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Introduction 
Concepts developed in physics of crystalline solids, to a large 

extent, can be applicable to photonic supercrystals. In this connection 
some promising vistas can be opened up by the so-called polaritonic 
crystals (PC) [1], which represents a particular type of photonic crystals 
characterized by a strong coupling between quantum excitations 
(excitons) and electromagnetic waves. An example of a polaritonic 
structure is provided by an array of coupled microcavities [2]. Optical 
modes in microcavity systems have been attracting a considerable 
attention due to the progress in fabrication of novel optoelectronic 
devices [3,4]. Recently the focus has been on the ability to control 
the propagation of electromagnetic excitations in the composite 
structures by modifying their physical properties with external 
influences (for example, elastic deformation). In this work we make 
use of some previously developed formalism in photonic structures 
[5,6] to treat a non-ideal PC formed by a topologically ordered array 
of coupled microcavities (resonators) containing a system of atomic 
clusters (quantum dots). Particular attention is paid to the sensitivity 
of the polaritonic spectrum on the geometry and key parameters of 
interacting photonic and electronic subsystems. 

We study 1D polaritonic crystal as a topologically ordered system 
of coupled microcavities (see, for example, [7]) with and without 
quantum dots. Uniform elastic deformation of 1D structures causes 
some peculiar effects. Effectively it is possible to achieve the necessary 
changes of its polaritonic spectrum and other optical properties.

Theoretical Background
Based on the approach developed in refs. [1,5-8], we consider 

electromagnetic excitations in a lattice of microcavities composed of 
s sublattices. Each of the tunnel-coupled microresonators is assumed 
to possess a single dominating optical mode. Under elastic stress 
Hamiltonian ( )ˆ ˆH ε  of resonator-localized electromagnetic excitations 
is a function of deformation tensor ε̂ .

Under assumption that the density of excited states of constituent 
elements in resonator and atomic systems is a small quantity and within 
the one-level model and Heitler-London approximation Hamiltonian 

( )ˆ ˆH ε  has the form (ref. [9]):
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Where ( )ph ath hα αω ωn n  is the energy of the photonic mode without 
(with) a quantum dot localized at αn -th lattice site (resonator);
ˆ ˆ( )Bα αΨn n  is a Bose annihilation operator of the corresponding 

mode in nodal representation; ( )ˆA α β εn m  is the matrix of resonance 
interaction, which describes an overlap between optical fields of 
resonators in the αn -th and βm -th lattice sites and hence defines 
the jump probability of the corresponding electromagnetic excitation; 

( )ˆV α β εn m  is the matrix of resonance interaction between quantum dots 
embedded in the αn -th and βm -th lattice sites; ( )ˆg α εn  is the matrix 
of resonance interaction between quantum dot in the ,λ σ -th lattice 
site with electromagnetic field localized at the same site. In the adopted 
formalism values 1 and 2 of indices ,λ σ  indicate, correspondingly, 
presence or absence of quantum dots in respective cavities.

Translation invariance of the system under uniform deformations 
allows for the quasi-crystal representation (summation over k) of the 
matrices ( )ˆ,Dλσ

αβ εk  and ( )αλΦ k  in the form:

( ) ( ) ( )
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n
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Here N is the number of elementary cells constituting the lattice. 
Notice that the wave vector k, which characterizes eigenstates of 
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electromagnetic excitations, varies within the first Brillouin zone. The 
zone itself is a function of a uniform deformation ε̂ .

Generally speaking eigenvalues of Hamiltonian (1) may be found 
via Bogolyubov-Tyablikov transformation [9]. This yields the following 
equation for elementary excitation spectrum ( )ˆ,εΩ k :

( ) ( )ˆ ˆdet , , 0Dλσ
αβ αβ λσε ε δ δ− Ω =k k

		                 (4)

Below we carry out a detailed investigation of the spectrum
( )ˆ,εΩ k , which holds valuable information about the effective mass 

of such collective excitations and some other quantities of interest.

