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Introduction
Environmental hormones (EHs) are compounds present in the 

environment which can interfere with normal metabolic activities 
in organisms [1-5]. EHs are divided into two major heads namely, 
degradation-resistant organic halogens, which includes pesticides, 
industrial compounds, heavy metals, organic solvents, estrogens, and 
second category includes plant growth regulating agents [6,7]. EHs 
can cause disorders in organisms (animals), such as cancer, genetic 
mutations, obesity, infertility, Alzheimer's disease and Schizophrenia 
[2,4-8]. However, little is known regarding the harm EHs pose toward 
plants.

Current researchers who study EHs impact on organisms continue 
to increase, and have mainly focused on the influence of heavy metals 
on aquatic animals and plants [9-12], pesticides on insects [11], and EHs 
on organism genotoxicity [5]. The plasticizers, BPA for clear plastics and 
PAEs in hard plastics, have some estrogenic activity and anti-androgenic 
activity [4]. With the improvement of living standards, plasticizers such 
as BPA and PAEs are appearing more frequently in our daily lives, and 
their impacts to organisms are becoming increasingly prominent [4]. 
BPA and PAEs mimic the functions of estrogens and anti-androgens 
[4]. Nonyl phenol (NP), BPA, EE (17α- ethinyl estradiol) and DEHP 
(one type of PAEs) treatments caused a significant increase of HSP70 
in chironomids (Chironomus tentans) [11]. With the exception to heavy 
metals researchers, there are few current researchers studying EHs in 
plants, and whether BPA and PAEs impact spinach remains unknown.

Plants experiencing adversity can produce some novelty proteins or 
shut down some proteins biosynthesis to resist the impact of a single 
stress or combined stress [13-15]. Although heat shock proteins (HSPs) 
were discovered and named after their response to thermal stress 
[16], HSPs are not only regulated by temperature stress, but induced 
by a range of other environmental stress, such as salinity, cold and 
heavy metals [17]. Generally it is agreed with that HSPs (especially the 
HSP70 and HSP90 families) play an important role in alleviating the 
damage caused by various environmental stresses [13,18]. HSPs can be 
divided into five major families: HSP100, HSP90, HSP70, HSP60 and 

small HSP family [19,20]. Among these families, HSP70 family is the 
highly conserved and the most researched gene family [11,15,17,20-
24]. Studies have demonstrated that heat stress [15,18-20,24-32], Cold 
stress [15,24,26,29,30], water stress [22,25,26,33,34], oxidative stresses 
[19,20,22], heavy metals [9,12,13,35], salt stress [13,19,20,22,34], light 
stress [27], and chemical contaminants [11,15,18,19,25,35-37], among 
others factors, can induce HSP70 [11,14,22,24,35-41]. In plants, 
HSP70 are categorized into four major subgroups based on the unique 
and highly conserved C-terminus motif, including the cytosolic, 
endoplasmic reticulum (ER), mitochondrion (MT) and chloroplast 
(CP) group [25,42]. However, studies support that HSP70 located 
specific subcellular has different responses to different environmental 
stresses [14]. The product of HSP70-9 located in chloroplasts in spinach 
[31]. Chloroplasts are the important organelles in plants and conduct 
the organic energy transformation from solar energy. Otherwise, many 
studies have shown that the activity and quantity of plant chloroplasts 
decreased under many stresses. So we want to study whether the HSP70-
9 mRNA expression changes under the conditions of BPA and PAEs 
pollution. 

Spinacia oleracea has broad leaves and rapid growth and is rich in 
metal elements and nutritional characteristics; therefore, this plant is an 
important vegetable in daily life [9,43]. We have selected BPA and PAEs to 
study in both single and combined contaminant conditions on spinach, 
measuring the HSP70-9 expression. The result may provide a reference 
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value for environment pollution control and ecological restoration and 
may be especially pertinent to the impact of environmental pollutants 
on crops.

Materials and Methods 
Preparation of EHs solutions of BPA and PAEs

The PAEs solution was prepared from DBP (dibutyl phthalate) and 
DEHP (diethylhexyl phthalate) by volume ratio of 9:1. Gradient dilution 
of the PAEs solution was used to obtain five concentrations (mg·L-1): 0, 
0.5, 5, 10, 50 (as specified in "Research of Chinese Environment PAEs 
Compounds Contamination and Soil Environmental Quality Standard"). 
The BPA solution was prepared using gradient dilution to obtain five 
concentrations (mg·L-1): 0, 0.05, 0.5, 5, 50 (as specified in "Summarize of 
Environmental Behavior for Typical Environmental Hormones BPA"). 
We carried out a pairwise comparison of the combined BPA and PAEs 
solution with the BPA and PAEs single solutions. There were 25 group-
solutions of BPA and PAEs single solutions and combined solutions, as 
shown in Table 1. All of the solutions were sterilized for 20 min at 120°C 
and used for treatment after cooling.

