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Introduction
The increasingly environmental concern over the toxicity of lead 

(Pb) combined with strict environmental regulations around the 
world have been targeted to eliminate the usage of Pb-bearing solders 
in electronic assemblies and to adopt lead-free solder alloys [1-5]. 
The European Union Waste Electrical and Electronic Equipment 
(WEEE) Directive, published in 2002 and Restriction of Hazardous 
Substances (RoHS) Directive of European Community, published in 
2003 restricted the usage of certain toxic materials including Lead (Pb) 
in production of electronic devices used in European Union effective 
on 1 July 2006 [6].

Owing to the enforcement of these directives, all electrical 
or electronic equipment and devices produced in or imported to 
EU member countries must meet the lead-free standards except 
those items that are exempted from the bans. Furthermore, several 
Japanese electronics manufacturers have successfully created a market 
differentiation and increased market share based on “green” products 
that use Pb-free solders and many Japanese companies have brought 
their lead-free products into the market much earlier than the EU 
directives’ effective dates, including Panasonic in 2001, Sony in 2001: 
Toshiba in 2000, NEC in 2002, and Hitachi in 2001. In the United 
States, there are no specific government regulations regarding usage 
of Pb solder in electronic consumer products. However, the U.S. 
Environmental Protection Agency (EPA) has listed lead among the 
top 17 chemicals that conduce to threat for human health. The IPC 
(formerly known as the Institute of Interconnecting and Packaging 
Electrical Circuits) has also developed a roadmap for the lead-free 
movement in the U.S. [7]. 

 Moreover many U.S. companies, including Motorola, Cisco, and 
Intel, have also been actively pursuing lead-free products in order to 
protect their world-wide market shares. Many universities have also 
been actively funding lead-free related research. Other countries, such as 
China and South Korea, which are emerging electronic manufacturing 
bases, have also adopted or are in the process of adopting directives 
similar to those of the European Union.

This multinational decision has led to vigorous development of 
alternative solder alloys and the most promising of these falls into 
the general alloy families of tin-silver (Sn–Ag) and tin–silver–copper 
(Sn–Ag–Cu). They were first discovered in 1996 by a research group 
at Ames Laboratory in USA [8]. Various type of Sn–Ag–Cu or SAC 
alloys have been the proposed by industrial consortiums e.g. In Japan, 
the Japan Electronic Industry Development Association (JEIDA) 
has recommended 96.5wt%Sn-3wt%Ag-0.5wt%Cu (SAC-305), in 
the EU, the European Consortium - the Industrial and Materials 
Technologies Program Brite-Euram, recommended 95.5wt%Sn-
3.8wt%Ag-0.7wt%Cu (SAC-387), and in US, NEMI has recommended 
95.5wt%Sn-3.9wt%Ag-0.6wt%Cu (SAC-396) for reflow soldering and 
99.3Sn-0.7Cu for wave soldering [9].

Among the various lead-free solders SAC-305 alloy has emerged 
as the most widely accepted to replace Sn-Pb solders. It is widely used 
as lead-free solder for surface mount technology (SMT) card assembly 
and for ball-grid-array (BGA) interconnection in the microelectronic 
packaging industry as solder balls and pastes. More than 70% market 
for reflowing lead-free solders are in the SAC series. Due to having 
good mechanical properties, acceptable wetting properties, and 
suitable melting points, the International Printed Circuit Association 
has suggested that SAC-305 and SAC-396 will be the most widely used 
alloys in the future [10-16]. 

