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Introduction
Free convective flow with variable viscosity and thermal 

conductivity of many fluids varying with temperature have received 
great attention from researchers as a result of their real life applications 
in engineering such as chemical, geothermal systems, crude oil 
extraction, machinery lubrication and biochemical industries. Konch 
and Hazarika [1] studied the effects of variable viscosity and thermal 
conductivity on MHD free convective flow of dusty fluid along a vertical 
stretching sheet with heat generation using fourth order Runge-Kutta 
shooting method. Results from the above work shows that increasing 
variable viscosity decreases fluid viscosity while fluid velocity increases 
with increase in thermal conductivity. Hossain et al. [2] investigated 
the effect of variable viscosity and thermal conductivity on natural 
convection over an isothermal vertical wavy cone using a very efficient 
implicit finite difference method. Munir and Gorla [3] have considered 
a two dimensional mixed convection flow of a viscous incompressible 
fluid of temperature dependent viscosity and thermal conductivity 
past a vertical impermeable flat plate using a perturbation technique. 
Variable viscosity and thermal conductivity effects on heat transfer 
by natural convection from a cone and a wedge have been analyzed 
numerically using the finite difference scheme by Hassanien et al. 
[4]. Ozalp and Selim [5] presented the influence of variable thermal 
conductivity and viscosity for non-isothermal fluid flow. In the above 
work, the viscosity and thermal conductivity exhibit linear temperature 
dependence and is solved iteratively using chebyshev Pseudo spectral 
method. Attia [6] investigated the unsteady hydro magnetic channel 
flow of dusty fluid with temperature dependent viscosity and thermal 
conductivity numerically. Recently, free convection flow along a 
vertical flat plate with thermal conductivity and viscosity depending 
on temperature have been investigated by Nasrin and Alim [7] using 
implicit finite difference method with Keller-Box scheme . Choudhury 
and Hazarika [8] investigated the influence of variable viscosity and 
thermal conductivity on MHD flow due to a point sink numerically 
using shooting method. From the above work, the variable viscosity 
and thermal conductivity parameters have substantial effects on 
velocity field as well as on the drag and heat transfer characteristic 
within the boundary layer due to point sink. The effects of varying 
viscosity and thermal conductivity on steady MHD free convective flow 
and heat transfer along an isothermal plate with heat generation have 

been studied by Sharma and Singh [9]. They observed that the varying 
viscosity and thermal conductivity modifies the flow of fluid and the 
governing differential equations were solved using the Runge kutta 
fourth order technique along with shooting method. More so, Mahanti 
and Gaur [10] investigated the effects of linearly varying viscosity 
and thermal conductivity on steady free convective flow of a viscous 
incompressible fluid along an isothermal vertical plate in the presence 
of heat sink. The Runge-Kutta fourth order method with shooting 
technique was used to solve the nonlinear differential equation. Molla 
and Gorla [11] investigated natural convection laminar flow with 
temperature dependent viscosity and thermal conductivity along a 
vertical wavy surface. They considered the boundary layer regime when 
the Grashof number Gr is large and the governing equations were 
solved employing the implicit finite difference method together with 
Keller-Box scheme. Numerical study on a vertical plate with variable 
viscosity and thermal conductivity was carried out by Palani and Kim 
[12] using a very efficient implicit finite difference scheme known
as Crank-Nicolson scheme. Ashraf et al. [13] presented a numerical
solution for the problem of steady two dimensional boundary layer
buoyancy flows on a vertical magnetized surface when both the
viscosity and thermal conductivity are assumed to be temperature
dependent. More recently, Keimanesh and Aghanajafi [14] studied the
effect of temperature dependent viscosity and thermal conductivity on
micro polar fluid using the shooting method and forth-order Runge-
Kutta method.

