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Abstract
GXM (glucuronoxylomannan) is the major component surrounding the capsule of Cryptococcus neoformans 

having multiple biological functions, one of them and most important, the reduction in production of inflammatory 
cytokines. They were evaluated in this study the correlation of the production GXM with TNF, IL-6, IL-10, as well, 
as survival in murine model (BALB-c) and severe combined immunodeficiency (SCID). The animals were infected 
intravenously with 0.1 ml of a suspension containing 3.0 × 106 model, BALB-c compared to the model. The high 
production GXM as well as the induction of viable cells of C. neoformans. There was an increase in the production 
of GXM, as well as a decrease in survival in (SCID) a severe inflammatory response in this model may be due to a 
compromised immune system.
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Introduction
Cryptococcosis is a subacute or chronic systemic mycosis with a 

cosmopolitan nature [1], showing tropism for the central nervous 
system (CNS) [1,2]. This disease is caused by yeast of the genus 
Cryptococcus [3]. Two variety are known: C. gattii (Serotypes B and 
C) and C. neoformans (Serotypes A, D and AD); [4], Franzot, et al. 
proposed subdividing the C. neoformans variety into var. neoformans 
(Serotype D) and var. grubii (Serotype A). Serotype A is the most 
prevalent [1]. 

Infectious particles of the yeast can be spread through the air and 
infect susceptible hosts, caused pulmonary cryptococcal [5]. Life-
threatening diseases caused by C. neoformans in immunosuppressed 
hosts such as AIDS patients occur at a global rate of approximately 
1 million cases per year 1. Life-threatening diseases caused by C. 
neoformans in immunosuppressed hosts such as AIDS patients 
occur at a global rate of approximately 1 million cases per year [6]. 
The prominent anti-phagocytic polysaccharide capsule is unique to 
Cryptococcus spp. and is considered to be an essential virulence factor 
that has multiple effects on host immunity [3]. This capsule is composed 
primarily of glucuronoxylomannan (GXM), which comprises more 
than 90% of the capsule's polysaccharide mass [7].

The model of systemic cryptococcosis in mice with severe combined 
immunodeficiency (SCID) is useful for immunological and therapeutic 
study of the disease in immunodeficient hosts [8], and is a valuable tool 
that contributes to understanding how these infections occur [9]. 

The greater susceptibility to the disease in these models is justified 
by the important role of B and T cells contributing to the animal’s 
protection against severe infection [10]. In experimental infections, 
the yeast primarily affects the lungs and then reaches other organs, 
preferentially the brain [11]. 

Tumor necrosis factor (TNF-α) is an important marker in 
cryptococcosis, both in humans and in mice, several in vitro studies 
showed that the capsule components are capable of stimulating the 
production of TNF-α by various cell types [12-14]. Pro-inflammatory 

cytokines with various biological functions (among them, increasing 
the power of phagocytosis), modulate the expression of other cytokines 
such as IL-1 and IL-6 being secreted by macrophages, neutrophils 
and T cells [15]. Decreased production of IL-6 may be an important 
additional mechanism whereby the cryptococcal capsule, destroys 
the protective immune response [16]. The survival of patients with 
cryptococcal meningitis may be associated with increased levels of Il-6, 
TNF-α and IF-γ, [17,18]. Interleukin 10 (IL-10) is a multifunctional 
cytokine produced by many different cell types, including alternatively 
and classically activated macrophages, dendritic cells, B cells and CD4 
T regulatory cells, and is an important regulator of innate immunity 
and interferes with the production of inflammatory mediators by 
polymorphonuclear neutrophils, monocytes and macrophage [17].

The aim of this study was to correlate the production of GXM in 
the inflammatory response in the immunocompetent murine model 
(BALB/c) and severe combined immunodeficiency (BALB/c-SCID). 

Material and Methods
Cryptococcus neoformans strain

The standard strain ATCC 90112 (Cryptococcus neoformans var. 
grubii-Serotype A), maintained in tubes containing Sabouraud dextrose 
agar (Difco Laboratories, Detroit, MI, USA) and glycerol at -20°C, in 
the laboratory of pathogenic yeasts of the Department of Microbiology, 
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Institute of Biomedical Sciences of São Paulo University, São Paulo, 
Brazil was evaluated in this research.