Although SAC-305 alloy is widely used in electronics industry, it 
has several problems to be solved. One of the core issues pertaining to 
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soldering process, the conductive metal Cu is rapidly dissolved into 
a liquid solder until the solder becomes supersaturated with Cu at 
the Cu/liquid solder interface. At the same time the driving force for 
chemical reaction between Cu and Sn promotes the formation of a 
Cu–Sn intermetallic compound, often Cu6Sn5 phase, by heterogeneous 
nucleation and growth at the Cu/liquid interface [19,36,37]. These 
IMCs usually have a scallop-like appearance [38] and change to a plate 
structure during thermal aging [39]. Thermodynamically, there should 
also be an intermetallic phase Cu3Sn formed between Cu and Cu6Sn5 
but it is usually very thin making it difficult to detect [19,39-41]. The 
dominant diffusing element through both the Cu3Sn and the Cu6Sn5 
phases is copper [42]. This leads to a depletion of copper at the Cu-
Cu3Sn interface and in the Cu3Sn layer resulting in the formation of 
Kirkendall voids. Many researchers have observed Kirkendall voids 
both at the Cu-Cu3Sn interface and within the Cu3Sn layer [19,43-47]. 
Kirkendall voids usually appear in the Cu3Sn layer or at the Cu3Sn/Cu 
interface when exposed to temperatures above 100°C. The formation 
of Kirkendall voids greatly increases the chance of failure due to brittle 
fracture [48]. The size of the voids is about 0.1 to 0.2 μm. Owing to 
this small size, they are smeared during mechanical polishing and 
therefore it is not possible to observe them after polishing [43]. If it 
shall be possible to observe the Kirkendall voids, the surface needs to be 
prepared using methods such as Focused Ion Beam (FIB) or sputtering 
with Ar+ ions. Therefore, Kirkendall voids may be more common than 
reported [37]. Ag3Sn is the other IMC that can form in the matrix of 
the SAC solders as needle like structure. Large Ag3Sn plates is the least 
desirable phase since it extensively affect the mechanical properties 
of solder joints [49,50] by producing local plastic deformation [51] 
and conduce to stress concentration at the interface between the hard 
Ag3Sn particles and soft β-Sn [52] that results in catastrophic failures of 
electronic components. They are generally believed to be detrimental 
in both crack initiation and propagation, and numerous studies have 
attributed the failure of SAC305 solders to large plate-like Ag3Sn IMCs 
under impact and thermal cycling stimuli [10,17,53]. In addition, the 
formation of large plate like Ag3Sn IMCs causes solid dissolution and 
precipitation hardening, which in turn decreases the matrix strength 
[54,55]. The overall reliability of the solder joint can be greatly affected 
by the amount and size of Ag3Sn IMCs in the microstructure [56]. 
Since the Cu content in the SAC-305 alloy is very small, the majority of 
the IMCs formed in SAC305 are Ag3Sn particles.

To cater these problems, the rare earth (RE) elements have 
been added into the Sn-Ag-Cu based solder. The RE elements has 
some unique properties that make it have extensive applications in 
material and metallurgy field. Rare earth elements (RE) have been 
successfully used in the steel industry [57]. RE are the surface-active 
agents which greatly affect the metallurgy of materials e.g. refinement 
of microstructure, purification of materials and metamorphosis of 
inclusions [58]. They have been regarded as the vitamin of metals, 
whereby addition of a small quantity of rare earth elements may 
dramatically change the performance of metals e.g refining the 
microstructure [57-80]. They can more easily agglomerate at the grain/ 
dendrite boundary and lower the grain/dendrite boundary energy 
to stabilize the boundaries and restrain the moving or sliding of the 
boundaries [25]. Some studies consider that RE elements are adsorbed 
at the grain/dendrite boundaries of the IMC and alter the relative 
correlation of the growth velocities between the crystalline directions 
of the polycrystalline IMC, which decrease the size of the IMC particles 
and distributes the IMCs more uniformly [81-87]. Several studies [57-
80] have been conducted to find the effect of RE doping in solder alloys, 
the RE used generally are La, Ce, Y and Er. These studies demonstrate 

SAC-305 is the formation and growth of large intermetallic compounds 
(IMCs) in this alloy [17]. IMC are produced as result of the reaction of 
a molten solder with a conductive metal i.e. Cu. [18,19]. Although the 
presence of thin layer of IMCs between solders and conductor metals 
is desirable because it results in good metallurgical bonding [19]. 
However, a thick IMCs layer at the solder/conductor metal interface 
significantly reduces the reliability of the solder joints because of their 
inherent brittle nature and their tendency to generate structural defects 
because physical properties (such as elastic modulus and coefficient 
of thermal expansion) of IMCs are not compatible with parent metal 
i.e. SAC alloy [1,10,19-26]. IMC have much higher strength than the 
bulk solder material [27,28]. “They are stoichiometric combinations of 
two or more metal atoms where the atomic fractions of the metals are 
generally fixed (for example Cu3Sn). This can be contrasted with solid 
solutions where the atomic fractions can sometimes very as widely 
as 0 - 100%. Metals and alloys exhibit metallic bonding between the 
atoms, whereas IMCs exhibit a more covalent character. This is why 
IMCs tend to be much harder and have much higher elastic moduli 
than either of their respective metallic elements i.e. Sn, Ag & Cu” [29].

