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Introduction 
The association of cognitive function with demographic variables 

has been established among the elderly [1-2]. Blacks have lower 
cognitive function compared to Whites, after adjusting for individual 
socio-economic status (SES) [3]. The racial differences, in part, can 
be attributed to indirect effects through education [4] and differential 
item function [5]. However, none of the demographic variables seem 
to exhibit any relationship with the change in cognitive function [6]. 
A closer look at the study revealed that a large fraction of respondents 
were lost to follow-up and were not given any special consideration. In 
order to make correct inferences, we will need to account for this large 
loss of follow-up in our longitudinal surveys. 

Non-participation and death are the two main causes of loss to 
follow-up among aging population [7-9], and the analytic strategies 
need to appropriately account for this loss to follow-up [10]. Missing 
data can result in biased parameter estimation and incorrect inferences, 
when missing data mechanism is closely related to unobserved cognitive 
function [11]. A range of methodologies for handling cognitive 
function with non-participation and death have been proposed which 
accommodate general patterns of missing data. Most of these methods 
rely on likelihood-based theory, since the focus is on the subject-specific 
trajectories of study participants, in the presence of non-participation 
and death [12-14]. However, the observed cognitive function provides 
no means of verifying the different probability assumptions with regard 
to the distribution of non-participation and death. Consequently, 
sensitivity analysis under a range of assumptions about the missing 
process is to be undertaken. 

Pattern-mixture models have gained wide popularity for handling 
data not missing at random. These models factorize the joint distribution 
into the conditional distribution of cognitive function given the time of 

event, and the marginal distribution of the time to event [15]. Multiple 
imputations have been rigorously developed to study the NMAR non-
participation process [16]. Imputations can be performed in samples 
stratified by patterns of non-participation and the imputed datasets can 
be used to study the decline in cognitive function while stratifying on 
patterns of death [16-17]. Stratification by patterns makes it clear how 
the observed data lack information sufficient for estimating certain 
parameters while requiring a set of identifying constraints.

Our research is motivated by the Chicago Health and Aging 
Project (CHAP). One of the aims of the CHAP study was to study the 
effect of demographic variables on Alzheimer’s disease and change in 
cognitive function. However, a large fraction of subjects were either 
deceased or did not participate in all follow-ups of the study. Thus, 
the primary aim of this article is to illustrate the use of missing data 
methods for analyzing longitudinal end of life research, in the presence 
of non-participation and death, among blacks and whites. In the next 

*Corresponding author: Kumar B. Rajan, Rush Institute for Healthy Aging, 
Department of Internal Medicine, Chicago, 1645 W Jackson Blvd., Suite 675, 
Chicago IL 60612, USA, Tel: (312) 942-3279; Fax: (312) 942-2861; E-mail: kumar_
rajan@rush.edu

Received September 08, 2011; Accepted November 16, 2011; Published 
November 18, 2011

Citation: Rajan KB, Leurgans SE, Weuve J, Beck TL, Evans DA (2011) Effect of 
Demographic Risk Factors on the Change in Cognitive Function in   the Presence 
of Non-Participation and Truncation due to Death. J Biomet Biostat S3:001. 
doi:10.4172/2155-6180.S3-001

Copyright: © 2011 Rajan KB, et al. This is an open-access article distributed under 
the terms of the Creative Commons Attribution License, which permits unrestricted 
use, distribution, and reproduction in any medium, provided the original author and 
source are credited.

Effect of Demographic Risk Factors on the Change in Cognitive Function 
in the Presence of Non-Participation and Truncation due to Death
Kumar B. Rajan1*, Sue E. Leurgans2, Jennifer Weuve1, Todd L. Beck1 and Denis A. Evans1

1Rush Institute for Healthy Aging, Department of Internal Medicine, Chicago 
2Rush Alzheimer’s Disease Center, Department of Neurology & Preventive Med

Abstract
Missing data due to non-participation and death are two common problems in longitudinal studies of the elderly.  

