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3D-QSAR Analysis and Molecular Docking Studies on 
3-Arylcoumarin Derivatives as Potential α- Glucosidase 
Inhibitors

Abstract
α-glucosidase inhibitors (AGI) are the structural moieties that are found to be of utmost importance in the fields of pharmacy and which involves delaying the absorption of carbohydrates 
by blocking of alpha-glucosidase enzyme in the brush border of small intestine and plays an important role in constituting a promising therapeutic class against diabetic disease (Type 
II). In this study, the three-dimensional quantitative structure-activity relationship (3D-QSAR) and docking models were developed using Fujito-Ban analysis in VALSTAT software and 
Molegro Virtual Docker 6.0. The theoretical models were generated from 29 3-arylcoumarin inhibitors of α-glucosidase. A robust QSAR model with good prediction in internal and 
external verification was constructed, where r2 and q2 were 0.821 and 0.646 respectively. The QSAR study suggested that substitution of group at R1 position on 3-arylcoumarin 
ring with electron withdrawing group favourable for the anti-diabetic activity. Molecular docking studies were performed with the coordinates of the α-glucosidase crystal structure 
(PDB ID: 3WY2), as the results we found that the ligands would form the hydrogen bond interactions with Asp 202, Arg 400 and Glu 271 of the protein receptor generally. For better 
α-glucosidase inhibitory activity, dipole seems to give good results. These results of the QSAR analysis and molecular docking provided some useful information for designing new 
and effective α-glucosidase inhibitors in significance of stability and the binding interaction between ligand the receptor site by considering the validation parameters.
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Introduction

Diabetes is a disease that occurs in the case when your blood glucose, 
also called blood sugar, is too high. Diabetes is distinguished by chronic 
hyperglycemia (High blood glucose level) and the occurrence of micro-
angiopathic problems such as neuropathy, nephropathy along with 
retinopathy and cardiovascular diseases [1]. Executing lifestyle changes 
can be a substantial challenge for patients with diabetes [2]. Besides, 
diabetes is supposed to become the seventh leading cause of death 
worldwide in next decade based on World Health Organization (WHO) 
report [3]. Diabetes mellitus defined as it is a metabolic state where no 
proper metabolism of carbohydrates, proteins, fats and lipids occurs due to 
disturbances in hormones [4]. Diabetes mellitus (DM) being the most usual 
endocrine disorder is a serious global health crisis [5,6]. There are two main 
regulatory components that govern glucose homeostasis: insulin secretion 
and insulin resistance. 

Related studies have shown that α-glucosidase inhibitors (AGI) competitively 
inhibits the enzyme alpha glucosidase in the brush borders of the small 
intestine, which delays absorption of carbohydrates (absorbed in mid and 
distal portions of the small intestine instead). The outcome is the prevention 
of glucose production, thereby reducing postprandial hyperglycemia [7]. All 
recognized a-glucosidase inhibitors are excreted unchanged in the feces, 
obviating metabolic drug interactions [8,9]. AGIs can reduce body weight 
by 1-3 kg or help maintain weight if merged with insulinotropic anti-diabetic 
drugs [10]. 3-arylcoumarin is a category of naturally-occurring compounds 
act as anti-diabetic agent, the basic skeleton of which is arylbenzopyranones. 
It mainly includes 3-arylcoumarin and 4-arylcoumarin [11].

The drug design implies the design of molecules that are complementary 
in  shape  and  charge  to the bio-molecular target with which they interact 
and therefore will bind to it [12,13]. Especially quantitative structure-activity 
relationship (QSAR) can be used to develop highly potent or less virulent 
compounds in the series, and it is generally considered to be the chief 
function of QSAR. Moreover, the correlation can be utilize to give some 
demonstration of the mechanism involved in the biological activity. In 
3D QSAR, the correlation between 3D steric and electrostatic fields and 
biologically activity draws attention [14]. In this manuscript, we construct 
molecule based three-dimensional (3D)-QSAR models studies using 29 
3-arylcoumarin derivatives to obtain key groups of α-glucosidase inhibitors,
which was performed in the Fujito-Ban module of VALSTAT software.
3D-QSAR model suggested that the electron-withdrawing group and
electrophilicity of inhibitors affected the α-glucosidase activity. To verify the
conclusion of 3D-QSAR model, the molecular docking was carried out by
Molegro Virtual Docker [15]. The main objective of molecular docking is to
attain ligand-receptor complex with optimized conformation and with the
intention of possessing less binding free energy [16].