Animals and experimental cryptococcosis

A total of 65 mice with BALB/c-SCID, with a mean weight of 
20 g to 25 g and 65 immunocompetent mice (BALB/c) with a mean 
weight of 25 g to 27 g, obtained from the animal center, responsible 
for breeding isogenic animals, at the Institute for energy and nuclear 
research, São Paulo, Brazil, were used in the study. These mice were 
housed in microisolator cages, provided with sterile feed and water 
and randomly distributed into ten groups. The strain ATCC 90112 was 
cultivated in YPD medium [1% yeast extract (Difco), 1% Bacto Peptone 
(Difco) and 2% dextrose (Sigma-Aldrich, Milwaukee, WI, USA)] for 
18 h at 30°C; the cells were collected after centrifugation, washed twice 
in phosphate buffer solution (PBS) and resuspended at the inoculation 
concentration. Nine groups of each murine model with 5 mice each 
were inoculated with 100 µL of the suspension containing 3 × 105 yeast 
cells via the lateral tail vein and were euthanized in the various moments 
(1, 2, 3, 5, 7, 9 and 11 days) after infection to be evaluated. Among 
these nine groups one group (n=10) was not euthanized, serving as the 
positive control; and the other group (n=10) was inoculated with PBS, 
serving as the negative control. The groups were maintained during 
the study period (40 days). Animal handling and treatment observed 
the ethical principles of the Brazilian college of animal experimentation 
(COBEA). 

Removal of lungs
At the end of each moment the study, all mice were euthanized in 

a CO2 chamber and the lungs were aseptically removed and weighty to 
be used in the measurement of GXM, and cytokines.

Homogenizing of lungs
The organs were homogenized in a solution containing 1.0 mL of 

phosphate buffer solution (PBS) supplemented with 0.05% Tween 20, 
1% protease inhibitor (Sigma-Aldrich) and 1% phenyl methyl sulfonyl 
fluoride (PMSF-1 mM) (Sigma-Aldrich). They were centrifuged for 5 
minutes at 14000 rpm and homogenates of the organ that were not 
used immediately were stored at -80°C for later use.

Measurement of GXM in lungs
GXM was measured in the lung as by the method of capture ELISA 

as described in the literature [19,20]. The tests were performed in 
microtiter plates with 96 wells. Microplates were briefly coated with 1 
μg/ml goat Ab to mouse IgG1 (Southern Biotechnology, Birmingham, 
AL). To capture the antigen, the antibody MAb 18B7 (5 µg/mL) 
was used [21,22]. The supernatant of the homogenate digested with 
proteinase K (Sigma-Aldrich) before being added to the plate was 
incubated at 100°C for 5 minutes to inactivate the enzyme. GXM was 
detected by MAb 12A1 [21,22], followed by the addition of anti-IgM 
conjugated with alkaline phosphatase. As a substrate for alkaline, 
phosphatase p-nitrophenyl phosphate (PNPP)-(Sigma-Aldrich) was 
used. Absorbance was measured at 405 nm and the amount of GXM in 
the solution was calculated from standard curves [23].

Levels of TNF-α, IL-6 and IL-10 in lungs homogenates 

The inflammatory mediators TNF-α, IL-6 and IL-10 were measured 
by the ELISA (Enzyme-linked Immunosorbent assay) using the kits 
(Mouse IL-6 (Interleukin-6) ELISA Ready-SET-Go), (Mouse IL-10 
(Interleukin-10 ELISA Ready-SET-Go) and mouse TNF-α ELISA 
Ready-SET-Go) were purchased from eBioscience and followed the 
manufacturer's guidelines.

Statistical Analysis
The mean survival times were estimated by the Kaplan-Meier 

method and compared among groups by using the log-rank test. The 
data obtained in relation to the levels of TNF-α (cell necrosis factor), 
IL6 (interleukin-6) and IL-10 in the lungs underwent logarithmic 
transformation to achieve an approximation of a normal distribution, 
prior to statistical analysis using the Mann-Whitney test. The correlation 
between the levels of cytokines production was performed using the 
Pearson correlation test. All the statistical tests were performed using 
the software GraphPad Prisma 5 (GraphPad PrismTM, Version 5.0, 
and GraphPad Software Incorporated). Differences were considered 
significant when p<0.05.