Prolonged exposure to high thermal environment causes these 
IMCs to grow [30,31]. Figure 1 shows how thermal aging leads to 
growth of the IMC layer between SAC305 solder and copper. The 
operating temperature of many new electronic systems could be 
as high as 200ºC, for example electronics in oil and gas exploration, 
avionics, automotive industry, and defense applications typically have 
more demanding thermal life cycle environments than consumer 
electronics [32,33]. In oil and gas well drilling nearly 15% of the wells 
have bottom hole temperature in the range of 150°C-175°C and 2 to 
3% have temperature upto 200°C or higher [34]. A typical application 
of high thermal environmental conditions experienced by electronic 
system during oil and gas well drilling is running of wireline logging 
/ slickline tools in high temperature wells. Memory gauges which are 
used for recording of bottom-hole pressure and temperature of oil 
& gas well encountered to a temperature range of 150°C-175°C with 
exposure time vary from 30 to 60 hours. Similarly high temperatures 
are encountered in the electronics used in supersonic aircrafts, military 
vehicles e.g. battle tanks. These demanding conditions of use, together 
with the need for greater reliability of all electronic systems motivate 
further research on the effects of high temperature aging of solder 
materials [35].

For SAC alloys most often IMC are Cu6Sn5 & Ag3Sn. The IMC 
Cu6Sn5 is important due to the large number of lead-free solder 
joints formed directly to copper. In addition, the Cu6Sn5 IMC is 
a primary feature in the microstructure of SAC305 alloy. During 

Figure 1: (a) A joint from a ball grid array package made from SAC305 solder 
with SOP surface finish (b) After aging, the Cu6Sn5 IMC layer grew thicker with 
time and temperature, and a Cu3Sn layer formed between the Cu6Sn5 and Cu 
layer (Aging Time 120 hrs @100°C).
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that RE doping can significantly increase the wetting property of solder 
[14,57-58,64,75-76,81], it can reduce IMCs particle size and their 
growth on solder/pad interfaces, and thus greatly increase the solder 
joint reliability [73]. Some researchers have found that the difference in 
atomic radius between Sn and RE atoms makes it difficult for them to 
form replacement atom- type solid solutions, so the RE atoms gather 
at defects, such as dendrite boundaries. Since the mechanical behavior 
of solder alloys depends on the microstructure, it is critically needed to 
conduct a systematic quantitative microstructure study at all relevant 
length scales [57]. RE element enhances the mechanical strength and 
creep rupture life of solder alloys like Sn-Ag, Sn-Cu and SAC lead fee 
solder alloy because RE elements can promote chemical reactions at the 
interface and provide very strong bonding during soldering [14,58,75-
76,80,82-85].

In the present study RE Lanthanum-La is selected for the 
investigation. The main objective of this paper is to study the effect of 
adding small amount of La on the microstructure and IMS formation 
of SAC-305 solder alloy with varying environmental conditions 
implemented during service. Lanthanum (La) is considered as the best 
doping element for SAC solder alloys due to their lower cost, wide 
availability and low melting point as compare to the other RE elements 
[88,89]. In steel industry Lanthanum is added to steel to improve its 
malleability, resistance to impact and ductility. Being surface active 
agents, even minor quantity of La significantly enhance the reliability 
of solder [90]. In addition the diameter of a La atom is 0.181 nm, while 
that of Sn is 0.141 nm which is 28% smaller than that of La. Owning 
to this it is difficult for La atoms to substitute Sn atoms in the matrix. 
Consequently it is easy for La atoms to agglomerate at dendrite 
boundaries, and refine dendrite of the grains [67]. This may enhance 
the resistance to grain growth which may results in the refinement of 
the microstructure. 

Experimental Procedure
The base material used in this study is SAC305 lead free solder alloy 

and the RE used is Lanthanum - La. Three levels of RE doping were 
used and the final alloy compositions in weight percent are shown in 
Table 1 below:

The 96.5Sn3.5Ag0.5Cu solder was obtained from Nathan Trotter 
& Co. in the form of solder bar. Other 96.5Sn3.5Ag0.5Cu-La alloys 
were obtained from Atlantic Metals & Alloys Inc. also in the form of 
solder bar. Some of the samples were then aged isothermally in high 
temperature oven. Two levels of temperatures ranges were used for the 
thermal aging: 100°C and 180°C. Similarly two levels 60 and 120 hours: 
were used as aging time factor. Including the case of no thermal aging 
condition (as-cast), there were 5 combinations of thermal treatment on 
the specimens and considering the four alloy compositions used in this 
study, there were 4x5=20 test conditions.

