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Introduction
In recent years, Polymers are extensively used in active engineering 

components such as gears and cams where their self lubricating 
properties are exploited to avoid the need for oil or grease lubrication 
with its attendant problems of sealing and possible contamination. 
Many polymers based composites are widely used for sliding couples 
against metals, polymers and other materials. However, where 
the contact is there, there is the problem of friction and wear. The 
importance of tribological properties convinced many researchers 
to study the friction and wear behavior and to improve the wear 
resistance of polymeric composites. For fiber reinforced polymer 
matrix composites the process of material removal in dry sliding 
condition is dominated by four wear mechanisms, viz., matrix wear, 
fiber sliding wear, fiber fracture and interfacial debonding [1-3]. A 
number of material-processing strategies have been used to improve 
the wear performance of polymers. Use of inorganic fillers dispersed in 
polymeric composites is increasing. Fillers not only reduce the cost of 
the composites, but also meet performance requirements, which could 
not have been achieved by using reinforcement and resin ingredients 
alone. In order to obtain perfect friction and wear properties many 
researchers modified polymers using different fillers [4-8].

Compared with the glass and carbon-fibre reinforced counterparts, 
aramid-fibre filled polymer composites have an intermediate friction 
and an intermediate wear factor while the wear of their metallic counter 
faces is low. Adding aramid fibre to phenolic resin resulted in a 30–40 
fold increase in the wear resistance while the friction remained high 
even at high sliding speeds and pressures. This characteristic makes the 
material a potential candidate for brake shoes [9].

It has been found that under most conditions the coefficient of 
friction and wear rate were less when fibers are normal to the sliding 
surface. In most of the tribological applications, the materials are 
subjected to stringent conditions of loads, speeds, temperatures and 
hazardous environment [10]. There have been numerous reports on 
the tribological behavior of Fiber-Reinforced Polymer Composites 
(FRPCs) because of the possibility of using polymer composites for 
wear-sensitive applications [11-15].

Glass fiber-reinforced polymer composites are well established 
although carbon fiber reinforced composites start to enter this field 

of application. Currently, due to considerations of cost and ease of 
processability, low viscosity vinylester resins that may be cured at 
room temperature are being used in preference to epoxy resins [16,17]. 
Suresh et al. [18], investigated the wear behavior of glass fiber, carbon 
fiber and carbon bead-reinforced polytetrafluoroethylene (PTFE). The 
glass-reinforced PTFE showed a very low wear rate with a steel counter 
face and finally concluded that the fiber preferentially supports the 
applied load and a fiber rich layer is produced during rubbing action 
on the mating surface. Chauhan et al. [19], studied the friction and dry 
sliding wear behavior of carbon and glass fabric reinforced vinylester 
composites. They concluded that the coefficient of friction and wear 
rate increased with increase in load/sliding velocity and depends on 
type of fabric reinforcement and temperature at the interphase. The 
excellent tribological characteristics were obtained with carbon fiber 
in vinylester. Dwivedi et al. [20], studied the mechanical and wear 
characterization of glass fiber reinforced vinyl ester composites with 
different co-monomers. They concluded that glass fiber reinforced 
vinyl ester with styrene as co-monomer has the best mechanical and 
wear properties. 

Vinyl ester resins were first introduced commercially in early 
1960’s [21]. Today they are one of the most important thermosetting 
materials. Vinyl ester resins have been widely recognized as materials 
with excellent resistance to a wide variety of commonly encountered 
chemical environments. Vinyl ester resins are used to fabricate a 
variety of reinforced structures [22-25] including pipes, tanks, scrubber 
and ducts. They are the prime candidates for use in composite for 
transportation and/or infrastructure. Vinylester is a hybrid form of 
polyester resin which has been toughened with epoxy molecules within 
the main molecular structure. Vinylester resins offer better resistance 
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to moisture absorption than polyester resins. It is also known that 
vinylester resins bond very well to fiber glass [26]. Some researchers 
in their investigation on the tribological behavior of high density 
polyethylene, polyamide and their composites reported that the wear 
resistance and coefficient of friction is affected greatly by normal load, 
sliding speed and temperature [27-29]. Many studies reported that 
the wear resistance with polymer sliding against steel improved when 
the polymers are reinforced with glass or aramid fibres. However, 
the behaviour is affected by factors, such as the type, amount, size, 
shape and orientation of the fibres, the matrix composition and the 
test conditions, such as load, speed and temperature [30-32]. Many 
researchers [33-35] showed that the introduction of water into a 
polymer and metal sliding combination generally reported that the 
coefficent of friction under water lubricated condition is lower than 
that of the dry sliding condition. Therefore in this paper the effect 
of microsize particulates on tribological characteristics of vinylester 
composites under dry and lubricated conditions for the accurate 
knowledge of the influence of sliding speed and applied normal load 
on the friction and wear behaviour.