Results
Survival

The average survival of immunocompetent animals (BALB/c) was 15 
days and the animals with BALB/c-SCID 12 days after the initial infection. 
There were not significant decreases (p<0.05) in survival of groups of 
(BALB/c-SCID) animals compared to the group of (BALB/c) animals. 

Measurement of GXM in lung homogenates

There was no detectable GXM in the immunocompetent model 
(BALB/c) on days 2, 3, 7 and 9 after initial infection. In the model with 
Severe Combined Immunodeficiency (BALB/c-SCID), GXM was not 
detected on day 2 after the initial infection. There was a significant 
production of GXM (p<0.05) in this model on day 1 (8.26 ± 0.16) and 
day 11 (4.27 ± 0.07), compared to immunocompetent model (4.5 ± 
0.13), (2.6 ± 0.22), respectively (Figure 1).

Production of TNF-α (Tumor necrosis factor), IL-6 
(Interleukin 6) and IL-10 (Interleukin 10)
TNF-α

The level of production at cytokine pro-inflammatory TNF-α in 
the lung homogenate in the murine model immunocompetent were 
significantly higher (p<0.05) on day 5 (33.25 ± 0.2) of infection, 
compared with murine model Immunodeficiency, (21.97 ± 0.2), 
(Figure 2). 

No detected level of production this cytokine on day 7 of 
infection, this murine mode, the levels of production this is cytokine 
were significantly higher (p<0.05), compared with murine model 
immunocompetent on day 1 (79.0 ± 0.6), (44.9 ± 0.7) on day 2 (18.3 
± 0.06), (16.7 ± 0.2) on day 3 (36.3 ± 0.3), (21.5 ± 0.3) on day 9 (35.9 
± 0.4), (17.1 ± 0.1) and on day 11 (25.3 ± 0.2), (15.8 ± 0.4), (Figure 2). 

IL-6 (Interleukin-6) 

Detectable levels of IL-6 were not observed on days 9, and 11 of 
infection in the murine model immunocompetent. The level was 
significantly higher (p<0.05), when compared with murine model with 
Severe Combinated Immunodeficiency on day 2 (19.0 ± 0.3), (14.8 ± 
1.6), on day 5 (38.2 ± 0.7), (22.1 ± 0.3) and day 7 (17.8 ± 0.1), (14.6 ± 
0.2) of infection (Figure 3). 

IL-10 (Interleukin-10) 

Detectable levels of IL-10 do not was observed on days 7, 9 and 
11; after initial infection in the murine model immunocompetent, 
and in day 11 in the murine model with Severe Combinated 
Immunodeficiency. The level of production this cytosine was 
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Figure 1: GXM production in the lung homogenate (1:100) evaluated after 1, 2, 3, 5, 7, 9 and 11 days after intravenous inoculation of 3.0 × 105 viable cells of C. 
neoformans (ATCC 90112. Serotype A) in murine model immunocompetent murine model (BALB/c) was detected only in days 1, 5 and 11 and murine model with 
severe combined immunodeficient (BALB/c-SCID) no detected on day 2. NS, Difference not significant . Differences wer e considered Statistical significant for p<0.05 
(Mann-Whitney test).

Figure 2: TNF-α level the lung homogenate in murine model immunocompetent (BALB/c) and with severe combined immunodeficiency (SCID), inoculated intravenously 
with 3.0 × 105 viable cells of C. neoformans (ATCC 90112. Serotype A). Evaluated on days: 1, 2, 3, 5, 7, 9 and 11 of infection. No detected-on day 7 of infection in murine 
model (SCID). Different letters indicate statistical significant difference for p<0.05 (Mann-Whitney test).

Figure 3: IL-6 level the lung homogenate in murine model immunocompetent (BALB/c) and with severe combined immunodeficiency (SCID), inoculated intravenously 
with 3.0 × 105 viable cells of C. neoformans (ATCC 90112. Serotype A). Evaluated on days: 1, 2, 3, 5, 7, 9 and 11 of infection. No detected on days 9 and 11 of infection 
in murine model (BALB/c). Different letters indicate statistical significant difference for p<0.05 (Mann-Whitney test).
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significantly on day 1 of infection in the murine model with Severe 
Combinated immunodeficiency, (44.0 ± 0.7), compared with murine 
model immunocompetent (36.3 ± 6.5), (Figure 4).

