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Introduction
In mammals, blood and normal tissues are maintained within 

a narrow pH range around 7.4, mainly through the regulation of 
respiration and renal acid extrusion [1,2]. The extracellular pH, 
however, decreases to a value below 6 due to the destruction of blood 
vessels in cancer nests, resulting in the enhancement of hypoxic 
metabolism that produces lactic acid [3]. It has been reported that 
cancer nests are acidified by lactic acid accumulation, which is caused by 
the enhancement of glycolysis combined with impaired mitochondrial 
oxidative phosphorylation, even if the oxygen supply is not impaired 
[4]. 

The pH alteration in cancer nests affects cellular metabolic 
pathways because all enzyme activities are dependent on the pH. 
The acidification of cancer nests may affect the functions of target 
molecules of anti-cancer drugs. Our group previously found that 
the inhibitory efficacy of statins, manumycin A, and cantharidin 
increases at an acidic pH [5,6]. Statins are a competitive inhibitor of 
HMG-CoA reductase, the rate-limiting enzyme for the biosynthesis of 
cholesterol and higher isoprenoids, such as farnesyldiphosphate and 
geranylgeranyldiphosphate [7]. The isoprenoids are used for protein 
prenylation. Simvastatin is one of statins and a secondary metabolite 
produced by fungi [7]. The acidosis-dependent inhibition of cancer cells 
by statins was caused by the attenuation of protein geranylgeranylation 
[8], suggesting that a prenylated protein(s) functions to support cell 
proliferation at an acidic pH. Unfortunately, such a protein(s) remains 
to be unidentified. 

Immune cells infiltrate various cancer nests [9-13] and suppress 
cancer growth [13]. The acidification of cancer nests may affect 
immune cell functions, such as cytokine production. The inductions 
of human dendritic cell maturation [14] and TNF secretion from 
macrophages were observed under acidic conditions [15]. Extracellular 
acidosis stimulated IL-1β secretion by human monocytes without 
affecting the production of TNF-α [16]. Our group demonstrated that 
extracellular acidic environments enhanced T-cell signaling induced 
by TCR stimulation, followed by the increase in phosphorylation of 
TCR signal proteins [17]. 

Similar acidic environments were also associated with rheumatoid 
arthritis. The pH of articular fluid in the rheumatoid human joint knee 
was reported to be around 6.6, compared to around 7.3 in normal joints 
[18]. Other studies also showed the acidification of synovial fluid in 
the rheumatoid joints [19-21]. Our group demonstrated that synovial 
cell survival was preferentially inhibited by statins at an acidic pH [8]. 
Immune cells are present in the rheumatoid human joint knee [22]. 

These previous observations revealed the effectiveness of acidosis-
dependent drugs for chemotherapeutics against cancer cell growth 
and inflammation. It remains unclear how such drugs affect immune 
cell functions in acidic, diseased areas. In the present study, we found 
that simvastatin and manumycin A preferentially suppressed the 
proliferation and survival of immune cell lines at an acidic pH, and that 
the statin attenuated the production of TNF-α, IL-1β, and IL-8 under 
acidic conditions. 

Materials and Methods
Cells and reagents

Human monocytic cell lines THP-1 and Jurkat E6.1 derived from 
human T cells were donated by Itsuko Ishii (Chiba University, Japan) 
and Takashi Saito (RIKEN, Japan), respectively, and cells were cultured 
at 37ºC under 5% CO2 in RPMI-1640 containing 24 mM NaHCO3, 10 
μg/mL gentamycin, 5 μg/mL fungizone, and 10% fetal bovine serum 
(FBS).

Simvastatin was purchased from Wako (Osaka, Japan). In the 
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Abstract