Several solution techniques have been derived to solve nonlinear 
and coupled equations. Some of them employed numerical techniques 
such as Runge-kutta shooting method, finite difference and finite 
elements methods. Other techniques are approximate analytical 
solution techniques which include perturbation, Homotopy 
Perturbation Technique, Adomian Decomposition Technique, He-
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Abstract
In this study, effects of variable viscosity and thermal conductivity on natural convection flow through a vertical 

channel are investigated. The governing equations are transformed into a set of coupled nonlinear ordinary differential 
equations. The transformed equations are solved using Differential Transformation Method (DTM). Results obtained 
were compared with exact and numerical methods. The influence of the flow parameters on fluid temperature, 
concentration and velocity are presented graphically. From the course of investigation, it was revealed that fluid 
temperature increases within the channel with increasing viscosity and thermal conductivity. In addition, results from 
DTM show an excellent agreement with results obtained from exact and numerical method.
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Laplace technique and Differential Transformation Method. The 
DTM technique is accurate and more efficient and requires less 
computational effort in comparison to other methods mentioned 
above. The Differential Transformation Method (DTM) is a powerful 
mathematical tool for solving systems of linear and nonlinear 
differential equations and requires significantly less computational 
resources. Zhou [15] first introduced the differential transformation 
method for solving linear and nonlinear initial value problems in an 
electrical circuit theory. Chen and Ho [16] developed the differential 
transformation method for partial differential equations and developed 
a closed form series solutions for linear and nonlinear initial value 
problems. Umavathi and Shekar [17] studied the combined effect of 
variable viscosity and thermal conductivity on free convection flow of a 
viscous fluid in a vertical channel using the differential transformation 
method. Jha and Ajibade [18] investigated free convection heat 
and mass transfer flow in a vertical channel with Dufour effect. The 
investigation carried out reveals that the steady state of the problem is 
independent of the Dufour effect. This present work investigates the 
effect of temperature dependent viscosity and thermal conductivity on 
the steady state of Jha and Ajibade [18] with heat source and chemical 
reaction effects

Mathematical Formulation
The system under consideration is a laminar non-isothermal 

flow of an incompressible fluid between two vertical parallel plates 
positioned at y′=0 and y′=h with uniform temperature T1 (hot wall) 
and T2 (cold wall). The flow is assumed to be in the x′-direction which 
is taken vertically upward along the vertical plates and the y′-axis is 
taken normal to the plates as shown in Figure 1. Since the plates are 
infinite in lengths, the velocity, temperature and concentration fields 
are function of y′ only.

All fluid properties are considered constant except the influence 
of variable viscosity, thermal conductivity and density variation with 
temperature. In addition, the influence of density and expansion 
coefficient variation in terms in the momentum and energy equations 
are negligible. The steady natural convection fully developed flow in a 
vertical channel under the usual Boussinesq approximation is governed 
by the following equations:

'
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The boundary conditions to the governing equations are:
' ' ' ' ' '

1 1
' ' ' ' ' '

2 2

 0, , 0

0, ,

    

  

u T T C C ya
u T T C C y h

t
at

= = = =

= = = =
              (4)

Introducing the following non-dimensional quantities:
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Where Pr is the Prandtl number, N is buoyancy parameter, Sc is 
the Schmidt number. Kc is the chemical reaction parameter and Q is the 
heat source parameter.

Following (Umavathi and Shekar [17]), the fluid viscosity (µ) is 
assumed to vary linearly as a function of temperature in the form:

' '
0 2[1 ( )]a T Tµ µ= − −                    (6)

In general, (a<0) for gases and (a>0) for liquids. Where a is the 
dimension of k-1 and eqn. (6) can be rewritten in the form:

0 (1 )µ µ λθ= −                (7)

Where ' '
1 2( )a T Tλ = − .

Similarly, following (Anjali and Prakash [19]), the fluid conductivity 
(k) is assumed to vary linearly as a function of temperature in the form: 

' '
0 2[1 ( )]k k b T T= + −                      (8)

In general, (b>0) for fluids such as water and gases while (b<0) for 
fluids such as lubricating oils. Where b is the dimension of K-1 and eqn. 
(8) can be rewritten in the form:

0 (1 )K k γθ= +                       (9)

Where γ=b(T′1-T′2). In addition, the range of variation of γ can be
taken as follows (Schlichting and Gerstenk [20]) for air 0 ≤ γ ≤ 6 for 
water 0 ≤ γ ≤ 0.12 and for lubrication oil -0.1 ≤ γ ≤ 0.µ0 and k0 are 
constants when the temperature is T2. The reference temperature is 
taken to be T2.