Plant materials

Spinach (Spinacia oleracea L.) seeds were purchased from the 
Shenyang Agricultural University seed company in China. The seeds 
were disinfected in 0.1% KMnO4 for 15 min and rinsed with distilled 
water. Dried seeds were cultured in an intelligent light incubator and 
fertilized with 25 different concentrations of EH solutions. The culture 
temperature was 15°C ± 1°C and 12 h light after 12 h dark. Approximately 
4 weeks later, experiments were initiated when the seedlings developed 
to their true leaf stage.

RNA extraction and RT-PCR

Total RNA was extracted from different Spinach leaf samples 
with Trizol Reagent (BioTeke Biotechnologies Inc., Beijing, China). 
We prepared the RNA according to the method recommended by 
manufacturers (Tiangen Biotech (Beijing) Co., Ltd., Beijing, China). 
The cDNA strand was synthesized resulting in a final volume of 20 μL, 
including 1 μL total RNA, 5 × 2 μL gDNA Buffer, 10 × 2 μL Fast RT 
Buffer, 1 μL RT Enzyme Mix, 2 μL FQ-RT Primer Mix, and 12 μL DEPC-
treated water. The RT-PCR products were used for qPCR or stored at 
-20°C.

qPCR

All qPCR primers were designed using Primer Premier 5 and Oligo 
7 software (Table 2), and synthesized by Shanghai Sangon Corporation 
(all primers had their purity qualified by mass spectrometry). 

qPCR was used to detect the gene expression of Spinach HSP70-9. 
16s rRNA was used as the reference. The PCR mix had a total volume 

of 20 μL, containing 0.5 μL cDNA, 0.4 μL of 10 μM forward primer, 0.4 
μL of 10 μM reverse primer, 10 μL of 2x Power SYBR Real-timePCR 
Premixture (BioTeke Biotechnologies Inc., Beijing, China), and 8.7 μL 
sterile water. The reaction program was as follows: initial denaturation 
at 95°C for 2 min, 45 cycles at 95°C for 20 sec, 56°C for 20 sec, 72°C 
for 20 sec. The melting curve procedure was as follows: denaturation at 
95°C for 15 sec, and an increase of 65°C up to 95°C at a rate of 0.5°C/s. 
PCR amplification was performed in the ABI StepOne™ Real-Time PCR 
System (ThermoFisher, USA).

The 2-ΔΔCT method was used to calculate the resulting data [44]. 
The experimental results were performed by SPSS 18.0 (SPSS Inc., 
USA) software for One-Way ANOVA and the LSD (Least Significant 
Difference) test was used to compare the differences among means 
of treatments. Differences were considered statistically significant at 
P<0.05 and very significant at P<0.01.

Results
Spinach HSP70-9 expression influenced by single pollutants 
of BPA and PAEs

To test whether spinach HSP70-9 gene expression was regulated 
by BPA and/or PAEs, total RNA was isolated from spinach seedling, 
which had been treated (except the control) with BPA and/or PAEs and 
subjected to RT-qPCR. Figure 1 shows the relative levels of Spinacia 
oleracea HSP70-9 expression when influenced by BPA (A) and PAE (B) 
single pollution. These results indicate that HSP70-9 exhibits similar 
expression patterns under the single BPA and PAEs contaminant 
treatments, and HSP70-9 is significantly downregulated when exposed 
to both. Moreover, when the same HSP70-9 exposed to the single BPA 
pollution treatment (Figure 1A) and single PAEs pollution treatment 
(Figure 1B), with the exception of the B5 treatment group, HSP70-9 
has been shown to significantly downregulated in the treatment groups 
compared with the control groups. In addition, with the exception of 
B50 treatment group, the expression level of HSP70-9 increased with the 
increase of EHs concentration in each treatment group. Finally, HSP70-
9 has minimal expression under the B50 and P0.5 concentrations.