Many clinical investigations have suggested that statins are useful chemotherapeutics against various cancers, 
whereas in vitro experiments using cancer cell lines have shown little effect of statins on cell proliferation 
and survival. Our group previously demonstrated that statins were preferentially cytotoxic against HeLa, 
mesothelioma, and pancreatic tumor cells under acidic conditions. A serious side effect of anti-cancer drugs 
used now is the impairment of the immune system. In this study, we examined the effect of simvastatin on the 
immune cell lines THP-1 and Jurkat in alkaline and acidic media. Our data suggest that simvastatin inhibited 
proliferation, survival, and cytokine production at an acidic pH in these cells, whereas the inhibitory effect was 
negligible at an alkaline pH. These results suggest that anti-cancer drugs whose efficacy increases in acidic cancer 
nests are useful for potent chemotherapeutics against cancer without causing serious damage to the immune 
cells in blood and normal tissues, whose pH is slightly alkaline, although the functions of immune cells that have 
infiltrated acidic cancer nests may be attenuated.
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indicated experiments, the statin was converted to the open ring form 
before use, as described previously [23]. Manumycin A (Wako) and 
YM-53601 (Sigma-Aldrich) were purchased. Cell Counting Kit 8 was 
purchased from Dojindo (Kumamoto, Japan).

Media for cell proliferation and survival assays under different 
pH conditions

Media at various pH values for cell proliferation and survival assays 
were prepared as follows. To minimize the pH change during cell culture, 
10 mM PIPES [piperazine-N,N’-bis (2-ethanesulfonic acid)] for acidic 
media or HEPES [4-(2-hydroxyethyl)-1-piperazineethanesulfonic 
acid] for alkaline media was added to RPMI-1640 instead of NaHCO3. 
Medium containing FBS was often contaminated with microbes 
when the medium pH was adjusted. Therefore, the medium pH was 
first adjusted by the addition of NaOH to medium without FBS. After 
sterilization of the medium by filtration, FBS was added. Since the 
medium pH was changed by the addition of FBS, the pH of medium 
without FBS was adjusted to a lower and higher value than the final pH 
in acidic and alkaline media, respectively. For example, when media of 
pH 6.1, 6.7, and 7.5 containing 10% FBS were used, the pH values were 
adjusted to 5.8, 6.4, and 7.6, respectively, before the addition of FBS. An 
inhibitor was added after the addition of FBS when indicated.

Inhibitory effect of various inhibitors on cell survival at 
different pH values

Cells were suspended in pH 7.5 RPMI-1640 medium prepared as 
described above, and 50 μL of the cell suspensions was placed in 96-well 
plates at 7.5×102 cells/well. After incubation for 1 day at 37ºC without 
a CO2 supply, 100 μL of pH 6.1 RPMI-1640 medium containing the 
indicated inhibitor was added to the wells. The pH of the resulting 
mixture was 6.7. For incubation at pH 7.5, 100 μL of pH 7.5 RPMI-
1640 medium containing the indicated inhibitor was added to the 
wells. Culture plates were put in the box with sterilized water, and then 
the box was covered with a loose lid to minimize evaporation of the 
medium. The box was incubated at 37oC in an incubator without a CO2 
supply. Cells were cultured for 5 days without a CO2 supply, and cell 
survival was determined with Cell Counting Kit 8. 

Inhibitory effect of various inhibitors on cell proliferation at 
acidic pH

Cells were suspended in RPMI-1640 media of pH 6.7 or 7.5 
prepared as described above at 1.4×105 cells per mL, and inhibitors 
indicated were added. Cells were cultured for 4 days without a CO2 
supply, and cell proliferation was determined by counting the number 
of cells not stained with trypan blue before and after incubation.

Real-time RT-PCR

Total RNA was isolated using TRI reagent (sigma-Aldrich) from 
cells incubated for 2 days at different pH values with or without 
simvastatin, and 1 μg of total RNA was subjected to RT reaction. The 
cDNAs were subjected to real-time RT-PCR using Fast Start Universal 
SYBR Green Master ROX (Roche) with the ABI7000 system (Applied 
Biosystems). 18S rRNA was used as a control RNA. Since the amount 
of ribosomes in mammalian cells is 4×106 per cell [24], the amount of 
mRNA relative to that of 18S rRNA gives an approximate copy number 
of mRNA per cell. The primers used are described in Table 1. Sequences 
of TNF-α, IL-1β, IL-8, and 18S rRNA were quoted from NM_000594.2, 
NM_000576.2, NM_000584.2, and [25], respectively.

Statistical analysis

The Student’s t-test was utilized in this study.

Inhibition of cell proliferation and survival of THP-1 cells by 
various inhibitors. (A) The p values compared with data obtained 
without simvastatin at both pH values were calculated. *p<0.01; no 
mark, p<0.01. (B to D) the p values at pH 6.7 compared with data at pH 
7.5 were calculated. *p<0.01; no mark, p>0.01. 

