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Introduction
The input of oil to the ocean from all sources has been estimated 

to total roughly 1.3 million tonnes y–1 [1]. The source of about half of 
that oil is believed to be several hundred naturally occurring seeps, 
most of which occur near continental coastlines. The remaining inputs 
are traceable to anthropogenic sources, and historically the most 
noteworthy of those inputs have involved crude oil. The quantity of 
oil discharged to the ocean annually as a result of tanker accidents, 
for example, averaged several hundred thousand tonnes during the 
1970s and 1980s. Those discharges declined dramatically following 
the grounding of the Exxon Valdez in 1989 and passage by the United 
States Congress of the Oil Pollution Act of 1990. Annual discharges 
from tanker accidents averaged only 21,000 tonnes from 2000 to 2009 
and have averaged only 5000 tonnes since 2010 [2]. Unfortunately, 
discharges of only a few hundred tonnes of oil can have devastating 
effects on marine ecosystems if the oil is discharged close to shore and is 
mixed by physical processes into the water and sediments [3,4].

Although much of the literature on the impacts of oil spills on 
marine organisms has concerned macrofauna [5-8], the impact of 
spilled oil on plants is potentially quite serious because plants are 
important determinants of the physical stability and resilience of coastal 
marine ecosystems [3], and of course photosynthetic organisms are 
responsible for producing much of the organic carbon that provides 
biomass and energy for the heterotrophic community. Although 
macrophytes such as Spartina alterniflora and Juncus roemerianus 
account for much of the resilience of salt marshes to perturbations 
such as hurricane storm surges, carbon and sulfur stable isotope studies 
have shown that the organic carbon in primary consumers in the Great 
Sippewissett marsh in Massachusetts and the Sapelo Island marsh in 
Georgia are derived about equally from Spartina and phytoplankton 
[9,10]. Assessment of the impact of spilled oil on coastal marine and 
wetland food chains therefore requires consideration of the effects of 
the oil on phytoplankton communities.

Several previous studies have examined the effects on individual 
phytoplankton species of crude oil [11-17], various components of crude 
oil [18-23], and refined oil products [23-27]. The general implication 
of these studies has been that low concentrations of crude oil or 
components thereof stimulate photosynthesis by some species [13,19,23] 
but have no positive effect on other species. High concentrations are 

invariably inhibitory. The extent of inhibitory effects depends very 
much on the composition of the oil. Analogous studies have examined 
the effects on natural phytoplankton communities of crude oil [28-34], 
pyrene [35], and fuel oil [23,29,36,37]. The results of those studies have 
been generally consistent with the studies on individual species. Low 
concentrations of oil apparently have a positive effect on at least some 
components of natural phytoplankton communities [29-31,37], whereas 
high concentrations are invariably inhibitory. Remarkably, Varela et 
al. [36] detected few if any adverse effects of the Prestige oil spill on 
plankton communities off the northwestern coast of Spain, although the 
sunken tanker released an estimated 63,000 tons of fuel oil and polluted 
thousands of kilometers of coastline. The goal of the present study was 
to determine the effect of crude oil from the Macondo oil well in the 
Mississippi Canyon block 252 of the Gulf of Mexico on natural coastal 
marine phytoplankton communities. Macondo oil is a light crude oil 
with an API gravity of 40 [38], and its solubility in seawater at 25°C 
should therefore exceed 55 mg L–1 [39].

Materials and Methods
Sample collection

Coastal water samples were collected in clean polycarbonate bottles 
from just below the surface at Grand Isle, Louisiana (29.2278°N, 
90.0122°W) during the months of February, March, April, May, July, and 
August of 2013. The water was passed through 35-micron mesh netting 
to eliminate large zooplankton grazers. Temperature was recorded to 
the nearest 0.1°C at the time of collection with a digital thermometer. 
Salinity was measured to the nearest 1 in the laboratory with an Extech 
model RF20 refractometer. Water samples were transported promptly 
to the laboratory for the initiation of growth rate measurements.
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Sample preparation and analysis