Spinach HSP70-9 expression influenced by combined 
pollutants of BPA and PAEs

In general, environmental pollutants usually coexist together with 
other environmental pollutants. So it is interesting to study the combined 
effects of BPA and PAEs on spinach seedling. The relative expressions of 
spinach HSP70-9 appear to be influenced by the treatment of combined 
BPA and PAE contaminant (Figure 2A-2D). All groups showed the same 
downregulated expression patterns. In addition, the expression level 
of HSP70-9 increased with the increase of EHs concentration in each 
treatment group. Finally, HSP70-9 has minimal expression under the 
P0.5B0.05, P5B0.05, P10B0.05 and P50B0.5 combined pollutions.

Discussion
As a category of environmental pollutants, EHs are bound to affect EHs Solutions/mg·L-1 BPA

PAEs

P0B0 B0.05 B0.5 B5 B50

P0.5 P0.5B0.05 P0.5B0.5 P0.5B5 P0.5B50

P5 P5B0.05 P5B0.5 P5B5 P5B50

P10 P10B0.05 P10B0.5 P10B5 P10B50

P50 P50B0.05 P50B0.5 P50B5 P50B50

The letters B and P mean BPA and PAEs respectively and subscripts indicate 
concentrations. Such as, P0.5 is as a representative of PAEs single contamination of 
0.5 mg·L-1; P0.5B0.05 is as a representatives of PAEs and BPA combined pollution with 
concentrations of 0.5 mg·L-1 and 0.05 mg·L-1. The same to that are below.

Table 1: Preparation of different concentrations solution for BPA and PAEs.

Gene Sequence (5'-3') Length, 
bp

Product, 
bp GenBank ID

HSP70-
9

F: CTTCTATTGGATGTTGCACCT 20
187 AF035456

R: TAAGATCGAATTTCCCGAGA 21

16S 
rRNA

F: 
CCCAACGTCAGTTTTTCTATTTTGA 25

72
J01440(Chen 
and Arora, 
2014)R: CCACGAGCCTCTTATTCATTCTC 23

F: Forward; R: Reverse.
Table 2: Primer sequences for the qPCR amplification of specific genes.
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the expression (up or down regulation) of certain genes in organisms 
living in harmful environments, whether directly or indirectly 
[11]. It may therefore be reasonable to assume that there are genetic 
mechanisms that resist or adapt to this type of adverse environment. 
However, each organism experiences distinct pathways for genetic 
inheritance and evolution, so EHs-induced expression varies among 
genes, gene number and the forms of impact.

Traditionally, the impact of environmental stressors on plants 
is studied mainly by measuring plant height, root length, biomass 

and various methods for determining physiological and biochemical 
parameters. However, many recent studies on plant stress have been 
carried out using molecular biology techniques [29,45,46]. In this paper, 
a more sensitive molecular biology method, RT-qPCR, was used in the 
present study to detect spinach HSP70-9 expression at a transcriptional 
level in response to single and combined treatments of EHs.

Lee  et al. suggested that, the response of the HSP70 expression 
by BPA and DEHP (one of PAEs) exposure was sensitive to low 
concentrations in Chironomus tentans [11]. Duan et al. found that 

Figure 1: Relative levels of Spinacia oleracea HSP70-9 expression when influenced by BPA (A) and PAE (B) single pollution.

Figure 2: Relative expressions of spinach HSP70-9 appear to be influenced by the treatment of combined BPA and PAE contaminant.
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salicylic acid (SA), ethylene (ET) and abscisic acid (ABA) treatments 
had no influence on chloroplastic HSP70 expression in wheat [18]. 
Spinach HSP70 have sensitive response to heat [26-28,32], cold [28,47], 
water [26], wound [26] and heavy metal stress [9,12]. As showed in 
Figure 1 and Figure 2, the present study quantitatively analyzed the 
expression of spinach HSP70-9 at the transcriptional level in response 
to the EHs, BPA and PAEs in both single and combined pollution 
treatments. The HSP70-9 expression in all treatment groups were all 
downregulated compared with the control groups.

Plants treated by EHs or other stress have a decrease of chlorophyll 
content, biomass [9,12,22,48,49]. It is suggested that the plant life 
activities have been seriously affected in the adverse environment. 
Researchers suppose that chloroplast has damaged since the chlorophyll 
content decreased and newly synthesized chloroplastic HSP70 may fail 
to enter chloroplasts after stress and may be degraded in the cytoplasm 
[31]. Thus, the downregulated expression of spinach HSP70-9 which 
located in chloroplast seems to be reasonable.