The effect of socio-demographic variables on the decline in cognitive function after adjusting for non-participation and 
truncation due to death has not been well studied. This study is based on 6,105 subjects enrolled in the Chicago Health 
and Aging Project (CHAP), followed over four cycles of data collection approximately three years apart. Cognitive 
function was based on a standardized measure of mini-mental state examination. We will study the impact of non-
participation and death on the decline in cognitive function with socio-demographic variables as risk factors, using four 
different modeling approaches: 1) a linear mixed effects model ignoring the missing data, 2) a pattern-mixture model 
using multiple imputation (MI) stratified by patterns of non-participation and death, 3) MI for non-participation stratified by 
patterns of non-participation and a pattern-mixture model stratified by the time of death, and 4) MI for non-participation 
stratified by patterns of non-participation and a pattern-mixture model with a categorical variable for time of death. The 
baseline association of socio-demographic variables with cognitive function was mostly unchanged among Blacks and 
Whites. However, the decline in cognitive function over a 10-year period had decreased by approximately 50% (Blacks 
coefficient changed from -0.544 to -0.285; Whites coefficient changed from -0.682 to -0.339) after accounting for non-
participation and death. The effect of age on the change in cognitive function over a 10-year period had reduced by 
about 30% (Blacks coefficient changed from -0.033 to -0.010; Whites coefficient changed from -0.049 to -0.016). The 
trajectory of cognitive function for White males had reduced by approximately 45% (changed from 0.12 to 0.055) over 
a 10-year period. Education was significantly associated with the change in cognitive function among Blacks but not 
among Whites. Moreover, females showed a significant change in cognitive function among Whites, but not among 
Blacks. We found significant differences on the change in cognitive function between models that did not adjust for non-
participation and death, and models that adjusted for them.
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section, we will outline the likelihood-based approach for modeling 
observed data in the presence of independent and dependent missing 
mechanisms. 

Mixed-Effects Regression Models 
Let Y denote cognitive function, S the time of death, X the fixed-

effects design matrix for Y, and β the vector of unobserved random 
subject-specific effects. Pattern-mixture models stratify the data 
according to patterns of non-participation and death, and provide 
a model for each pattern specific stratum [18]. The final estimate is a 
weighted average of the stratum specific estimates. After conditioning 
on the patterns, the missing data mechanism is ignorable within a 
stratum, and thus information from the complete cases can be borrowed 
to predict the incomplete cases. This implies the factorization

P(Y, S|X) =P(Y|X,b,S)P(b|X,S)P(S|X), 

Where P(S | X) can be modeled as a multinomial distribution or a 
survival function based on whether we use missing data pattern or time 
to unobserved cognitive function, respectively. 

Let subject i have ni planned follow-up interviews. Using standard 
notation, a linear mixed effects model (LMEM) for cognitive function 
that implicitly imputes the data missing at random [19] is given by

~ (0, ), ~ (0, ,, )α b ε εΣ Σ= + +
i i i iin in i iin b inY b N NX b    

where 
iinX  is the known design matrix for fixed effect and bi is the 

subject-level random effects for unobserved cognitive function 
iinY . 

The missing at random assumption might hold for non-participation, 
however, there is little evidence to suggest that it would hold for the 
deceased. 

Missing data can be classified into two types based on the time of 
non-participation and time of death. If the time of non-participation 
was one interview before death then this will be classified as missing 
due to death. If the time of non-participation was more than one cycle 
apart then they will be treated as missing due to non-participation. If 
missing data occurred among those who were not deceased then it is be 
treated as missing due to non-participation. Based on this definition, 
we will perform multiple imputations (c = 5) for non-participation and 
use pattern-mixture models with time to death in the imputed datasets. 

In the second model, multiple imputations are performed on the 
missing data by stratifying on the patterns of non-participation and 
death. Let k denote the imputed data set. Then, the linear mixed effects 
model for the imputed data sets is given by 

~ (0, ), ~ (0, ), ,α b ε ε= + + Σ Σ
i ii i

k k
in in i i

k k k
in b inN NY X b b  

where 
i

k
inY  denotes cognitive function from the kth imputed data set. 

This model uses a stratification variable during imputations to capture 
the pattern effects of non-participation and death, and is similar to 
a pattern-mixture model (PMM). The estimates from the imputed 
datasets are combined using Rubin’s combination method [20]. 

In the third model, multiple imputations are performed on the 
study population stratified by the patterns of non-participation. Let us 
define pattern j for those who were deceased. Then, a random pattern-
mixture model (PMM-1) stratified on the patterns of death is used 
to capture the longitudinal trajectories for groups [21]. This model is 
represented as follows 

 ~ (0, ), ~ (0, ), ~ ( ), 0, ,α b γ ε εΣ= + + + Σ Σk k k k
ij b u i

k k k
ij ij i j i j jY u N Nb b NX u

where the time of death depends on the pattern specific random effect 
uj. Thus, the information of the deceased is modeled by the second 

component which imposes a constraint on the random patterns effect 
uj.