Results and Discussion
Exciton-like excitations in a one-dimensional microcavity 
lattice under a uniform elastic deformation

To be more specific, let us assume that under a uniform deformation 
described by tensor ε̂  each cavity changes its position in such fashion 
that the lattice constant ( )d ε  has the form:

( ) ( ) 01 ,d dε ε= +  			                                   (5)

here d0 corresponds to a strain-free structure, and ε  is the corresponding 
component of the stress tensor directed along the chain.  The reciprocal 
lattice constant ( )b ε  is found from the standard relation:

( ) ( ) 2b dε ε π⋅ = .		           	                               (6)

In what follows, we assume that the microcavity array is made up 
of two sublattices void of quantum emitters. Position of microcavities 
is defined by the equality ( ) ( ) ( )n nr r rα αε ε ε= + , and therefore their 
positions in the zeroth cell of the first and second sublattice ( 0 0nr = = ) are 
correspondingly: 01 0r =  and ( ) ( )02r aε ε= . The spectrum of exciton-

like excitations ( ),k εΩ  is found from relation (4):
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Quantities ( ),A kαβ ε  in Eq. (7) are Fourier-

transforms of matrix ( )n mA α β ε  of resonance interaction:
( ) ( ) ( ) ( ){ }, expn m n m

m
A k A ik r rαβ α β α βε ε ε ε = − ∑ . In the frame of our model 

within the nearest-neighbor approximation, the matrix elements 

( ),A k
αβ

ε  take the following form:
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According to Rumyantsev et al. [6], quantities ( )12(21) ,A a ε  

which are components of the matrix ( )n mA α β ε  describing the 

resonance interactions, correspond to nearest neighbors equal to 

( ) ( ) ( ) ( ) ( )12 21 12 21 expA a A aε ε  = −  , ( ) ( ) ( ) ( )12(21) 12(21)A d a A d a expε ε ε −  = − −  . In 

our case we put ( ) ( )12 21A a A a , ( ) ( )12 21A d a A d a− − . Relation

(4) shows that the dispersion law ( ),k εΩ  of elementary 
electromagnetic excitations is determined both by frequency 
characteristics of resonator array and by the explicit form of ( ),A k ε , as 
well as by the nature of deformation (e.g., by a uniaxial extension 0ε >  
or contraction 0ε < ).

Further calculations are performed for a uniaxial deformation 
of a uniform isotropic one-dimensional medium. The following 

modeling parameters are adopted: frequencies of resonance 
photonic modes in cavities (independent of deformation (ε ) are 

1 2 311ph THzω π= ×  and 2 2 331ph THzω π= ×  and ( ) 14
12 2 3.5 10 ,A a Hz= ⋅  

( ) 14
12 2 1.2 10 ,A d a Hz− = ⋅

71 10a m−= ⋅ , 79 10d m−= ⋅ . Figure 1 depicts 
the dependence ( ) ( ), , 1,2kν ε νΩ = , of the deformed one-dimensional 
lattice for different values of ε . Shaded region in the ( ,k ε )-plane 
corresponds to the first Brillouin zone. 

An important property of the band gap photonic structures is their 
ability to produce the so-called “slow light”. It has important application 
for designing quantum optical information processing devices.  The 
effective decrease of quasiparticle group velocity was shown to occur 
in coupled wave-guide optical resonators [10] and in various types of 
multilayer semiconductor structures [11]. A key role in decreasing the 
group velocity is played by the character of quasi particles’ effective 
mass ( ) ( 1; 2)effm ν ν = . Figure 2 depicts the dependence of the effective 

mass 
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 of exciton-like excitations on the 

degree of deformation.  Its examination indicates that a careful choice 
of ε  permits to attain the necessary parameters of the “slow light”. 

Conclusion
The study of the spectrum of elementary electromagnetic excitations 

in a one-dimensional array of tunnel-coupled microcavities shows 

Figure 1: Dependencies ( )1(2) ,k εΩ  of the deformed one-dimensional lattice.

Figure 2: Dependence of the effective mass of exciton-like excitations on 
deformation degree.
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that subjecting the system to controlled elastic stress is an effective 
tool for altering its energy structure and optical properties. We have 
demonstrated that the conclusion holds for the cases of microresonator 
arrays with embedded quantum dots as well as for quantum-dot-free 
lattices. The presence of deformation and structural defects may lead 
to the increase of the effective mass of corresponding excitations 
and therefore to a decrease of their group velocity. The results of 
numerical simulations performed on the basis of the constructed 
model contribute to modeling of the new class of functional materials – 
photonic crystalline system constituted of coupled microcavities. Their 
capabilities include the controllable propagation of electromagnetic 
excitations. 
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