Comparative analyses into TNF, IL-6 and IL-10

There was no significant difference in levels of production of 
TNF-α and IL-6 in the immunocompetent model on day 1 of infection. 
The production of IL-6 was significantly higher on days 2, 3, 5 and 7 
of infection in this model. The production of TNF-α was significantly 
higher on days 9 and 11 of infection, (Figure 5). The correlation 
between the production of IL-6 and IL-10 was strongly negative (r= - 
0.93) on day 2 of infection, and strongly negative on day 3 of infection 
between the levels of production of TNF and IL-6.

In the model with SCID no significant difference in the production 
of TNF and IL-6 on 3 and 5 of infection. On days 1 and 2 infection of 
TNF production was significantly higher. The production of IL-6 was 
significantly higher on days 9 and 11 of infection. The levels of IL-10 
was significantly higher on days 2 and 7 of infection. There was a strong 
positive correlation (r=0.96) between the production of IL-6 and IL-10 

in 3 days of infection and on day 9 of infection between TNF and IL-6 
(r=0.99).

Discussion
TNF-α is a proinflammatory cytokine which is an important 

protection against lung infections caused by C. neoformans [24]. In 
this work, we quantified the levels of production of proinflammatory 
cytokines (TNF-α and IL-6), as well as the cytokine which mediates 
IL-10 in lung homogenates. 

The induction from an intense inflammatory process at the 
beginning of an infection was found in both models studied, since the 
levels of TNF-α were significantly higher in this during this period. The 
presence of an inflammatory process represents a fundamental role 
in restricting C. neoformans at the site of infection [25]. The intense 
inflammatory process that happened early in the infection was not 
able to restrict the presence of C. neoformans in the model with SCID, 
because through microbiological analysis of lung tissue a significant 
colonization of the yeast was found, as well as high levels of GXM still 
on the 9th and the 11th day of infection in this model. A statistical 

Figure 4: IL-10 level the lung homogenate in murine model immunocompetent (BALB/c) and with severe combined immunodeficiency (SCID), inoculated intravenously 
with 3.0 × 105 viable cells of C. neoformans (ATCC 90112. Serotype A). Evaluated on days: 1, 2, 3, 5, 7, 9 and 11 of infection. No detected on days 7, 9 and 11 of 
infection in murine model (BALB/c), and no detected on day 11 of infection in murine model with Severe Combinated Immunodeficiency. Different letters indicate 
statistical significant difference for p<0.05 (Mann-Whitney test).
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Figure 5: Comparative analysis between the levels of production of cytokines, TNF, I-6 and IL-10 in immunocompetent murine model (BALB/c) inoculated intravenously 
with 3.0 × 105 viable cells of C. neoformans (ATCC 90112-Serotype A). Evaluated on days 1, 2, 3, 5, 7, 9 and 11 of infection. IL-10 is not detected on days 7, 9 and 11 
of infection, IL-6 not detected on 9 and 11. Different letters indicate statistically significant differences for p<0.05 (Mann-Whitney test).
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study of the correlation between the production of TNF-α and GXM 
was strongly positive, suggesting that GXM was responsible for the 
induction of a severe inflammatory process in this model. GXM can 
induce the production of proinflammatory cytokines, such as TNF-α 
and IL-6 in neutrophils [26].  

A vigorous early inflammatory response is associated with the 
development of a strong protective immunity and, consequently, the 
resolution of the infection [27]. The intense inflammatory response 
observed in the model with SCID was not enough to resolve the 
infection; this may have been due to the absence of an inflammatory 
response mediated by T and B cells. The murine mutation SCID is 
on chromosome 16 and causes these animals not to have immunity 
mediated by T and B cells [28,29]. 