Material and Methods

Data set

Twenty nine 3-arylcoumarin derivatives (Figure 1) of α-glucosidase 
inhibitors (Table 1) were selected from the published work and used in 
our study [11]. Inhibitory potency of the compound was reported as IC50 
(µM) values varying from 1.37 to 280.38 µM and then were converted to 
pIC50 using the formula pIC50 = -log IC50. For 3D-QSAR, the original data 
set was randomly divided into training and test set comprising of 19 and 10 
molecules for two models and 20 and 9 molecules for 1 model, respectively. 
The training set was used to build the 3D-QSAR model, and the test set 
was employ to verify the predictive ability of the model. All molecules have 
a common structural skeleton.

Construction of 3D-QSAR model

For sketching of structures of molecules ChemDraw Ultra 8.0 was used. 
The 2D structures were converted into 3D structures using module of the 
program (Chem3D Ultra 8.0). Then energy minimization of 3D structures 
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was done using MOPAC (Molecular Orbital Package) until the value attained 
by RMS gradient will be 0.001 kcal/mol Å.

Then compute the properties, calculate the total energy and generate the 
QSAR model by correlating the pIC50 with some recognized properties. 
Various statistical methods were used for QSAR model building but here use 
of Multiple Linear Regression (MLR) method was done. We get statistical 
values lie r2, q2, etc.. for this compounds, which is then use to judge the 
quality of model.

Descriptors generation

The thermodynamic, steric and electronic parameters are shown in Table 2 
were calculated for QSAR analysis [17]. Free energy change during drug 
receptor complex formation was described by thermodynamic parameters. 
Steric features were used to quantify spatial parameters of drug molecules 
required for its complementary fit with the receptor. Weak non-covalent 

bonding between drug molecules and the receptor were described by 
electronic parameters.

Statistical analysis

Firstly, the descriptors were recognized for constant or near constant 
values and those detected were discarded from original data matrix. With 
the activity set and with each other, correlation of descriptors was setup. 
Among the collinear parameters detected, the one which is more specifically 
correlated with activity was kept and the remaining was excluded. Using 
simple linear regression analysis by VALSTAT software, various descriptors 
to biological activity were studied and, due to interference of collinearity 
among descriptors, individual amalgamation of descriptors were subjected 
to sequential and stepwise multiple regression analysis. Statistical quality of 
models were assessed by using the parameters: number of compounds (n), 
correlation coefficient (r), squared correlation coefficient (r2), standard error 
of estimate (s), variance, Fischer F-test for quality of fit.

In order to validate the derived QSAR models, the leave-one-out (LOO) 
method was used. Once the model was determined, each compound was 
eliminated from the remaining compounds and the eliminated compound 
was predicted from this model. The same procedure was repeated after 
elimination of next compound, until all the compounds had been eliminated 
once. The predictability of each model was assessed by using cross 
validated correlation coefficient (q2).

Molecular docking

To investigate the interaction between 3-arylcoumarin derivatives and 
key parts of the α-glucosidase, molecular docking study was performed 
with Molegro virtual docker 6.0. For sketching of structures of molecules 
ChemDraw Ultra 8.0 was used. The 2D structures were converted into 3D 
structures using module of the program (Chem3D Ultra 8.0). Then energy 
minimization of 3D structures was done using MOPAC (Molecular Orbital 
Package) until the value attained by RMS gradient will be 0.001 kcal/mol 
Å. The coordinates of the α-glucosidase crystal structure (PDB ID: 3WY2) 
at the resolution of 1.47 Å were acquired from the Protein Data Bank and 
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Figure 1. Structure of 3-arylcoumarin.