Two mL aliquots of sample water were added to 300-mL, clear-
glass biochemical oxygen demand (BOD) bottles containing artificial 
seawater medium (Instant Ocean) amended with f/2 nutrients [40,41] 
and various concentrations of Macondo oil. The algal cultures were 
grown at a temperature of 19–20°C on a 12:12 light:dark (L:D) cycle 
with irradiance provided by daylight fluorescent lamps at an intensity of 
300 µmol photons m–2 s–1, which is adequate to saturate phytoplankton 
growth rates [42-44]. The light intensity was measured with a QSL-2100 
quantum scalar laboratory radiometer. The bottles were agitated three 
times a day to ensure that the cultures were well mixed and that the 
algae did not adhere to the bottom of the bottles.

The oil consisted of the water-accommodated fractions (WAFs) of 
unweathered source oil from the Macondo well collected by BP from a 
riser pipe aboard the drillship Discoverer Enterprise connected to the 
damaged wellhead of the Deepwater Horizon rig on May 20, 2010. The 
oil was stored in the laboratory in an opaque screw-cap vial to minimize 
degassing of the volatile components. WAFs were prepared with oil 
concentrations of 0.1, 0.3, 0.6, 1.2, 2.4, 4.8, 9.6, and 19.2 mg L–1. The 
basic procedure for preparing the WAFs was to layer a known amount 
of oil onto a known volume of f/2 medium in two-liter glass reagent 
bottles. The headspace-to-vessel ratio was maintained at about 20%. The 
oil-and-water was then mixed slowly (about 200 rpm; no vortex) with 
magnetic stirrers for 24 h to achieve stability. After 24 hours, the liquid 
phase (the WAF) was siphoned from underneath the film of oil at the 
surface, care being taken not to disturb the oil. The WAFs were used 
immediately to minimize the effects of bacterial activity during storage 
[45]. In all experiments, the control consisted of f/2 medium containing 
no oil. All treatments, including the control, were run in triplicate.

The number of cells in the BOD bottles was monitored twice 
daily using optical density (OD) as a metric of cell numbers [46,47]. 
The OD measurements were made with a Cary model 50 UV-Visible 
Spectrophotometer at a wavelenth of 750 nm and pathlength of 1 cm. 
The signal averaging time was 3 seconds. OD readings were recorded 
three times whenever a bottle was sampled. Fresh, filtered medium was 
used for blank measurements.

We checked the proportionality between OD readings and cell 
counts by counting cells with a model Z1 Beckman Coulter particle 
counter. The samples were shaken vigorously to break up colonies. 
Blank counts (filtered artificial seawater) were subtracted from all 
counts. We found that cell counts were directly proportional to 
OD readings below an OD of approximately 0.4. If the OD readings 
exceeded 0.4, the samples were diluted to bring the OD reading below 
0.4. Growth rates were calculated from the slope of a straight line fit to 
the natural logarithm of the OD readings versus time within the time 
interval where the relationship was linear.

Pigment concentrations were measured in February, March, May, 
July, and August of 2013. At the end of log-phase growth, samples 
of WAFs from two of the three bottles were collected and filtered 
individually onto 25-mm-diameter Whatman GF/F glass-fiber filters at 
a vacuum pressure of 160 mm Hg. The filters were folded twice and 
wrapped in aluminum foil to exclude air. The filters were then stored 
in a freezer at –15°C prior to pigment analysis. Aliquots of the initial 
water samples were filtered and processed in an identical manner. The 
pigment analyses were carried out with a high-performance liquid 
chromatograph (HPLC) using the methodology described by Bidigare, 
et al. [48]. The pigments were extracted in 3 mL of HPLC-grade acetone 
in culture tubes with 50 μL of an internal standard (canthaxanthin) at 

4°C for 24 hours and then hand ground in acetone using a glass-glass 
tissue homogenizer to ensure complete extraction of all pigments from 
phytoplankton cells. The extracts were then vortexed and centrifuged 
for five minutes to remove cellular and filter debris.