Finally, a categorical time of death variable was added to capture the 
longitudinal trajectories for those deceased [22]. The random pattern-
mixture (PMM-2) with the time of death variable is given by    

, ~ (0, ), ~ (0, ),α b θ ε εΣ= + + + Σkk k k
ij ij i

k k
ij b ijj iY X b t b N N

where the time of death is used as a covariate to provide an accurate 
representation of cognitive function over time. 

All models were fitted using SAS software with PROC MI, PROC 
MIXED and PROC NLMIXED procedures [23]. We used 5 imputations 
since this provides stable results [24]. In the next section, we describe 
the design of the CHAP study and the characteristics of CHAP 
participants. 

Chicago Health and Aging Project 
CHAP is a cohort of participants, 65 years and older, who have been 

followed for up to 15 years. This study was performed in three adjacent 

Characteristic Completers
N=2035

Non-participants
N=990

Deceased
N=3080

Age (years) 72.1 (5.2) 72.2 (5.0) 77.6
Cognition score 0.31 (0.64) 0.22 (0.67) -0.33 (0.99)
Physical function 11.05 (3.20) 9.00 (4.10) 6.7 (3.8)
CES-D score 1.42 (1.90) 1.38 (1.82) 0.97 (1.53)
Gender
     Females
     Males

1307 (64%)
728 (36%)

607 (61%)
383 (39%)

1796 (58%)
1284 (41%)

Race
     Whites
     Blacks

735 (36%)
1300 (64%)

377 (38%)
613 (62%)

1221 (40%)
1859 (60%)

Education (years)
     0-9
     10-12
     13-16
        ≥17

386 (19%)
826 (41%)
632 (31%)
191 (9%)

195 (20%)
431 (44%)
289 (29%)
75 (8%)

917 (30%)
1256 (41%)
716 (23%)
191 (6%)

Table 1: Descriptive measures of demographic and mental health at baseline 
among the completers, non-participants and deceased. Means and standards de-
viation are provided for age, cognition score, physical function and CES-D score. 
Number of participants and percentages are presented for gender, race, and edu-
cation.

Pattern Type of Pat-
tern 

No. of Par-
ticipants

Average 
time in the 
study (Yrs.)

Mean cogni-
tion 

Percent 
Black

Complete CCCC 2035 9.32 0.314 64%
Non-Partici-
pation
1 CCCM 164 9.53 0.229 65%

2 CCMC 185 6.54 0.230 60%
3 CCMM 248 6.62 0.288 56%
4 CMCC 74 3.20 0.272 67%
5 CMMC 40 3.21 0.290 65%
6 CMMM 240 3.31 0.170 62%
7 CMCM 39 3.27 -0.002 77%
Deceased
1 CD 1423 2.73 -.525 62%
2 CMD 2 6.90 -.086 50%
3 CCD 1043 5.53 -.193 56%
4 CCCD 598 8.06 -.110 65%
5 CCMD 14 6.85 -.572 50%

Table 2: The characteristics of patterns defined for non-participation and death 
among the study sample, where “C” refers to completed observation, “M” refers to 
non-participants and “D” refers to the deceased.
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neighborhoods on the South side of Chicago. In-home interviews were 
conducted three years apart to collect covariate and outcome data [25]. 
Cognitive function was evaluated using a battery of four tests and 
was summarized as a global standardized score. This score combines 
variables with different ranges and floor-ceiling effects by averaging 
the four tests together after centering and scaling to the baseline mean 
and standard deviation [26]. Thus, a participant whose performance 
matches the average participant at baseline has a composite cognitive 
score of 0, and a person who performs one SD better than average on 
every test has a composite cognitive score of +1. This article is restricted 
to the study participants from the CHAP cohort (N=6,105) with four 
cycles of data collection or truncated due to death. 