Experimental Details
Experimental materials and manufacturing method

Vinylester resins are addition products of various epoxide resins 
and unsaturated monocarboxylic acids, most commonly methacrylic 
acid [19]. The final steps involved in preparation of vinylester resin 
from the synthesis of ortho-cresol formaldehyde novolac are shown in 
figure 1. 

Glass fibers had super sizing for ease of handling, fast wet out, 
and compatibility with a number of resins including vinylester resin. 
The type of resin used in this work is vinylester resin (density 1.23 
g/cm3 and Modulus 2.3-4 MPa) and reinforcing phase E-glass fibers 
(modulus 72.4 GPa, density 2.54 g/cm3) were supplied by Northern 
Polymer Pvt. Ltd. New Delhi. Methyl ethyl ketone peroxide (MEKP-
1%), Cobalt Naphthenate (1.5%) were used as catalyst and accelerator 
respectively. Four different types of specimens were prepared for this 
study. Conventional wet hand layup technique was used for making 
of the glass vinylester composite laminates. The Cobalt Naphthenate 
1.5% was mixed thoroughly in vinylester resin and then 1% MEKP was 
mixed in the resins prior to reinforcement. The fiber loading (weight 
fraction of glass fiber in the composite) was kept 50 wt% for all the 
samples. The stacking procedure consists of placing the fabric one 
above the other with the resin mix well spread between the fabrics on a 
mould release sheet. A porous Teflon film was again used to complete 
the stack. 

To ensure uniform thickness of the sample, a 3mm spacer was 
used. The mould plates were coated with release agent in order to aid 
the ease of separation on curing. The similar procedure was repeated 
in all cases unless thickness of 3mm was obtained. A metal roller was 
used so that uniform thickness and compactness could be obtained. 
The whole assembly was placed in the compression molding machine 
at a pressure of 60 Kgf/cm2 and allowed to cure at room temperature 
for 24 hrs. The laminate sheets of sizes 300×300×3 mm3 were prepared. 
Specimens of suitable dimensions were cut using a diamond cutter for 
wear testing. The alumina fillers (40-80 µm) were mixed thoroughly 
in the vinylester resin mechanically before the glass fiber mats were 
reinforced in the matrix body.

Friction and wear measurements

The friction and sliding wear performance evaluation of vinylester 

and its composites C1, C2, C3 and C4 under dry and water lubricated 
sliding conditions, wear tests were carried out on a pin-on-disc type 
friction and wear monitoring test rig (DUCOM) as per ASTM G 99. The 
counter body is a disc made of hardened ground steel (EN-32, hardness 
72 HRC, surface roughness 0.7 µ Ra). The specimen is held stationary 
and the disc is rotated while a normal force is applied through a lever 
mechanism. During the test, friction force was measured by transducer 
mounted on the loading arm. The friction force readings are taken as 
the average of 100 readings every 40 seconds for the required period. 
For this purpose a microprocessor controlled data acquisition system 
is used. A series of test were conducted with three sliding velocities 
of 1.6, 2.8, and 4 m/s under three different normal loading of 10, 30 
and 50 N. Weight loss method was used for finding the specific wear. 
During these experiments initial and final weight of the specimens 
were measured. 

The material loss from the composite surface is measured using a 
precision electronic balance with accuracy + 0.01 mg. The specific wear 
rate (mm2/N) is then expressed on ‘volume loss’ bases 
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Where Ks- is the specific wear rate (mm2/N), ∆M- is the mass loss 
in the test duration (gm) 

ρ- Is the density of the composite (gm/cm3) FN- is the average 
normal load (N).