Mixtures of 1-mL extracts plus 0.3 mL of HPLC grade water were 
prepared in opaque auto-sampler vials, and a 200-μL aliquot was 
injected onto a Varian 9012 HPLC system equipped with a Varian 
9300 auto-sampler, a Timberline column heater (26°C), and a Waters 
Spherisorb® 5-μm ODS-2 analytical (4.6 × 250 mm) column and 
corresponding guard cartridge (7.5 × 4.6 mm). Pigments were detected 
with a ThermoSeparation Products UV2000 detector (λ1=436 nm, 
λ2=450 nm). A ternary solvent system was used for pigment analysis: 
Eluent A (methanol:0.5 M ammonium acetate, 80:20, v/v), Eluent B 
(acetonitrile:water, 87.5:12.5, v/v), and Eluent C (100% ethyl acetate). 
Solvents A and B contained an additional 0.1% of 2,6-di-ter-butyl-
p-cresol (0.01% butylated hydroxytoluene, w/v; Sigma-Aldrich) to 
prevent the conversion of chlorophyll a into chlorophyll a allomers. The 
linear gradient used for pigment separation was a modified version of 
the Wright, et al. [49] method: time zero (90% A, 10% B); one minute 
(100% B); 11 minutes (78% B, 22% C); 27.5 minutes (10% B, 90% C); 29 
minutes (100% B); 30 minutes (100% B); 31 minutes (95% A, 5% B); 37 
minutes (95% A, 5% B); and 38 minutes (90% A, 10% B).

To calculate the fraction of white light absorbed by the various 
photosynthetic pigments at the end of the incubations, we used the in 
vivo absorption spectra of the pigments reported by Fujiki and Taguchi 
[50], who generated their data from the absorption spectra of pure 
pigment standards and then wavelength-shifted the spectra to match 
the in vivo absorption spectra of diatom cultures using the methods 
described by Bidigare et al. [51]. 

The significance of oil effects on dependent variables such as growth 
rates was judged on the basis of correlation analysis (Spearman) and 
one-way analysis of variance (ANOVA). Oil effects were judged to be 
statistically significant if the associated type I error rates (p) were less 
than 0.05.

Results
Water temperatures at the time of collection ranged from 17.4°C 

in March to 28.3°C in July. Salinities ranged from 14 in July to 21 in 
March. Reliable OD readings were obtained in all months except 
February, when lack of familiarity with the spectrophotometer resulted 
in an unacceptable level of noise in the data. 

For the other months, we calculated the growth rates of the 
phytoplankton in the oil treatments during each month as a percentage 
of the control growth rates during the same month and then averaged 
the percentages over all five months. The averages of these percentages 
were significantly correlated (r=–0.9, p=0.0045) with oil concentrations 
(Figure 1). An ANOVA revealed that the rates at oil concentrations 
≤ 0.6 ppm and ≥ 1.2 ppm were significantly different (p=0.0067). The 
former exceeded the latter by about 25%. 

The pigments found in all samples included chlorophyll a (CHLA), 
fucoxanthin (FUCO), chlorophyll c (CHLC), β-carotene (β-CAR), 
diadinoxanthin (DDX) and diatoxanthin (DTX). The implication is 
that in most cases the phytoplankton community consisted almost 
entirely of diatoms (Table 1). However, some of the initial samples 
also contained small concentrations of α-carotene, alloxanthin, 
chlorophyll b, lutein, peridinin, and zeaxanthin. Lutein is diagnostic 
for chlorophytes, and peridinin is diagnostic for dinoflagellates (Table 
1). The absence of prasinoxanthin, 19´-butanoyloxyfucoxanthin, and 
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19´-hexanoyloxyfucoxanthin rules out prasinophytes, pelagophtytes, 
and prymnesiophytes, respectively (Table 1). The initial samples that 
contained zeaxanthin also contained lutein, chlorophyll b, α-carotene, 
and β-carotene, the implication being that the zeaxanthin was 
associated with chlorophytes or a combination of chlorophytes and 
cyanobacteria (Table 1). The presence of alloxanthin, α-carotene, and 
chlorophyll c in the initial samples is consistent with those samples 
containing cryptophytes (Table 1). At the end of the incubations, 
the samples, including the control samples, contained no detectable 
α-carotene, alloxanthin, lutein, or peridinin. The fact that zeaxanthin 
was present at the end of the incubations in all of the treatments in 
February implied that cyanobacteria were present (Table 1). However, 
the average ratio of zeaxanthin to CHLA was 0.075 ± 0.017, which is 
only about 15% of the same ratio in cyanobacteria [52]. The implication 
is that diatoms dominated the cultures by the end of the incubations 
in all cases. 

