such that A = Rx + Ry/I is a non-

zero nilpotent F -algebra.

We have A =   ,    + +x I y I  and A(p) =   ,    + +p px I y I .

By definition of A(x + I; y + I) there are fi∈Rx + Ry, 0≤ i ≤ n0 + 1, 
such that m(fi) = x(i,di), fi ∈I and fi are normal.

The main idea of the proof lies in the fact that taking a normal 
polynomial from I, dividing it by x and then multiplying by some 
suitable yk, we get again a member of I (3.3). Then, using binomial 
formula in a suitable way, we obtain a polynomial that will estimate the 
number id z (see 3.4 and the definition of ( ) 1 2( , )p

p p
A

a a .)

Lemma 3.1.	 (i) 0 0
0

1
0 0 0 1, , +

+= − ∈ =d n
ny x where R a fnd xf h h .

(ii) 01 1 00, , .+ +∈ + + = …i i nxf f fR R for i n

Definition 3.2. Denote

wA = max A(x + I, y + I).

For 00 ≤ ≤i n denote

0∈im

the least integer such that pi ≤ mi ≤ pi + p-1 and dpi ≥ …≥ dmi = dmi+1 
= …= dpi+p-1. Put

1

( 1) ( 1) .( )
−

=

= − − −∑
i

i

m

i k m
k pi

l d p d 	

Following lemma is obtained using induction.

 Lemma 3.3. Let 1≤ i ≤ n0 + 1 and 0 ≠ f ∈ I be such that m(f) xi. Then 
y d

i-1
-1(f / x) + I ∈[wA + I].

The proof of the next proposition uses only the binomial formula. 
It finds the particular polynomial the we need to make an estimation of 
the numbers Di and thus of the dimension of A(p).

Proposition 3.4.

0

0

1
0

(i) 0 0, ( / ) [ ]

(ii) 0 0, ( / )

(iii) , [ ].−

≤ < ≥ + ∈ +

≤ < < ∈

= + ∈ +

i i
i

i
i

i

l mpi p
i m A

mpi p
i m

pD i
A

If i and l then y x f x I w I

If i and l then x f x I

If i then y x I wn I

n

n

Now, only exploring carefully the previous cases for i and li we get 
the following interesting claim. It says that the inequality " ≤i ipd D " 
holds for almost every i.

Theorem 3.5. One of the following cases takes place:

0 0

0

0

0

0

0

0

0

0

(i) 2 1 0 . ,

1 0

(ii) 1 0

≤ + − ≤ + ≤ <

= + ≤ <

≤ + − ≤ ≤ <

i i

i i

i i

n n

n n

p D p and p D for every i Moreover

p D for at most one i

p D p and p D for ever

d d

d y

n

d i

n

d

n

 

And our main result is just an easy corollary of this and 1.1.

Theorem 3.6. Let A be a nilpotent F -algebra, char F=p>0, such that 
A(p) is 2-generated. Then p·dim A(p) dim A.
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