Comp. R1 R2 R3 R4 R5 R6 R7 R8 IC50 (µM) pIC50

1 H H H H H OH H H 25.67 4.590
2 H H H H OH H H H 280.38 3.552
3 H H OH H H H H H 60.88 4.215
4 H H CH3 H OH H H H 69.6 4.157
5 H H CH3 H H OH H H 118.29 3.927
6 CH3 H H H H OH H H 16.36 4.785
7 H H OH H H OH H H 19.91 4.700
8 H H H H H OH H OH 13.46 4.870
9 H H OH H OH H H H 212.72 3.672
10 H H H H OH OH H H 29.05 4.536
11 OH H H H H OH H H 10.16 4.993
12 H H OH H H H OH H 11.54 4.937

13 H H F H H OH H H 86.91 4.060

14 H H CH3 H OH OH H H 25.48 4.593
15 H H OCH3 H H OH H H 27.42 4.561
16 H H CH3 H H OH H OH 11.49 4.939
17 H H OH H H H OCH3 H 70.26 4.153
18 H H OH H H OH H OH 1.37 5.863
19 H OH OH H H OH H H 29.89 4.524
20 H H OH H H OH H H 19.04 4.720
21 H H F H H OH H OH 19.08 4.719
22 H H OCH3 H OH OH H H 18.8 4.725
23 H H OCH3 H H OH H OH 10.81 4.966
24 H OH OH H OH OH H H 247.34 3.606
25 H OCH3 OCH3 H OH H H H 20.23 4.694
26 H OCH3 OCH3 H H H OH H 13.09 4.883
27 H H OH H H Et2N H H 13.43 4.871
28 H OCH3 OCH3 H H OH H OH 39.08 4.408
29 H H Br H OH OH H H 35.71 4.447

Table 1. Structures and bio-activities of 29 α-glucosidase inhibitors.

Steric descriptors Thermodynamic 
descriptors

Electronic 
descriptors

Connolly accessible area (SAS) Critical temperature (Tc) Dipole (DPL)

Connolly molecular area (MS) Ideal gas thermal capacity 
(Cp)

Electronic energy 
(ElcE)

Connolly solvent excluded 
volume (CSEV) Critical pressure (Cp)

Highest occupied 
molecular orbital 
energy (HOMO)

Principal moment of inertia-X 
component (Pmix) Henry’s law constant (H)

Lowest unoccupied 
molecular orbital 
energy (LUMO)

Principal moment of inertia-Y 
component (Pmiy) Bend energy (Eb) Repulsion energy 

(NRE)
Principal moment of inertia-Z 

component (Pmiz) Heat of formation (Hf) VDW-1,4-Energy 
(E14)

Molar refractivity (MR) Total energy (Et) Non-1,4-VDW 
Energy (Ev)

Ovality (Oval) Partition coefficient (PC) Dipole length 
(DPLL)

Balaban index (Blndx) Critical volume (Vc) Total energy (TotE)
Cluster count (ClsC) Dipole-dipole energy (Ed)

Diameter (Diam) Log P
Molecular topological index 

(Tlndx)
Sum of valence degrees 

(SVDe)
Total valence connectivity 

(TVCon)

Table 2. The various descriptors calculated using chem.-office software.
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prepared with Protein Preparation Wizard in Molegro Virtual Docker 6.0 
software [18]. During the preparation of protein, all other water molecules 
and co-factors were deleted except the water molecules which were near 
to binding domain.

Many a times PDB files also have missing or poor assignment of explicit 
hydrogen’s and no accommodation of bond order information in PDB file 
format. Set assign all below to always. Warning (if any) must be removed 
and rectified. Surface was created and cavities were detected and selection 
of the cavity of largest volume. As the PDB was imported, in the same 
manner all the molecules from the series are imported which were saved 
into .mol format. Docking must be carried out as mentioned in ‘Docking 
Wizard’ option. Thus the docking of molecules was done. The output poses 
were evaluated by scoring functions, including Mol-dock score, Re-rank 
score and H-bond score. Generally, the higher the Mol-dock score, the 
better the selectivity of the resulted pose.