Both the CHLC/CHLA ratio (0.100 ± 0.020) and the β-CAR/
CHLA ratio (0.0188 ± 0.0058) were remarkably constant at the end 
of the incubations. Neither ratio was significantly correlated with oil 
concentrations (p=0.76 and p=0.92, respectively). 

Calculations of the percentage of white light absorbed by pigments 
at the end of the incubations indicated that CHLA and FUCO together 
accounted for 76–82% of visible light absorption. The ratios of FUCO 
to CHLA at the end of the incubations were positively correlated with 
oil concentrations (r=0.85, p=0.0041) (Figure 2), and the percentages of 
visible light absorbed by CHLA and FUCO were approximately mirror 
images of each other (Figure 3).

Discussion
A number of previous investigators have reported stimulatory 

effects of oil on phytoplankton growth or photosynthesis at low oil 
concentrations, typically less than 1 mg L–1, and inhibition at high 
oil concentrations [13,15,19,23,29-31]. The toxicity of crude oil to 
phytoplankton results from a variety of effects that reflect the complex 
composition of crude oil. The toxicity of individual compounds is 
positively correlated with the solubility of the compounds in water, 
and as a result refined oil is more toxic than crude oil [53]. Results 
of numerous studies have indicated that the toxicity of lipophilic 
compounds reflects their effects on the cytoplasmic membrane 
and/or membrane-embedded enzymes [54]. Polycyclic aromatic 
hydrocarbons appear to be particularly toxic [15]. Effects include cell 
lysis, loss of membrane integrity, changes in lipid-protein interactions, 
modifications of membrane fluidity, decreases in intracellular pH, 
and changes in membrane structure that affect the functionality of the 
membrane as a selective barrier and matrix for enzymes [54]. High 
concentrations of crude oil or petroleum products lower the activity 
of superoxide dismutase, an enzyme that removes free radicals in vivo 
[55]. The result is accumulation of active oxygen free radicals, which 
attack the DNA, protein, biological membranes, and chloroplast of the 
cell [56].

The mechanisms by which low concentrations of oil enhance 
phytoplankton growth are unclear, but enhancements of growth 
or photosynthetic rates similar to the effects we observed (Figure 1) 
have been reported in several other studies [13,15,19,23,29,31,57]. 
The positive effects may be indirect and involve interactions with 

 