Inhibition of cell survival of Jurkat cells by simvastatin, manumycin 
A, and YM-53601. The mean values and S.D. obtained from three 
experiments using different cultures are represented. S.D. less than 
10% is not represented. The p values at pH 6.7 compared with data at 
pH 7.5 were calculated. *p<0.01; no mark, p>0.01.

Expression of cytokine genes in THP-1. The mean values and 
S.D. obtained from three experiments using different cultures are 
represented. The p values compared with data obtained without 
simvastatin at both pH values were calculated. *p<0.01; no mark, 
p>0.01. The p values at pH 6.7 compared with data at pH 7.5 were 
calculated in the absence of simvastatin. **p<0.01.

Results
Inhibition of proliferation and survival at acidic pH 

When cells were cultured under our conditions, the medium pH 
decreased and increased continuously in alkaline and acidic media, 
respectively. After 5 days culture, the medium pH values were 7.3 and 
6.8 when media of pH 7.5 and 6.7 were used, respectively. 

Simvastatin at 2 µM suppressed the proliferation of human 
monocyte THP-1 cells only at pH 6.7 (Figure 1A). The effect of 
simvastatin on cell survival was subsequently examined, and the results 
showed that 5 µM simvastatin markedly reduced THP-1 survival at 
pH 6.7, while it had no significant effect on survival at pH 7.5 (Figure 
1B). Statins exist in two forms, a lactone form and open ring hydroxy 
acid form [26]. It was reported that the lactone form is absorbed 
from the gastrointestinal tract and transformed into the open ring 
form in vivo [27]. Similar results were obtained with the two forms. 
The survival decreased with a lower concentration of manumycin A 
at pH 6.7 than that at pH 7.5 (Figure 1C), whereas the difference in 
survival between the two pH conditions was small in cells treated with 
YM-53601 (Figure 1D). Statins are inhibitors of HMG-CoA reductase 
(Figure 1E). Manumycin A and YM-53601 inhibit protein prenylation 
and cholesterol synthesis, respectively (Figure 1E). These results were 
similar to those obtained with mesothelioma [5] and synovial cells 
[8]. Similar results were also obtained in Jurkat T cells derived from 
human T cells (Figure 2). Protein prenylation has been suggested to be 
a pathway required for the proliferation and survival of any type of cell 
under acidic conditions.

Expression of cytokines under acidic conditions

The effect of simvastatin on the expression of cytokine genes was 
subsequently examined in THP-1 cells. Levels of TNF-α and IL-1β 
produced by immune cells were suggested to have inhibitory effects 

Gene Sequence Size
TNF-α forward CCCCAGGGACCTCTCTCTAATC 98

reverse GGTTTGCTACAACATGGGCTACA
IL-1β forward GGACAAGCTGAGGAAGATGC 120

reverse TCGTTATCCCATGTGTCGAA
IL-8 forward TCTGGCAACCCTAGTCTGCT 136

reverse GCTTCCACATGTCCTCACAA
18S rRNA  forward TAGAGTGTTCAAAGCAGGCCC 81

reverse CCAACAAATAGAACCGCGGT

Table 1: Primers used in this study.
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on tumor progression [28,29]. TNF-α was up-regulated 10-fold under 
acidic conditions compared with that at pH 7.5 in THP-1 cells, and the 
increased gene expression was significantly suppressed by simvastatin 
at pH 6.7 (Figures 3A and B). The expression of IL-1β was enhanced at 
an acidic pH, and this elevated expression was reduced by simvastatin 
in THP-1 cells (Figures 3C and D). Similar effects of the extracellular 
pH and simvastatin on the expression of IL-8 were observed (Figures 
3E and F). These results suggest that expression of the inflammatory 
cytokines TNF-α, IL-1β, and IL-8 was enhanced in cancer nests 
associated with extracellular acidosis, and that the expression was 

inhibited by statins. The expression of IL-8 at an acidic pH was reported 
in tumor cells [30,31]. Since the mRNA levels of IL-1β and IL-8 were 
very low compared with that of TNF-α (Figures 3B, D, and F), the 
expressions of IL-1β and IL-8 may be less significant physiologically. 