Results

The correlation between the different physicochemical descriptors as 
independent variable and the negative log of the observed activity as 
dependent variable was examines using VALSTAT while determining the 
statistically significant relationships to study the selectivity requisites among 
these compounds. The inter-correlation between all the descriptors was 
also determined and good orthogonality was ensured during quantitative 
model building. Some of the statistically significant models are discussed 
below.

Model 1: BA = [9.87675 (± 3.5559)] -DPL [0.190832 (± 0.127166)] + LUMO 
[2.38031 (± 1.72422)] -Ev [0.00233565 (± 0.00191963)]

n=19, r=0.886, r2=0.785, std=0.335, F=18.256

Model 2: BA = [1.51912 (± 2.55024)] + LogP [0.229416 (± 0.337251)] + MS 
[0.0138723 (± 0.0115592)] -DPL [0.177714 (± 0.135981)]

n=19, r=0.894, r2=0.801, std=0.269, F=20.125

Model 3: BA = [-1.37524 (± 5.61273)] + MS [0.0270713 (± 0.0210838)]-
DPL [0.263521 (± 0.158952)] -Homo [0.387891 (± 0.506097)] -Mass 
[0.00746546 (± 0.0135831)]

n=20, r=0.906, r2=0.821, std=0.0901, F=20.639, q2=0.646

Discussion

Interpretation of descriptors

Model 1 explains only 78.5% variance in the α-glucosidase inhibitor binding 
activity. It shows that descriptor Dipole (DPL) and non-1,4 van der Waals 
energy (Ev) contribute negatively and lowest unoccupied molecular orbital 
(LUMO) contribute positively towards α-glucosidase inhibitor binding 
activity. It is not a very good significant equation therefore new model 
required having good explained variance.

Model 2 explains 80.1% variance in the α-glucosidase inhibitor binding 
activity. It shows that descriptor Log P and Connolly molecular area 
(MS) contribute positively and dipole (DPL) contribute negatively towards 
α-glucosidase inhibitor binding activity. It is not also a very good significant 
equation therefore new model required having good explained variance.

Model 3 explains 82.1% variance in the α-glucosidase inhibitor binding 
activity. Model 3 have low standard error (0.0901) shows the relative good 
fitness of the model. It has the characters of large F value (20.639), r2 and 
q2 values close to 0.9. Model-3 is reliable and highly predictive and it was 
proved by internal and external validation. It shows that descriptor Connolly 
molecular area (MS) contribute positively while dipole (DPL), highest 
occupied molecular orbital (HOMO), and exact mass (Mass) contribute 
negatively towards α-glucosidase inhibitor binding activity. The DPL is 
the crucial indicator of molecular reactivity and properties. The negative 

contribution of dipole (DPL) indicates its low value favor the activity. The 
significance of DPL indicates, the high electronegativity of the compound, 
and there by holding electrons tightly to its orbital, would help them to 
increase biological activity. Highest occupied molecular orbital (HOMO), 
an electronic parameter, which is negatively correlated, indicates that 
electrophilicity or electron withdrawing group on the compound would 
increase the binding affinity. Negative value of mass indicates that, with 
increase in the exact mass of the compound, biological activity decreases.

The Figure 2 shows plot of observed and calculated biological activity for 
training set molecules (Model 3) and Figure 3 shows plot of observed and 
predicted biological activity for same set (Model 3).

Statistical analysis of descriptors

The inter-correlation matrix of descriptors of QSAR equation is given in 
Table 3, the predictor variables with p value >0.05 were eliminated while 
deriving the QSAR models in order to ensure their statistical reliability.

Molecular docking analysis

To evaluate and validate the docking reliability, crystal structure of protein 
(3WY2) with the cognate ligand was re-docked. As reference ligand, the 
cognate ligand was taken out of its protein-ligand complex (3WY2) and re-
docked back into its binding site. As shown in Figure 4, it can be seen 
that the re-docked ligand and the reference ligand are almost completely 
superimposed together. Both of them are having basically similar rotational 
tendency. The result shows that the docking method is rational and reliable.