The production of TNF-α before the 14th day of the lung infection 
by C. neoformans is essential for the development of protective 
immunity by T cells in the lungs [30]. IL-6 has a protective role in 
immune response against C. neoformans [31]. High levels of IL-6 were 
observed at the beginning of the infection in both models; however, 
the level of IL-6 on the model of SCID was significantly higher also on 
the 9th and 11th days of infection. High levels of IL-10 were observed 
in both models studied at the beginning of the infection; however, 
in the immunocompetent model that just occurred within the first 
3 days. IL-10 was responsible for the regulation of inflammation in 
the immunocompetent model because we found a strong positive 
correlation between the levels of production of proinflammatory 
cytokines and IL-10 [32]. Interleukin 10 (IL-10) is a multifunctional 
cytokine produced by many different cell types, including alternatively 
and classically activated macrophages, dendritic cells, B cells and CD4 
T regulatory cells. It is an important regulator of innate immunity 
and interferes with the production of inflammatory mediators by 
polymorphonuclear neutrophils, monocytes and macrophages [33]. 
The levels of IL-10 in the immunodeficient model were high in all 
periods of infection; however, this high production was not able to 
regulate inflammation in this model, as verified by analysis of levels of 
TNF-α and IL-6. The induction of severe inflammation observed may 
have been responsible for the reduction of survival of these animals, 
compared with the survival observed in the immunocompetent model. 
The deficiency modulating immune response mediated by T and B 
lymphocytes, in the model of combined immunodeficiency, leads us to 
infer that the inflammatory response observed in this model was derived 
from the innate immunity mediated by macrophages and mainly of 
neutrophils. In a murine model of immune system cells and CD4 T 
and CD8 T has been important in clearing C. neoformans pulmonary 
infection [34]. The humoral response, mainly immunoglobulin G, also 
increases the host defense against cryptococcosis [35], however, T cells 
have a modulatory effect on the response of B cells against infection 
with C. neoformans in mice [31]. 

C. neoformans is an intracellular parasite of phagocytic cells [36]. 
After phagocytosis the yeast can survive inside the macrophage, 
proliferating and eventually promoting cell lysis [37,38]. Neutrophils 
can contribute greatly to an innate immune response in cryptococcosis 
[39]. The migration of neutrophils in lung tissue is important in 
early protection of mice against progressive cryptococcosis [40,41]. 
The course of lung infection is characterized by a rapid response of 
neutrophils, with phagocytosis of Cryptococcus observed on the 7th 
day after the initial infection [39], since phagocytosis and the killing 
of C. neoformans by neutrophils are reduced due to the presence of 
a large polysaccharide capsule [42]. In this study we verified that 
the innate immune response was not effective in protecting animals 

against progressive cryptococcosis in the immunodeficient model by 
comparing it to the high levels of production of GXM, as well as high 
isolation of yeast in the lungs of these animals during the entire period 
of infection. GXM can suppress various functions of macrophages [43]. 
GXM is also able to influence cells such as neutrophils, however, in 
a different way. While in neutrophils. GXM is expelled from the cell, 
in macrophage an accumulation of GXM occurs an accumulation 
intracellular [44]. Therefore, our results lead us to suggest that the 
murine model of SCID is more susceptible to pulmonary infection 
caused by C. neoformans, as previously reported by other authors [29]. 

The severe inflammatory response caused by the innate immune 
system in this model may have been an important factor in reducing 
survival of these animals. Deficiency of adaptive immune response 
in mice of severe combined deficiency, the abnormal increase in the 
innate immune response may be an important cause of systemic 
immune response syndrome (SIRS) and reduced survival in this model 
[45]. GXM was responsible for greater survival of yeast in the lungs of 
these animals and was the main modulator of the severe inflammation 
observed in this model. There was an increase in the production of 
GXM, in (SCID) a severe inflammatory response in this model may be 
due to a compromised immune system. 

 The BALB-c/SCID model used in this research is especially 
important for the analysis of the pathophysiology of cryptococcal 
disease due to most human cases of disseminated cryptococcosis 
are associated with the CD4 + T cell deficiency in AIDS patients. In 
summary, GXM contribute to the pathogenesis of C. neoformans 
infections due to a variety of immunomodulatory effects between 
them inhibits the production of proinflammatory cytokines, induces 
inhibitory factors such as IL-10 and induces apoptosis in splenic 
mononuclear cells from normal rats [46-48].

Future studies should be carried out to examine the influence of 
GXM in apoptosis, as well, as their interaction with macrophages in 
this model.
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