Using eqn. (5), eqn. (7) and eqn. (9), eqns. (1)-(4) reduces to:
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The reduced boundary conditions are:

u=0, θ=1, C=1 at y=0

u=0, θ=0, C=0 at y=1                 (13)
Figure 1: Schematic diagram of fluid flow.
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Differential Transformation Method
We define the transformation of the kth derivative of a function as:

0
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Where f(η) is the original function and F(k) is the transformed 
function. The differential inverse transform of F(k) is given by:
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The concept of differential transformation is derived from a Taylor 
series expansion and in real applications, the function f(η) is expressed 
by a finite series as follows:
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Where the value of m is decided by the convergence of the series 
coefficient. The operations performed by differential Transformation 
Method (DTM) are listed in Table 1 (Rashidi et al. [21]).

Solution with Differential Transformation Method
Taking the differential transforms of eqns. (10)-(13), we obtain the 

following:
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Where ( )U k , ( )kθ  and ( )C k  are the differential transform of 
U(y),θ(y) and C(y) respectively. The transformed boundary conditions 
are:

 (0) 0, (1) , (0) 1, (1) , (0) 1, (1)U U a b C C cθ θ= = = = = =                (20)

 Where a, b, and c are constants which are computed from the 
boundary conditions in eqn. (13). The above equations for temperature, 
velocity and concentration are solved and the results obtained are 
presented graphically from Figures 2-9, and numerically from Tables 
2 and 3 for different governing parameters.

Skin Friction
The dimensionless skin friction for the hot plate (y=0) and the cold 

plate (y=1) are given by:

0
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Results for the skin friction on both boundary walls are presented 
on Tables 3 and 4

Heat Transfer
The dimensionless nusselt number for the hot plate (y=0) and the 

cold plate (y=1) are given by:

Figure 2: Temperature profile for binary mixture of carbon dioxide in air 
different values of viscosity parameter [γ=2, Kc=0.7, N=1, Q=0.5].
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Table 1: Operations of differential transformation method.
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Results for the nusselt number on both boundary walls are 
presented on Tables 3 and 4.

Volumetric Flow Rate
The volumetric flow rate of the fluid velocity is given by:

( )V u y dy∫               (23)

Also, results for the volumetric flow rate are presented on Tables 
3 and 4.

Figure 3: Velocity profile for binary mixture of carbon dioxide in air different 
values of viscosity parameter [γ=2, Kc=0.7, N=1, Q=0.5].

=-0.1, -0.3, -0.5, -0.7, -0.9 

Figure 4: Temperature Profile for binary mixture of carbon dioxide in air for 
different values of thermal conductivity parameter [λ=-0.001, Kc=0.7, N=1, 
Q=0.5].

1.5, 2.0, 2.5, 3.0, 3.5 

y DTM Exact Numerical
0 0.0000000 0.0000000 0.0000000

0.25 0.1081620 0.1081620 0.1081620
0.5 0.1233825 0.1233825 0.1233825

0.75 0.0770296 0.0770296 0.0770296
1.0 0.0000000 0.0000000 0.0000000

Table 2: Comparison of Velocity between the present method (DTM) with Exact 
method and Numerical method when λ=γ=0.

Figure 5: Velocity profile for binary mixture of carbon dioxide in air for different 
values of thermal conductivity parameter [λ=-0.001, Kc=0.7, N=1, Q=0.5].

1.5, 2.0, 2.5, 3.0, 3.5 

Figure 6: Temperature profile for binary mixture of carbon dioxide in air 
different values of heat source parameter [γ=2, Kc=0.7, N=1, λ=-0.001].

0.5, 1.0, 1.5, 2.0, 2.5 

Figure 7: Velocity profile for binary mixture of carbon dioxide in air different 
values of heat source parameter [γ=2, Kc=0.7, N=1, λ=-0.001].