Figure 5 represents the dock result of the re-docked ligand. As can be seen 
from Figure 5, the key residue Arg 200, Arg 400, Asp 62, Asp 202, Asp 333, 
Glu 271 and His 332 in chain interact with the inhibitor by hydrogen bond.

Considering the training molecules as the ligands and 3WY2 as the 
receptor, 195 output poses were obtained. The higher the Mol-dock-score, 
the better the selectivity of the output poses. The best output pose of each 
molecule with good Mol-dock score and H-score was selected. Compound 
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Figure 2. Discrete plot of training between observed and calculated biological 
activity by leave-one-out-validation values (Model 3).
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Figure 3. Discrete plot of training between observed and predicted biological 
activity by leave-one-out-validation values (Model 3).
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27 shows higher Mol-dock score (-132.86) but it interacts less with protein 
as compared to compounds 16 and 18 with Mol-dock score of -113.09 
and -112.06, respectively. Therefore, the pose of molecules 16 and 18 
were choosing to explain the binding mode between the protein receptor 
and inhibitors, and the docking results are shown in Figures 6A and 6B, 
respectively. As can be seen from Figure 6A, the molecule forms hydrogen-
bonding interactions with Asp 62, Asp 202, Arg 400, His 332, Glu 271 of 
the protein receptor. Meanwhile, in Figure 6B, we find hydrogen-bonding 
interactions at the active sites, including Arg 400, Asp 202, Asp 333 and Glu 
271 of the protein receptor.

Molecule 26 is the most inactive compound and shows hydrogen-bonding 
interaction with Glu 271 of the protein receptor as shown in Figure 7. 
The results indicate that the ligands would form the hydrogen-bonding 
interactions with Asp 202, Arg 400 and Glu 271 of the protein receptor 
generally.

Conclusion

We developed QSAR model of 3-arylcoumarin derivatives for their 
α-glucosidase inhibitory activity. It may be concluded that α-glucosidase 
inhibitory activity of 3-arylcoumarin derivatives is strongly influenced by 
the electronic nature of the substituents. Based on the developed QSAR 
model, it can be determined that Dipole (DPL) is to be considered while 
designing newer compounds, for their potential enzyme inhibitory activity. 
In order to further understand the binding modes and activity trend, the 
molecular docking studies were conducted on the series of α-glucosidase 
inhibitors. Best ligands interactions with respect to the binding site were 
identified by docking analysis. The active compounds 16 and 18 depicted 
significant interactions with the crucial residues of binding site. The 
docking scores against α-glucosidase in this study could be utilized for 

Figure 4. Superimposition of the reference ligand (the yellow stick represents the 
re-docked ligand; the red stick represents the reference ligand).

Figure 5. The hydrogen-bond interaction (the ligand was represented by sticks, 
the amino acid residues were represented by lines, the hydrogen bonds were 
represented by dotted lines).

A 

Figure 6A. The hydrogen-bond interaction between compound 16 and 3WY2 (the 
grey dotted lines represent the hydrogen bonding).

B 

Figure 6B. The hydrogen-bond interaction between compound 18 and 3WY2 (the 
yellow dotted lines represent the hydrogen bonding).

Figure 7. The hydrogen-bond interaction between compound 26 and 3WY2.

Parameters BA DPL LUMO Ev LogP MS HOMO MASS

BA 1.000

DPL 0.534 1.000

LUMO 0.129 0.255 1.000

Ev 0.027 0.177 0.186 1.000

LogP 0.096 0.316 0.641 0.187 1.000

MS 0.105 0.433 0.514 0.153 0.415 1.000

HOMO 0.139 0.013 0.823 0.181 0.544 0.362 1.000
MASS 0.168 0.440 0.178 0.033 0.037 0.575 0.215 1.000

Table 3. Pearson correlation matrix of the descriptors used in all models.
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further computational studies. The results explained here may give rise to 
recognition of other series of new and more potent α-glucosidase inhibitors.
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