Simvastatin increased the expression of TNF-α, IL-1β, and IL-8 
at 5, 2, and 2 μM, respectively, in alkaline medium (Figure 3), while 
this drug inhibited the expression in a dose-dependent manner at an 
acidic pH. It remains unclear why simvastatin increases the expression 
of these cytokines. 

Figure 1: Inhibition of cell proliferation and survival of THP-1 cells by various inhibitors. (A) THP-1 cells were cultured in RPMI-1640 media at pH 6.7 or pH 7.5 for 4 
days with simvastatin at the concentrations indicated, and cell numbers were measured as described in Materials and Methods. The dotted line represents the cell 
number before culture. The mean values and S.D. obtained from two experiments using different cultures are represented. The p values compared with data obtained 
without simvastatin at both pH values were calculated. *p<0.01; no mark, p>0.01. (B) to (D) THP-1 cells were cultured in RPMI-1640 media at pH 6.7 or pH 7.5 for 
5 days with the inhibitors indicated, and cytotoxicity was measured as described in Materials and Methods. Absorbance obtained without an inhibitor was taken as 
100%. The mean values and S.D. obtained from three experiments using different cultures are represented. S.D. less than 10% is not represented. The p values at 
pH 6.7 compared with data at pH 7.5 were calculated. *p<0.01; no mark, p>0.01. (E) Mevalonate pathways.
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Discussion
Statins were reported to inhibit the proliferation and survival of 

cancer [5] and synovial [8] cells under acidic conditions. The acidosis-
dependent inhibition by simvastatin was observed in immune cells in 
the present study. Cancer nests and inflammatory loci were acidified by 
the limitation of oxygen [3,18-21]. It is therefore suggested that statins 
have a marked effect on any type of cell under acidic conditions which 
are close to those in cancer nests. When the box was sealed, cells were 
damaged after 4 to 5 days of culture, suggesting that oxygen is required 

for proliferation at an acidic pH. It was essential for preventing the cell 
damage to take off the lid of the box for a while every two days. The 
oxygen level might decrease during culture in the box. 

The suppressive effect of statins on T cells has already been reported. 
Atorvastatin inhibits T-cell activation and proliferation [32]. In their 
report, the inhibition of Jurkat cell proliferation by 10 μM atorvastatin 
was approximately 60%, being close to our results obtained with 
simvastatin at pH 7.5 (Figure 2A). The association of signaling proteins 
including Lck to membrane rafts was reported to be inhibited by statins 
with decreasing cholesterol synthesis [32]. In addition to the effect on 
lipid rafts, the inhibition of protein geranylgeranylation by statins 
was found to be critical for T-cell functioning [33]. The prenylation 
of small G proteins was inhibited by statins, and the inhibition 
affected several intracellular functions including cell proliferation 
[34]. These data may support the mechanism in which the effect of 
statins on cell proliferation and survival is due to the attenuation of 
a geranylgeranylated protein(s). This mechanism would be more 
important under acidic conditions because sensitivity to statins was 
enhanced at a low pH and manumycin A preferentially suppressed cell 
survival at a low pH (Figure 1). G protein-coupled receptor on T-cell 
membranes encoded by T-cell death-associated gene 8 (TDAG8) was 
assumed to be a pH sensor to regulate intracellular cAMP under acidic 
environments [35]. Ras was reported to be more active at a low pH and 
to activate cAMP-dependent kinase (PKA) [36], suggesting that PKA 
signaling has an important role in cellular survival at an acidic pH. 

Our present results demonstrated that TNF-α was expressed at 
a higher level at an acidic pH compared with that at an alkaline pH 
in THP-1. Simvastatin prevented TNF-α-induced NF-κB activation, 
which ultimately results in the secretion of pro-inflammatory cytokines 
[37]. Our results showed the significant inhibition of TNF-α expression 
by simvastatin at an acidic pH. Simvastatin also significantly inhibited 
the production of IL-1β and IL-8 in THP-1 (Figure 3). Some statins 
were reported to induce apoptosis via caspase-3 activation [38], but 
such activation was not observed in the present study (data not shown). 