Scanning electron microscope

A Scanning Electron Microscope (SEM) was used to analyze the 
worn surface of the composites. Worn surface samples were mounted 
on aluminum stub using conductive (silver) paint and were sputter 
coated with gold prior to SEM examination. The surfaces of the 
vinylester composites specimens were examined directly by scanning 
electron microscope JEOL JSM-6480LV. The composite samples were 
mounted on stubs with silver paste. To enhance the conductivity of the 
samples, a thin film of platinum was vacuum-evaporated onto them 
before the photomicrographs are taken.

Results and Discussion
In the present work, the dry and water lubricated sliding friction 

and wear behavior of pure vinylester composite sample C1, composite 
samples C2 (vinylester+50 wt% GFR), C3 (vinylester+50 wt% GFR+10 
wt% Alumina) and C4 (vinylester+50 wt% GFR+20 wt% Alumina) have 
been studied in terms of the coefficient of friction and specific wear 
rate.

The detailed compositions of the materials taken for the test 
conditions and parameters considered for experimentation scheme are 
presents in table 1. Figures 2a-2c present the variation of coefficients of 
friction with applied normal load values (10, 30 and 50 N) at different 
sliding speeds of (1.6, 2.8 and 4.0 m/s) under dry and water lubricated 
sliding conditions. The experimental results show that with increase in 
the applied normal load the coefficient of friction decreases for pure 
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Figure 1: Preparation of vinylester resin based on O-cresol novolac resin.
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vinylester and its composites at sliding speed of (1.6, 2.8 and 4.0 m/s) 
and applied normal load of (10, 30 and 50 N) under both dry and water 
lubricated condition. 

In all test condition the coefficient of friction was maximum in 
case of pure vinylester (C1) under dry condition and minimum in 
case of ceramic filled vinylester composites (C3 and C4). However in 
case of water lubricated sliding conditions the coefficient of friction 
is less as compare to the dry sliding conditions. Under dry sliding 
conditions increasing applied normal load and sliding speed increases 
the temperature at the interface. This increase in temperature causes 
thermal penetration to occur, which results in weakness in bond at 
the fiber–matrix interface. Consequently fibers become the loose in 
the matrix and shear easily due to axial thrust. As a result coefficient 
of friction decreases [3,18,28,36]. It was also found that the transfer 
film also plays a very important role in affecting the friction and wear 
behavior of fiber reinforced vinylester composites. However under 
water lubricated conditions the presence of water at the interface as 
lubricant diminishes the effect of temperature and friction mechanism 

at the interface is predominated by occurrence of hydrodynamic film 
thickness and due this reason friction reduces under water lubricated 
conditions [35, 37, 38].

Figures 3a-3d present the variation of specific wear rate for 
vinylester and its composites (C1, C2, C3 and C4) with applied normal 
load (10, 30 and 50 N), test speeds (1.6, 2.8 and 4.0 m/s) under both 
dry and water lubricated sliding conditions. Figure 3a shows that 
the specific wear rate for pure vinylester is influenced by the change 
in applied normal load both under dry and water lubricated sliding 
conditions. The specific wear rate increases with increase in applied 
normal load under dry sliding conditions. The higher the sliding 
speed the higher is the specific wear rate in dry sliding conditions. The 
specific wear rate values at water lubricated condition are close to each 
other at sliding speeds of 1.6, 2.8 and 4 m/s. However the specific wear 
rate increases with increase in applied load at sliding speeds of 1.6 m/s 
and decreases with increase in applied load at sliding speeds of 2.8 and 
4 m/s under water lubricated sliding conditions. 

From the observations of Figures 3b-3d it is seen that the specific 
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Figure 2: Variation of coefficient of friction with normal load under dry and water lubricated sliding conditions (a) C1 (b) C2 (c) C3 and (d) C4.

Materials Composite Specification Density gm/cm3 Temperature (oC) Humidity (%) Load (N) Sliding speed(m/s)