0.5, 1.0, 1.5, 2.0, 2.5 
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Validation of Result
In order to verify the accuracy of the present method (DTM), the 

results for the skin friction at both boundary walls are compared with 
those reported earlier by Jha and Ajibade [18] when df=λ=γ=Q=Kc=0. 
The results of this comparison are shown in Table 5. It can be seen from 
the table that excellent agreement between the results exist.

Convergence of the Differential Transformation Method 
(DTM)

Following Abayomi [22], Differential Transformation Method 
(DTM) converges to exact solution when the problem is linear. 
Comparison of the Differential Transformation Method (DTM) with 
exact and numerical methods was carried out on temperature, velocity 
and concentration fields for different values between the boundary 
walls in this work. From Table 2, results from the DTM shows a strong 
convergence with results obtained from both exact and numerical 
methods when viscosity and thermal conductivity parameters are zero. 
Table 3 also revealed a strong convergence to seven decimal places of 
the Differential transformation Method (DTM) with the numerical 
method for different governing parameters.

Results and Discussions
This present article shows the combined effects of temperature 

dependent viscosity and thermal conductivity on natural convection 
flow in a vertical channel. The nonlinear coupled governing equations 
have been solved by Differential Transformation Method (DTM) to 
obtain results for temperature, velocity and concentration fields. In 
addition, the exact and numerical methods are also considered for 
comparison with the differential transformation method. For the 
purpose of discussion, the temperature, velocity and concentration 
fields are presented graphically for different values of the governing 
parameters. The values of Prandtl number and Schmidt number are 
chosen to be Pr=0.71 (air) and Sc=0.94 (carbon dioxide). Therefore, 
throughout this discussion, the fluid considered is a binary mixture of 
CO2 in air.

Figures 2 and 3 shows the effect of variable viscosity parameter λ 
(λ<0 for gas). It is observed from these figures that increasing viscosity 
increases fluid temperature while fluid velocity decreases within the 
channel. This is expected since increasing (λ) leads to an increase in the 
fluid viscosity. Increasing fluid viscosity poses a hindrance to thermal 
diffusivity thereby causing heat accumulation leading to increase in 
fluid temperature.

The effect of thermal conductivity parameter (γ) is shown in 
Figures 4 and 5. It is noticed that fluid temperature and velocity 
increases with increasing values of thermal conductivity parameter 
within the channel. This is expected since temperature within the fluid 
increases as a result of increase in thermal conductivity. This causes 
convection currents to be strengthened so that fluid velocity increases 
with increase in the thermal conductivity.

The effect of heat source parameter (Q) is illustrated in Figures 6 and 
7. It is observed from the figures that increasing heat source (Q) causes 
the fluid temperature and velocity increases within the channel. This is
physically true since increasing the heat source parameter amplifies the 
applied temperature causing the fluid temperature to increase and also, 
it strengthens the convection current within the channel leading to an
increase in fluid velocity.

The influence of Buoyancy ratio parameter (N) and chemical 
reaction parameter (Kc) are depicted in Figures 8-10. It is observed 
from the figures that an increase in Buoyancy parameter increases fluid 

Figure 8: Velocity profile for binary mixture of carbon dioxide in air for different 
values of buoyancy parameter [γ=2, Kc=0.7, Q=0.5, λ=-0.001].

N=0.2, 0.4, 0.6, 0.8, 1.0 

γ DTM Numerical 
Temperature Velocity Concentration Temperature Velocity Concentration

0 1.0000000 0.0000000 1.0000000 1.0000000 0.0000000 1.0000000
0.25 0.7774816 0.1088784 0.7159855 0.7774816 0.1088783 0.7159855
0.5 0.5340656 0.1244578 0.4615169 0.5340655 0.1244577 0.4615170
0.75 0.2734412 0.0778339 0.2260934 0.2734411 0.0778338 0.2260934
1.0 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000 0.0000000

Table 3: Comparison of present method (DTM) with Numerical method when λ=-0.001, γ=0.1, N=1, Q=0.5and Kc=0.7.