The average age among study participants at baseline was 74.9 
years (SD=7.13 years). In this CHAP cohort, 2679 (44%) participants 
completed the follow-up interviews and 3426 (56%) subjects did not 
participate or were deceased. The average time to follow-up from Cycle-1 
to Cycle-2 was 3.29 years (SD=0.45) among those who completed the 
survey; the average time to follow-up from Cycle-1 to Cycle-3 was 
6.37 years (SD=0.56); and the average time to follow-up from Cycle-1 
to Cycle-4 was 9.35 (SD=0.55). The descriptive measures of the study 

cohort at baseline for those who completed, did not participate or died 
are shown in Table 1.

In this analysis, we considered study participants who had provided 
data at baseline and classified the missing data into two types: non-
participation and death. We defined eight patterns of non-participation 
and five patterns of death. One of the missing data patterns had only 
two participants, hence, the two subjects were dropped from our 
analysis. Table 2 provides the definition of the patterns, the details 
of the follow-up, the average cognition score at baseline, and the 
percentage of Blacks. A large fraction of the participants had missing 
data and ignoring the patterns of missing data can cause severe bias 
in the parameter estimates. Figure 1 shows the average cognition 
score for study participants belonging to different patterns of non-
participation and death by ethnicity. The average cognition score at 
baseline was different for the patterns (p<0.001). Also, the decline in 
cognitive function was different among the patterns. This suggests that 
a pattern-mixture model might be useful in studying the sensitivity of 
an underlying NMAR assumption.

Results from the CHAP Data  

The mean cognitive function among the subjects at baseline was 

 
 Figure 1: Trajectories of cognitive function by patterns of non-participation and death for Whites and Blacks.



Citation: Rajan KB, Leurgans SE, Weuve J, Beck TL, Evans DA (2011) Effect of Demographic Risk Factors on the Change in Cognitive Function in   
the Presence of Non-Participation and Truncation due to Death. J Biomet Biostat S3:001. doi:10.4172/2155-6180.S3-001

Page 4 of 7

J Biomet Biostat                                                                                                                                   ISSN:2155-6180 JBMBS, an open access journalData analysis: Missing and multiway

-0.0265 with a standard deviation of 0.8994. From Figure 1, the decline 
in cognitive function was dramatic among Whites who did not provided 
data at Cycle-2 and Cycle-4, when compared to Blacks. The decline in 
cognitive function was similar among complete-cases and patterns 1 
through 6. However, the decline in cognitive function was different 
among patterns of the deceased. Cognitive function was lowest in the 
CCDD pattern among Whites. However, cognitive function was lowest 
in the CDDD pattern among Blacks. The decline in cognitive function 
had more variation among the Whites compared to Blacks. The change 
in cognitive function was shifted towards the null for Blacks.

 We used the four modeling strategies described in the 
methods section to study the marginal change in cognitive function. The 
estimated mean decline over a 10-year interval using LMEM was -0.593, 
however, this estimate was -0.284 while accounting for the patterns of 
non-participation and death. Also, the estimate for decline in cognitive 
function based on baseline age reduced from -0.039 to -0.011, almost a 
third of the LMEM model estimate. The decline in cognitive function 
in terms of gender was almost half and no longer significant. The results 
from not adjusting for missing data are substantially different from 
adjusting for them. In other words, the estimate of change in cognitive 
function demonstrates minimal change among survivors compared to 
severe change among the deceased. Race is an important risk factor that 
can not only confound the decline in cognitive function but also other 
risk factors. Thus, we studied the decline in cognitive function among 
Blacks and Whites separately. Using LMEMs, almost all coefficients 

except the cross-sectional effect of age were different among Blacks and 
Whites. Males showed a slower decline in cognitive function among 
Whites, but not among Blacks. Education was significantly associated 
with decline in cognitive function among Blacks, but had no effect 
among Whites. The effect of education on the decline of cognitive 
function was not significant among Whites, but remained significant 
among Blacks. 

The decline in cognitive function over 10-year period was -0.355 
for PMM-1, whereas, the effect was -0.284 for PMM and -0.593 for 
LMEM. The change of cognitive function was slightly higher than 
PMM, but much lower than LMEM. The decline in interaction of age 
with time was consistent between the PMM and PMM-1 models. The 
value was about -0.011 for the two models. However, the attenuated 
effect of interaction of gender with time was no longer observed in 
PMM-1. The interaction of gender with time was 0.087 for PMM-1 and 
0.082 for LMEM, whereas, 0.046 for PMM. Separately, among Blacks 
and Whites, the cross-sectional main effects were about the same for 
age, males, and years of education. However, the decline in cognitive 
function over a 10-year period was -0.355 for PMM-1, compared to 
-0.308 for PMM and -0.682 for LMEM among Whites, and -0.313 for 
PMM-1, compared to -0.242 for PMM and -0.544 for LMEM among 
Blacks. The effect of age on the decline of cognitive function had 
reduced from -0.049 for LMEM to -0.014 for PMM-1 among Whites, 
and from -0.033 for LMEM to -0.012 for PMM-1 among Blacks. These 