C1 Pure Vinylester 1.23 29 65
10
30
50

1.6
2.8
4.0

C2 Vinylester+50 wt% glassfiber 2.29 29 65
10
30
50

1.6
2.8
4.0

C3
Vinylester+50 wt% glassfiber+ 10 wt% 

Alumina 2.30 29 65
10
30
50

1.6
2.8
4.0

C4
Vinylester+50 wt% glassfiber+ 20 wt% 

Alumina 2.15 29 65
10
30
50

1.6
2.8
4.0

Table 1: Materials and Test Conditions.
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wear rate decreases with increase in applied normal load both under dry 
and water lubricated sliding conditions. Under water lubricated sliding 
conditions it is explained by removal of the film layer underwater 
lubricated condition as well as cooling effect at the interface due to the 
presence of water. Though the water inhibit the formation of transfer 
films of fiber glass/polymer debris on the counter-face and the specific 
wear rates are close to those obtained in dry sliding conditions [37]. 
The highest wear rate is for pure vinylester under dry sliding conditions 
at 1.6 m/s sliding speed and load of 50 N. The lowest wear rate for 
vinylester composite C4 (vinylester+GFR 50 wt%+20 wt% alumina) 
composite under dry conditions at 4.0 m/s sliding speed and applied 
normal load 50 N.

Scanning electron microscope based on friction and wear 
data

During sliding, both adhesive and abrasive wear mechanisms 
are operative, resulting in powdery wear debris. The frictional heat 
generated at the interface caused thermal softening of the matrix and 
some of the powdery wear debris got embedded into the matrix and 
formed a protective layer. The optical microscopy examination of worn 
surfaces of vinylester composites (C2, C3 and C4) against steel discs both 
dry and water lubricated sliding conditions under applied load of 50 N 
and 4m/s sliding speed are given in Figures 4a-4f. 

The disc worn surfaces for vinylester composite (C2) show that 
more of the fiber exposure and fiber breakage indicating higher wear 
rate. However under water lubricated conditions from the Figure 4b 
the wear debris formations are not seen on the worn surface which 
indicates that water washes away the wear debris and fibres are exposed 
to the steel surface which indicated less wear. From figure 4c for 
composite samples (C3) the observations show that under dry sliding 
conditions the matrix is uniformly spreaded over major portion of the 

specimen and only small amount of the fibers are exposed but in figure 
4d shows the large amount of fiber exposure and matrix and hence 
higher wear rate.

Figures 4e-4f shows the spread of matrix, long fibres exposure as 
well as debris formation also it is observed that fiber exposure is more 
under water lubricated sliding conditions. These observations show 
agreement with the experimental results that wear rate is lesser than 
the glass vinylester composite (C2). The difference in wear rate between 
the composite specimens under water lubricated and dry sliding 
conditions can be attributed to the film removal under water lubricated 
sliding conditions. Water prevent the formation of the transfer films 
of the fibre glass/vinylester matrix and ceramic filler particulates on 
the interface of specimen and counterface of steel by removing the 
debris and specific wear rates are close to those obtained in dry sliding 
condition. 

Conclusions
The main aim of this research work is to investigate the influence 

of alumina ceramic particulate on friction and wear behavior of E-glass 
vinylester composites. An experimental study of friction and wear 
behavior of E-glass vinylester composites at different sliding speed, 
applied normal load can reveals the following:

•	 The	 coefficient	 of	 friction	 for	 vinylester	 and	 its	 composite	
decreases with increase in applied normal load and sliding 
speed under both dry and water lubricated sliding conditions.

•	 However	under	dry	condition	the	specific	wear	rate	increases	
with increase in the applied normal load for pure vinylester 
composites, but for vinylester composites (C2, C3 and C4) the 
specific wear rate decreases with increase in applied normal 
load under both dry and water lubricated sliding conditions.
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Figure 3: Variation of specific wear rate with normal load under dry and water lubricated sliding conditions (a) C1  (b) C2  (c) C3 and (d) C4.
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•	 The	 friction	 coefficient	 under	 water	 lubricated	 sliding	
conditions for vinylester and its composites are lower than that 
of dry sliding conditions. 

•	 Pure	 vinylester	 has	 higher	 specific	 wear	 rate	 due	 to	 small	
mechanical properties. Therefore reinforcement of glass fiber 
and alumina filler improves the wear characteristics both under 
dry and water lubricated conditions.
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 (a) SEM picture of sample C2 under dry sliding 
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 (b) SEM picture of sample C2 under water lubricated 
sliding conditions 

 
 

 (c) SEM picture of  sample C3 under dry sliding 
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 (d) SEM picture of  sample C3 under water lubricated 
sliding conditions        

 
     

 (e) SEM picture of sample C4 under dry sliding 
condition                        

 
 

(f) SEM picture of sample C4 under water lubricated 
sliding conditions 

Figure 4: (a-f) SEM picture vinylester composites (C2, C3 and C4) under dry and water lubricated sliding conditions.
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