Although HSP70 members share a conserved structure and a similar 
mechanism, they have different mechanisms in forming chaperone 
complexes and performing their function in stress [30,50]. The specific 
roles of individual HSP70 proteins are likely to be determined by their 
location in different subcellular compartments [17,30], the cytosolic 
HSP70 prevents protein aggregation, assists de novo protein folding and 
maintains the organellar precursor proteins in an import-competent 
stage, and the ER, mitochondrial and chloroplastic HSP70 proteins are 
involved in precursor protein import and translocation [23,31,51,52]. 
So we assume that organelles and cytosolic HSP70 of Spinacia oleracea 
possibly work through different molecular mechanisms in responding 
to specific stress.

As a chaperone molecule, HSP70 performs various functions, 
such as folding unfolded proteins, targeting and degrading denatured 
proteins, monitoring proteins for correct folding, and transporting 
and positioning the precursors of mature proteins [17,53]. Masand et 
al. found that, proteolytic activity was significantly increased in wild 
type compared to transgenic plants under different abiotic stresses 
in Arabidopsis thaliana [22]. The total protein is decreased under the 
treatment by BPA and PAEs single and combined solutions in Glycine 
max (data not show). Heavy metal concentrations also had a significant 
adverse impact on total protein in Spinacia oleracea [9]. As shown in 
Figure 1, the spinach HSP70-9 expression shows an upward trend as 
BPA and PAEs concentrations increase. This finding suggests that the 
increased EHs lead to the denaturation of spinach seedling proteins. 
Since chaperone proteins may play a vital role in the cell homeostasis, 
the increased expression of HSP70-9 could indicate chaperone proteins’ 
role in restoring denatured proteins and preventing the degeneration of 
aggregated proteins [46], among other functions, after exposure to EHs.

Research shows that the impacts caused by combined pollutants 
were more serious than a single pollution [1]. Furthermore, the 
coexistence of various EHs is a current environmental issue. Therefore, 
it is necessary to study the environmental impacts of combined EH 
pollutants on plants. Figure 2 shows the spinach HSP70-9 expression 
on transcriptional level under BPA and PAEs combined contaminants. 
It shows similar expression patterns to the expression patterns displayed 
under single EH pollutions. The study of heavy metals pollutants 
treatments on spinach, including Cd, Pb and Zn, suggest that the impact 
of combined pollution is stronger than that of single pollutions, but 
weaker than the mathematical addition of two single pollutions’ impact 
[9]. A study of Cd and NaCl pollutants suggest that the expression of 

spinach HSP70 is significantly increased under the combined pollution, 
but unchanged under either individual pollution [13]. Comparing 
Figure 1 and Figure 2, HSP70-9 expression under combined pollutants 
appears lower than expression in response to single pollutions, with 
the exception of the P10 BPA. This finding suggests that spinach uses 
different mechanisms to respond to combined and single EHs pollution 
[13], but the same response protein in both mechanisms is HSP70. 
The induction of HSP70 under environmental stress is regulated by 
heat shock transcription factors (HSF) and corresponding heat shock 
elements (HSE) in the promoters [24]. Therefore, it is necessary to 
study the mechanism of HSP70 in response to environmental stress 
from the molecular level by further study the interaction between HSF, 
HSE and HSP70.

Spinach response and resistance to these environmental stressors 
not only depend on specific proteins or signaling pathways, but the 
combined effects of a variety of proteins and signaling pathways [13]. 
Meanwhile, with the large variety of EHs and the wide functional 
range of pollutions, it is presumable that, the long-term effects of EHs 
on organisms will be a long and difficult task. Therefore, genomics, 
transcriptomics, proteomics and other similar methods should be used 
to explore the single and combined pollution response mechanisms of 
plants.

Conclusions 
In this study, two common EHs, BPA and PAEs, were used to 

detect the expression of spinach HSP70-9 using RT-qPCR under 
different concentrations of single and combined pollution conditions. 
The results show that under BPA and PAEs, single contaminant 
conditions, spinach HSP70-9 expression shows an overall trend 
toward downregulation. Under the combined BPA and PAEs treatment 
conditions, all treated groups also presented downregulated HSP70-
9 expressions; however, spinach HSP70-9 expression was higher in 
combined pollutant conditions than in single pollution conditions. 
As a type of responsive protein, spinach HSP70 has an important role 
in the resistance and adaptation mechanisms responding to adverse 
environments containing BPA and PAEs. 
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