Coefficients LMEM PMM PMM-1 PMM-2 
                                                      Both Races Combined
Intercept 0.323 (0.017) 0.286 (0.018) 0.303 (0.018)   0.365 (0.019)   
Age -0.047 (0.0013) -0.049 (0.0014) -0.048 (0.0014)   -0.046 (0.0014)   
Male -0.078 (0.018) -0.081 (0.018) -0.073 (0.020)   -0.067 (0.021)   
Black -0.472 (0.021) -0.464 (0.023) -0.475 (0.021)   -0.461 (0.022)   
Education 0.072 (0.0027) 0.074 (0.0027) 0.072 (0.0027)   0.071 (0.0028)   
Time -0.593 (0.032) -0.284 (0.033) -0.355 (0.033)   -0.326 (0.038)   
Age   Time -0.039 (0.0029) -0.011 (0.0025) -0.011 (0.0030)   -0.010 (0.0029)   
Male   Time 0.082 (0.035) 0.046 (0.034) 0.087 (0.036)   0.053 (0.032)   
Black    Time 0.014 (0.038) 0.028 (0.038) 0.058 (0.045)  0.055 (0.053)  
Education    Time -0.006 (0.0049) -0.007 (0.005) -0.002 (0.005)   -0.006 (0.007)   
Time of Death -.128/-.164/-.202
                                                      White Subjects Only 
Intercept 0.387 (0.018) 0.344 (.019) 0.354 (0.020) 0.424 (0.021)
Age -0.046 (0.0019) -0.049 (0.002) -0.047 (0.002) -0.045 (0.002)
Male -0.150 (0.028) -0.149 (0.029) -0.144 (0.031) -0.137 (0.030)
Education 0.049 (0.0042) 0.051 (0.004) 0.048 (0.0048) 0.050 (0.004)
Time -0.682 (0.037) -0.308 (0.032) -0.355 (0.035) -0.339 (0.055)
Age   Time -0.049 (0.004) -0.009 (0.004) -0.014 (0.004) -0.016 (0.005)
Male   Time 0.12 (0.051) 0.073 (0.057) 0.119 (0.050) 0.055 (0.050)
Education    Time 0.014 (0.008) 0.002 (0.007) 0.003 (0.008) 0.0007 (0.008)
Time of Death -.166/-.187/-.228
                                                      Blacks Subjects Only
Intercept -0.158 (0.015) -0.186 (0.016) -0.182 (0.016) -0.102 (0.018)
Age -0.048 (0.0018) -0.049 (0.001) -0.050 (0.0018) -0.047 (0.001)
Male -0.0142 (0.024) -0.014 (0.024) -0.009 (0.026) -0.0086 (0.026)
Education   0.087 (0.0034) 0.088 (0.003) 0.086 (0.004) 0.086 (0.0034)
Time -0.544 (0.028) -0.242 (0.027) -0.313 (0.031) -0.285 (0.035)
Age   Time -0.033 (0.0038) -0.008 (0.003) -0.012 (0.003) -0.010 (0.005)
Male   Time 0.050 (0.043) 0.017 (0.045) 0.027 (0.044) 0.010 (0.037)
Education    Time   -0.017(0.0061) -0.016 (0.0072) -0.014 (.0078) -0.017 (0.005)
Time of Death -.104/-.162/-.198

Table 3: Parameter estimates and standard errors for the marginal random mixed model, linear mixed effects model, pattern-mixture model with multiple imputations, 
pattern-mixture model for deceased with multiple imputations for non-participants, and pattern-mixture model for deceased with time of death. 
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parameter estimates from the missing data models were significantly 
different from the LMEM models (p<0.03). 