Figure 1: Phytoplankton growth rates as a percent of control growth rates versus oil concentrations from 0.1 to 19.2 ppm. Error bars are standard errors of the mean 
values at each oil concentration.
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into lipids or other components of the cell in sufficient concentrations 
to upset normal metabolic functions. The contribution to toxicity of 
compounds of higher molecular weight than alkylnaphthalenes is 
believed to be very small and probably insignificant in terms of acutely 
toxic effects [66]. Any mechanism that tends to selectively remove 
the low molecular weight components of crude oil therefore tends to 
reduce its toxicity to phytoplankton. The results of our studies of the 
toxic effects of Macondo oil on coastal phytoplankton therefore tend to 
overestimate the impact of the oil on phytoplankton because most of 
the low molecular weight components of the oil dissolved in the water 
column before the oil reached the surface [67]. Even if the oil had been 
discharged at the surface, the distance of the spill from the shoreline 
(80 km) would have allowed most of the more toxic components to 
evaporate away before the oil reached the coastal zone. Even in the 
absence of such weathering effects, our results suggest that any adverse 
effects on phytoplankton growth rates would be negligible at Macondo 
oil concentrations less than about 0.6 ppm (Figure 1). At higher oil 
concentrations the impact on the phytoplankton would likely depend 
on the composition and physiological condition of the phytoplankton 
community, as well as other circumstances. In the case of the Deepwater 
Horizon (DWH) oil spill, for example, a total of 1.4 million gallons of 
a combination of two dispersants, Corexit® 9500A and Corexit® 9527, 
were applied to the oil that reached the surface. Thus, phytoplankton 
were actually exposed to a combination of DWH oil and dispersants, 
and studies by Özhan and Bargu [28] have shown that inputs of 
Corexit® 9500A significantly increased the toxicity of Louisiana sweet 
crude oil to offshore phytoplankton communities about 100 km from 
the mouth of the Mississippi River. Furthermore, addition of nutrients 
to offshore water samples reduced the inhibitory effects of the oil [28]. 
The results of our studies of the impact of Macondo oil on coastal 
diatom communities seem qualitatively very consistent with the studies 
of Özhan and Bargu [28].
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heterotrophic bacteria, suppression of predation [e.g., 58], and changes 
in the outcome of competition with other phytoplankton species. Several 
studies, for example, have indicated that diatoms are more tolerant to 
oil than other classes of phytoplankton [28,30,34,59], although diatoms 
are sometimes outcompeted by other classes of phytoplankton in the 
presence of oil [60,61]. The impact of oil on diatoms varies between 
species and as a function of cell size [15,30,31,34,62]. The mechanisms 
that underlie the cell size effects are unclear and may involve surface-
to-volume considerations [33,63] as well as changes in predation 
pressure [30].

Our pigment results indicate that diatoms dominate phytoplankton 
communities in coastal Louisiana waters. This result is not particularly 
surprising. Silicate concentrations in the Mississippi River are roughly 
100 µM [64], and the molar ratios of silicate to nitrate in the Mississippi-
Atchafalaya combined discharge have averaged 2.0–2.3 since 2000 [65], 
twice the molar ratio of 1.0 associated with silicate limitation of diatom 
growth [64]. The positive correlation between oil concentrations and 
the FUCO/CHLA ratios (Figure 3) most likely reflects acclimation 
of the diatom community to the physiological effects of the oil 
and the need to balance the rates of the light and dark reactions of 
photosynthesis. Fucoxanthin absorbs light strongly at wavelengths of 
450–550 nm, whereas chl a absorbs light most strongly at wavelengths 
of 400–450 nm and 650–700 nm. Thus, FUCO and CHLA are largely 
complementary with respect to light absorption, and some adjustment 
in the characteristics of the light-harvesting antennae of diatoms may 
well be a response to the presence of oil in the water. To the best of 
our knowledge, this effect of oil on diatoms has not been reported 
previously.

Implications
The results of this study add to the growing base of information on 

oil effects on phytoplankton. The components of crude oil of greatest 
concern from the standpoint of toxic effects are the low molecular 
weight aromatics such as benzene and toluene, which are among the 
most water-soluble components of oil and hence most likely to find 
their way into phytoplankton cells, where they may be incorporated 

Algal Group

Chlorophytes Chrysophytes Cryptophytes Cyanobacteria Diatoms Dinoflagellates Pelagophytes Prasinophytes Prymnesiophytes

Pigment
Alloxanthin 

α-carotene   

β-carotene        

Chlorophyll b  

Chlorophyll c      

Diadinoxanthin    

Diatoxanthin    

Fucoxanthin    

Lutein 

Peridinin 

Prasinoxanthin 

19´-butanoyloxyfucoxanthin 

19´-hexanoyloxyfucoxanthin 

Violaxanthin   

Zeaxanthin   

Table 1: Distribution of diagnostic pigments in algal groups.
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Figure 2: Mean ratios of fucoxanthin to chlorophyll a at end of log-phase growth versus oil concentrations. Error bars are standard errors of mean values.

 
Figure 3: Mean percentages of white light absorbed by chlorophyll a and fucoxanthin versus oil concentrations.
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