Pr=0.71,Sc=0.94,N=1,Q=0.5,Kc=0.7,γ=2
λ Vm τ0 τ1 Nu0 Nu1

-0.1 0.10515185 0.77812318 0.59887651 1.19270141 7.65641144
-0.3 0.08954110 0.74526851 0.58266955 1.12640109 7.97885466
-0.5 0.06810047 0.63988109 0.45571188 1.06161803 8.32156071
-0.7 0.04545095 0.47002848 0.31742330 0.99852643 8.68771741
-0.9 0.02694521 0.25538257 0.28220541 0.93734380 9.08100149

Table 4: Computation of variation of mass flow rate, skin friction and Nusselt 
number for different value of viscosity parameter (λ).

N Jha and Ajibade [18], df=0  Present problem τ1

τ0 τ1 τ0 τ1

0 0.33333333 0.16666667 0.33333333 0.16666667
0.25 0.41666667 0.20833333 0.41666667 0.20833333
0.5 0.50000000 0.25000000 0.50000000 0.25000000
0.75 0.58333333 0.29166667 0.58333333 0.29166667
1.0 0.66666667 0.33333333 0.66666667 0.33333333

Table 5: Comparison of skin friction between the present method (DTM) and that of 
Jha and Ajibade [18] when λ=γ=Q=Kc=0 for different values of buoyancy parameter 
(N).
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velocity while increasing the chemical reaction parameter decreases 
both fluid velocity and temperature. The physical meaning of the 
observed trend is that growing N increases buoyancy due to mass 
transfer and hence, an increase in fluid velocity as shown in Figure 8. 
In addition, increasing the chemical reaction causes a decrease in fluid 
concentration and this weaken convection due to mass transfer which 
consequently decrease fluid velocity as shown in Figure 10.

Table 4 shows the skin friction, rate of heat transfer and the 
volumetric flow rate for different values of viscosity parameter(λ<0). 
On increasing the viscosity of the fluid, volumetric flow rate as well 
as skin friction decreases on the surface of both channel plates. Also, 
the rate of heat transfer decreases at the heated wall (y=0) while it 
increases at the cold wall (y=1) upon increasing the fluid viscosity. 
This is physically true since an increase in fluid viscosity causes a 
decrease in velocity which decreases the volumetric flow rate within 
the channel. The decrease in fluid velocity caused by growing viscosity 
is also responsible for decrease in skin friction on the boundary wall 
surfaces. The rate of heat transfer that decreases with growing viscosity 
is traceable to the temperature increase caused by increasing viscosity 
which decreases the temperature difference on the heated plate as well 

as increasing temperature difference on the surface of the cold plate.

Table 6 shows the skin friction, rate of heat transfer and the 
volumetric flow rate for different values of conductivity parameter 
(γ). On increasing fluid conductivity, volumetric flow rate increases 
while the skin friction decreases at the heated wall (y=0) and cold 
wall (y=1). Also, the rate of heat transfer increases at the heated wall 
(y=0) while it decreases at the cold wall (y=1) upon increasing the 
fluid conductivity. This is hinged on the physical fact that an increase 
in thermal conductivity enhances the thermodynamics within the 
channel and this act to decrease heat flux into the channel from the 
heated boundary. It also act to increase the heat transfer from the 
heated fluid to the cold plate. The increase in temperature due to 
increase in thermal conductivity also help to strengthen the convection 
current and increase the velocity so that the mass flux and skin friction 
increase on both plates.

Conclusion
In this study, the influence of temperature dependent viscosity and 

thermal conductivity on natural convection flow through a vertical 
channel was considered. The governing equations for temperature, 
velocity and concentration fields were solved analytically using the 
differential transformation method. The results were verified with 
results from the exact and numerical methods, excellent agreement 
was observed. The results of fluid flow within the channel reveals the 
following:

1. Increasing fluid viscosity increases fluid temperature within
the channel while it decreases fluid velocity.

2. Skin friction increases with increase in thermal conductivity of
the working fluid.

3. At the cold wall, the rate of heat transfer increases with increase 
in fluid viscosity.

4. The volumetric flow rate can be controlled effectively using the 
variations in viscosity as well as thermal conductivity of the
working fluid.
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