The protein synthesis may be dependent on a copy number of 
mRNA, because the binding chance of mRNA to ribosomes declines 
as the decrease in the copy number. The copy number of mRNA was 
calculated based on the content of ribosomes per cell in this study. The 
content is written in the textbook [24], and this number was used. The 
content was also calculated based on the published data [39], and the 
same result was obtained. No data concerning the content of ribosomes 
in cells cultured at an acidic pH has been reported. The content of 
18S RNA was measured using PCR in this study, and Ct values were 
almost the same in all cells cultured in this study (data not shown). We, 
therefore, assumed that the content of ribosomal RNA is constant even 
if the culture pH is different. 

TCR stimulation did not increase cytokine expression at an 
acidic pH in Jurkat cells [40] or human peripheral primary T cells 
(unpublished observation). The mRNA levels of interleukins and 
TNF-α were less than 100 copies per cell except IL-10, while the mRNA 
level of GAPDH was 8×105 copies per cell in Jurkat cells [40]. Thus, the 
expression of these cytokines might be less significant, and the effect of 
simvastatin on the expression of cytokines was not examined in Jurkat 
cells in this study. 

Our present data showing that cytokine production was inhibited 
by statin treatment under acidic conditions do not seem to be of 
merit for cancer therapy. In contrast to an acidic pH, treatment with 
acidosis-dependent drugs was less effective on immune cells at an 

Figure 2: Inhibition of cell survival of Jurkat cells by simvastatin, manumycin 
A, and YM-53601. Jurkat cells were cultured in RPMI-1640 media at pH 
7.5 or 6.7 for 5 days with simvastatin, manumycin A, or YM-53601 at the 
concentrations indicated, and cell survival was measured as described in 
the legend of Figure 1B. The mean values and S.D. obtained from three 
experiments using different cultures are represented. S.D. less than 10% is 
not represented. The p values at pH 6.7 compared with data at pH 7.5 were 
calculated. *p<0.01; no mark, p>0.01.
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alkaline pH that is close to the pH of normal tissues including blood, 
suggesting that immune systems could be maintained more actively in 
the body when acidosis-dependent anti-cancer drugs are used. Statins 
are now prescribed as drugs to decrease the blood level of cholesterol, 
and damage of the immune system has not be reported to date in 
hyperlipidemia patients treated with them. Stains were reported to 
increase incident diabetes, but the adjusted hazard ratio was 1.04 to 
1.17 [41]. The risk of a major cardiovascular event was less than 1 % 
in patients treated with statins [42]. Chemotherapy combined with 
immunotherapy is now being developed. It may become possible to 
create immune cells in which cytokine production is resistant to statins.

It was shown that the expression of many genes was affected by 
environmental pH [43]. Some acidosis-dependent genes were shown to 
be expressed at a higher level in specimens from cancer patients [44]. 
The present study demonstrated that the efficacy of some medicines 
increases under acidic conditions. These data suggest the significance of 
measuring pH levels inside human body and the pH change of diseased 
areas for our improved understanding of therapy and diagnosis. 

In conclusion, simvastatin was shown to be less effective at a 
slightly alkaline pH, being close to that of blood and normal tissues, 
although this drug exhibits cytotoxicity against immune cells in an 
acidic medium. Acidosis-dependent drugs such as statins can be 

Figure 3: Expression of cytokine genes in THP-1. After THP-1 cells had been cultured in RPMI-1640 media at pH 7.5 or 6.7 for 2 days with simvastatin at the 
concentrations indicated, the amounts of indicated mRNA were measured as described in Materials and Methods. The left column: Relative increases in mRNA 
levels of TNF-α (A), IL-1β (C), and IL-8 (E) are represented. The right column: Copy numbers of mRNA per cell of TNF-α (B), IL-1β (D), and IL-8 (F) are represented. 
The mean values and S.D. obtained from three experiments using different cultures are represented. The p values compared with data obtained without simvastatin 
at both pH values were calculated. *p<0.01; no mark, p>0.01. The p values at pH 6.7 compared with data at pH 7.5 were calculated in the absence of simvastatin. 
**p<0.01.
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argued to have weak side effects on the immune system, as shown in the 
present study. Impairment of the immune system is one of the serious 
side effects of anti-cancer drugs used commonly now. Our results lead 
us to anticipate that the screening of chemicals exhibiting high-level 
cytotoxicity in acidic medium will promote the development of new 
medicines for chemotherapeutics against cancer with reduced side 
effects. 
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