Finally, we fitted a pattern-mixture model with a categorical variable 
for time of death as one of the predictor variables. This approach allowed 
us to study the decline in cognitive function in terms of time of death. If 
a subject had not deceased or did not participate in the survey then they 
were classified into a different group. The model suggests that cognitive 
function was lower by 0.23 among those who were deceased at Cycle-4 
in comparison to survivors. The average cognitive function at baseline 
among 75 year-old White females was 0.424 compared to 0.387, 0.344 
and 0.354, for LMEM, PMM and PMM-1, respectively. This difference 
was significantly higher for PMM-2 model compared to other models. 
The intercept term attenuated towards the null for all models among 
Whites, but not among Blacks. The decline in cognitive function with 
respect to age was lower than PMM-1 and LMEM models. Using PMM-
2, White males changed by an average of 0.055 over a 10-year period 
compared to females. However, this change was 0.12 using a LMEM 

model. Education was not associated with decline in cognitive function 
among Whites. However, education negatively impacted the decline in 
cognitive function among Blacks. Moreover, the effects of education on 
the decline were fairly stable across the different models. 

The decline in cognitive function among 72-year old Blacks and 
Whites for the four models is shown in Figure 2. We can see from the 
figure that 72-year old Black males and females shown similar decline 
in cognitive function with LMEM exhibiting the most severe decline, 
where as PMM-2 showing the least severe decline. The decline among 
White females seems to be higher when compared to White males. The 
level of cognitive function was significantly higher among Whites when 
compared to Blacks. Figure 3 shows the decline in cognitive function 
among 80 year-old subjects. The figures suggest that 80 year-old 
White males and females have a higher decline in cognitive function 
compared to their counterpart Blacks. However, the effect of age on 
change of cognitive function was somewhat similar among the missing 

 
Figure 2: Decline in cognitive function of 72 year-old subjects using models linear mixed effect models and pattern mixture models by gender and race.



Citation: Rajan KB, Leurgans SE, Weuve J, Beck TL, Evans DA (2011) Effect of Demographic Risk Factors on the Change in Cognitive Function in   
the Presence of Non-Participation and Truncation due to Death. J Biomet Biostat S3:001. doi:10.4172/2155-6180.S3-001

Page 6 of 7

J Biomet Biostat                                                                                                                                   ISSN:2155-6180 JBMBS, an open access journalData analysis: Missing and multiway

time to non-participation and death are independent. Considering 
this assumption, a pattern mixture model for the CHAP study was 
implemented and compared with our modeling approaches. We found 
substantial differences in the parameter estimates and inferences of 
these models. The change in cognitive function was significantly lower 
in LMEM models compared to pattern mixture models. If we used a 
fixed effect for time of death then we were able to describe the decline in 
cognitive function in terms of time of death and risk factors. The effect 
of patterns on the non-participation model and death was informative 
and accounted for the most differences in the study participants. 

Some of the limitations of conducting such a sensitivity analysis 
cannot be ignored. We implemented fully conditional models to study 
the decline in cognitive function. However, partially conditional models 
using inverse probability weighted estimators can also be used to study 
the cognitive decline under missing at random assumption [27-28]. 
Implementing pattern mixture models can be time consuming and 
computationally difficult. The convergence of these models needs to be 

 Figure 3: Decline in cognitive function of 80 year-old subjects using models linear mixed effect models and pattern mixture models by gender and race.

data models. The level of cognitive function was significantly lower 
among Blacks than Whites. 

Discussion  

In this article, we have illustrated the use of pattern mixture models 
for longitudinal studies with non-participation and death. The pattern 
mixture models borrow the fundamental idea of stratification from 
the traditional pattern mixture models, thus not requiring explicit 
specification of the non-participation and death mechanism. Unlike the 
traditional pattern-mixture model that fit a model for each pattern, we 
treat the pattern as nuisance parameters and explicitly model them as 
random. The parameters of interest are marginal after integrating out the 
random effects. This model avoids the over parameterization problem 
of the fixed pattern effects model while retaining the robustness.

The random pattern-mixture effects model assumes that 
conditional on the random effects the longitudinal outcome and the 
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carefully monitored and properly specified. Over specification of model 
can result in singularity issues and inefficient parameter estimates. Our 
models did not account for the fact that trajectories can be modified 
by time of death and other exogenous variables. In addition, in aging 
research one might want to model death separately, as death is usually 
an outcome of interest. The results of a study can vary significantly by 
the non-participation and death mechanism and one needs to take that 
into account while analyzing longitudinal aging data. 
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