Samples were cross-sectioned and mounted in epoxy, then ground 
by different grit sized silicon carbide (SiC) emery papers in a sequence 
of 320, 600, 800, 1000 and 1200 and subsequently mechanical polished 
with diamond paste (6 μm, 3 μm and 1 μm) and 0.05-μm alumina 

suspension. Pressurized water coolant is applied during grinding 
process to prevent sample heating. Ultrasonic cleaning for 2 minutes 
was carried out after each step of diamond paste polishing to remove 
any diamond abrasive on the sample surface. Polishing with alumina 
suspension does not reveal the precipitates. To reveal the precipitates, 
the sample was again polished with alkaline 0.05μm silica suspension. 
The alkaline solution preferentially etches the Tin-Sn grains at a higher 
rate and therefore helps to clearly identify the Ag3Sn precipitates 
[91]. The samples were then etched for several seconds using etching 
solution of 93% CH3OH + 5% HNO3 + 2% HCl as used by most of 
the researcher for SAC alloys [12,14,67,88]. Etching time is tabulated 
below Table 2.

After thermal aging, microstructure of the polished samples was 
performed using optical microscope (Olympus GX51, Olympus Co. 
Japan) and Scanning Electron Microscope - SEM (JSM-5910, JEOL 
Japan) coupled to an Energy Dispersive X-ray Spectroscope -EDS 
(Oxfordins Inca-200). In order to hinder the charging of the epoxy 
mount, gold sputter coating was performed on the SEM sample with 
SPI Sputter coater JEE-420. Dispersion of different solder elements 
and the elemental analysis of IMC phases were performed using a 
JEOL JXA-733 superprobe electron probe microanalyzer equipped 
with Bruker AXS 4010 XFlash silicon drift energy dispersive X-ray 
(EDX) detector and QUANTX software. X-ray diffraction (XRD) 
measurements were carried out in order to determine the constitution 
of the phases forming the samples microstructure. XRD patterns were 
obtained utilizing a JDX-3532 (JEOL Japan) with a 2-theta range from 
5° to 80°, Cu-Kα radiation with a wavelength, λ, of 0.15406 nm.

Results and Discussion
XRD analysis

XRD analysis was conducted to identify the type of IMC phases. 
Figure 2 exhibits the resulting XRD patterns for as-cost SAC305 with no 
La doping and that SAC305 with 0.5wt% La after thermal aging of 120 
hours at 180°C of each sample. It was observed that the microstructure 
of un-doped SAC305 alloy contained two IMCs phases, i.e. Ag3Sn 
and Cu6Sn5 while that of lanthanum doped SAC305 alloy contained 
three IMC phases i.e. Ag3Sn, Cu6Sn5 and La5Sn3. Previous studies 
[25,57,61,86] found that Lanthanum doped SAC alloy will cause LaSn3 
IMCs while our results shows the presence of La5Sn3 instead of LaSn3.

Grain size

To study the grain size of the solder material, optical microscopy 
with cross polarized light was used. With the help of cross polarized light, 
grains with different shade can be viewed under the microscope. Figure 
3 shows the typical images of 96.5Sn3Ag0.5Cu and 96.5Sn3Ag0.5Cu-
0.5La after thermal aging of 120 hours at 180°C of each sample [92,93]. 
These Figures shows a significant decrease in grain size, due to the 
addition of lanthanum.

The grain size as a function of different La composition and aging 
temperature is plotted in Figures 4 and 5 respectively. The Figures 
illustrate that the grain size of lanthanum alloy is much smaller than 
un-doped SAC305 alloy. Also grain size decreases significantly up to 
0.05% of La doping and then increase slightly with increasing amount 
of La doping. This is consistent with the previous studies conducted 
by Min et al. [25] and Sadiq et al. [94] for Sn-3.5Ag and SAC305 
alloy respectively with similar La doping. Also a slight change in the 
grain size for La-doped alloy has been observed with thermal aging. 
This demonstrates that La-doping refines the grains which comply to 

Solder Alloy
Elemennt (wt%)

Sn Ag Cu La
SAC305 96.5 3 0.5 0
SAC305-0.05La 96.45 3 0.5 0.1
SAC305-0.25La 96.26 2.99 0.5 0.3
SAC305-0.5La 96.02 2.99 0.5 0.5

Table 1: Composition of selected solder alloys.
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the work of Min et al. [25] and Sadiq et al. [94]. The philosophy of 
this refinement is because of the particular effect of La adsorption at 
different planes in the Sn-Ag-Cu alloys.

Microstructure analysis

The microstructure of the doped and un-doped SAC305 solder alloy 
was investigated in SEM and ordinary secondary electron microscopy 
images have been produced for each alloy composition. In the as-cast 
condition, the microstructure of SAC305 alloy comprises of dendritic 
β-Sn phase and Sn-Ag-Cu ternary eutectic network where intermetallic 
particles were finely distributed in the Sn matrix as shown in Figure 6. 
From the EDS and XRD analysis, the IMC found were mainly Ag3Sn 
and Cu6Sn5. There is very a clear boundary between dendritic β-Sn 
phase and Sn-Ag-Cu ternary eutectic regions. After thermal aging, 
the size of Ag3Sn and Cu6Sn5 particles in Sn-Ag-Cu eutectic network 
becomes bigger and more uniformly dispersed. The reason for increase 
in the particle size of Cu6Sn5 with thermal aging is the increase in the 
diffusion rate of Cu into Sn [92].

The “as cast” and “thermally aged” SEM micrographs for un-doped 
SAC-305 and SAC305 with 0.5wt% La doped alloy are shown in Figure 
7. After thermal aging coarsening of IMCs particles take place. It could 
be observed from the images that the microstructure of La-doped 
sample is more refine the un-doped sample. After thermal aging at 
180°C the size of Ag3Sn and Cu6Sn5 particles in SnAgCu eutectic region 
increased and more uniformly dispersed. Owing to this dispersion it is 
difficult to identify the boundaries of β-Sn dendrite and eutectic region 
clearly.

Figure 2: XRD profile of (a) SAC305 (b) SAC305 with 0.5La after thermal 
aging at 180°C for 120 hr.

Figure 3: Optical microscopy (a) SAC305 (b) SAC305 with 0.5La after thermal 
aging at 180°C for 120 hr.

SAC Alloy Etching Time (sec.)
SAC305 10
SAC305-0.05La  20
SAC305-0.25La  40
SAC305-0.5La  80

Table 2: Etching time.
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The XRD and EDS tests found that the doping elements La exist 
in SAC305 solder alloy in two forms: as La element or as La5Sn3 IMC. 

The La-Sn IMC has complex branch structure [89], which is usually 
look like clusters of snowflakes [57] in SEM images. With the help of 
EDX analysis very high amount of La concentration of observed in 
these snowflakes. Moreover It was also observed that quantity La5Sn3 
IMC depend upon the concentration La doping i.e. with high 0.5wt% 
of lanthanum bigger snowflakes has be observed as shown in Figure 
8 while small isolated snow can be seen with less La doping which is 
consistent with the results of Min et al [25].

La doping greatly reduces the Ag3Sn and Cu6Sn5 particle size 
particle during thermal aging. Surface area averaged particle size of 
Cu6Sn5 particles was obtained as per ASM handbook [95]. The particle 
sizes for the full data set are plotted in Figure 9 as function of La doping 
level. It can be seen that La doping effectively suppresses the growth of 
Ag3Sn and Cu6Sn5 intermetallic particle.

The distribution of Sn, Ag, Cu and La was observed by using electron 
micro probe analysis (EPMA) coupled with X-ray spectroscopy (EDX). 
The elemental analyses map in Figure 10 demonstrates that elemental 
La is uniformly dispersed on the whole solder area which is consistent 
with Min et al. [25].

Under thermal aging conditions, evolution of IMC particles i.e. 
AgSn3 and Cu6Sn5 was observed. Owing to this Cu6Sn5 particle can be 
easily distinguished from AgSn3 particles as shown in Figure 11.

Concluding Remarks
Keeping in view the result and observations of this study several 

conclusions can be made. 

1.	 In the as-cast condition, the microstructure of SAC305 alloy 
comprises of dendritic β-Sn phase and Sn-Ag-Cu ternary eutectic 
network where intermetallic particles were finely distributed in 
the Sn matrix.

2.	 Addition of lanthanum to Sac305 solder alloy significantly 
reduced the IMC particle size.

3.	 La doping effectively suppresses the growth of Ag3Sn and Cu6Sn5 
intermetallic particle during thermal aging.

4.	 La doping significantly reduce the grain size and keep the grain 
size stable during thermal aging.

Figure 6: SEM image of as-cast un-doped SAC305.

Figure 7: A La5Sn3 cluster in SAC305-0.5La solder.

Figure 8: Micrographs of (a) as-cast SAC305 and (b) SAC305-La before 
thermal aging, and (c) SAC305 and (d) SAC305-0.5La after thermal aging.
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5.	 Addition of lanthanum with 0.5 wt% conduces to a new type of 
IMC, observed as La5Sn3.
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