

Dynamic Progress in Treating Neurological Disorders

Miguel A. Torres*

Department of Neurology, University of Barcelona, Barcelona, Spain

Introduction

The field of neurological research is witnessing transformative progress, particularly in addressing complex neurodegenerative and acute conditions. A significant development in Alzheimer's Disease focuses on donanemab, an antibody designed to target N3pG amyloid-beta. Crucial research indicates donanemab substantially slowed cognitive and functional decline in patients with early symptomatic Alzheimer's, presenting it as a promising disease-modifying therapy [1].

For Parkinson's Disease, an open-label extension study has explored the long-term safety and efficacy of prasinezumab, an anti-alpha-synuclein antibody. These findings suggest that targeting alpha-synuclein could potentially slow disease progression, providing valuable insights for future disease-modifying treatments [2].

In acute ischemic stroke, endovascular thrombectomy has shown considerable benefits. A recent trial revealed that this intervention improved functional outcomes even in patients with substantial core infarct volumes, effectively expanding the treatable population for this critical procedure [3].

Relapsing Multiple Sclerosis research highlights the efficacy of tolebrutinib, a Bruton's Tyrosine Kinase (BTK) inhibitor. A Phase 2b trial demonstrated favorable reductions in disease activity, positioning BTK inhibitors as a promising oral treatment strategy for MS [4].

For uncontrolled focal seizures, a randomized controlled trial investigated cenobamate, showing its significant efficacy in reducing seizure frequency and achieving seizure freedom in adult patients. Cenobamate is now an important new option for managing refractory epilepsy [5].

Amyotrophic Lateral Sclerosis (ALS) research, specifically for SOD1-mutated cases, evaluated tofersen, an antisense oligonucleotide. While the primary endpoint was not met, the study did show reductions in SOD1 protein and neurofilament light chain, hinting at a potential biomarker-driven benefit for a genetically defined subgroup of ALS patients [6].

Migraine prevention has advanced with atogepant, an oral Calcitonin Gene-Related Peptide (CGRP) receptor antagonist. A randomized clinical trial demonstrated atogepant significantly reduced monthly migraine days, offering a new oral option for prevention [7].

For chronic neuropathic low back and leg pain, high-frequency 10-kHz spinal cord stimulation has proven effective. Results indicated superior pain relief and functional improvement compared to traditional spinal cord stimulation, providing an advanced treatment for refractory neuropathic pain [8].

Glioblastoma, an aggressive brain tumor, is being addressed with innovative immunotherapies. A study on Epidermal Growth Factor Receptor (EGFR)-targeting

Chimeric Antigen Receptor (CAR) T cells shows initial signs of tumor regression and manageable toxicity, suggesting promise for patients with recurrent glioblastoma [9].

Diagnostic tools for Parkinson's Disease and other synucleinopathies have improved significantly. A systematic review and meta-analysis confirmed the high sensitivity and specificity of alpha-synuclein seed amplification assays, positioning them as powerful biomarkers for early and accurate diagnosis [10].

Description

Significant strides are being made in treating debilitating neurological conditions, offering new hope for patients. For Alzheimer's Disease, the antibody donanemab has shown a remarkable capacity to slow cognitive and functional decline by targeting N3pG amyloid-beta in early symptomatic stages. This evidence strongly supports donanemab's role as a potential disease-modifying therapy [1]. Parallel advancements in Parkinson's Disease include the long-term investigation of prasinezumab, an anti-alpha-synuclein antibody. The insights from this study suggest that focusing on alpha-synuclein could indeed slow the progression of the disease, guiding future development of targeted treatments [2]. Furthermore, the diagnostic landscape for Parkinsonian syndromes has been enhanced by the advent of alpha-synuclein seed amplification assays. A comprehensive review highlights their exceptional sensitivity and specificity, marking them as vital biomarkers for early and accurate diagnosis [10]. This dual approach of improved diagnostics and targeted therapies underlines a strategic shift in managing complex neurodegenerative diseases.

Beyond neurodegeneration, acute neurological events and chronic inflammatory disorders are also experiencing therapeutic evolution. Endovascular thrombectomy has proven beneficial for acute ischemic stroke, demonstrating improved functional outcomes even in cases with substantial core infarct volumes. This expands the treatable demographic, making this critical intervention accessible to more patients [3]. For relapsing Multiple Sclerosis, the Phase 2b trial of tolebrutinib, a Bruton's Tyrosine Kinase (BTK) inhibitor, indicates favorable reductions in disease activity. These results suggest that oral BTK inhibitors could represent an effective new treatment strategy for MS, offering a more convenient and impactful option for patients [4].

Epilepsy management has seen an important addition with cenobamate, a drug investigated in a randomized controlled trial for uncontrolled focal seizures. It has demonstrated significant efficacy in reducing seizure frequency and remarkably, in achieving seizure freedom for adult patients. This positions cenobamate as a crucial new therapeutic option for those suffering from refractory epilepsy [5]. Simultaneously, Amyotrophic Lateral Sclerosis (ALS) research, particularly concerning

SOD1-mutated forms, has explored tofersen. Although the primary endpoint was not met in a Phase 3 trial, reductions in SOD1 protein and neurofilament light chain suggest a potential biomarker-driven benefit for a specific genetic subgroup. This points towards the increasing importance of personalized medicine in ALS [6].

Improving quality of life through effective pain management and migraine prevention remains a key focus. Atogepant, an oral Calcitonin Gene-Related Peptide (CGRP) receptor antagonist, has been shown in a randomized clinical trial to significantly reduce monthly migraine days, presenting a valuable new oral option for episodic migraine prevention [7]. For patients with chronic neuropathic low back and leg pain, high-frequency 10-kHz spinal cord stimulation offers a superior treatment alternative. This method demonstrated better pain relief and functional improvement compared to traditional spinal cord stimulation, providing advanced care for those with refractory pain [8].

Finally, the highly aggressive brain tumor, glioblastoma, is being targeted with innovative immunotherapeutic strategies. A study investigating Epidermal Growth Factor Receptor (EGFR)-targeting Chimeric Antigen Receptor (CAR) T cells for glioblastoma has yielded promising initial clinical trial results. These findings suggest that this novel immunotherapy approach holds significant potential for patients with recurrent glioblastoma, exhibiting early signs of tumor regression and manageable toxicity [9]. These collective research efforts showcase a broad and impactful progression in neurological care, addressing diverse conditions from neurodegeneration to cancer with cutting-edge therapies and diagnostics.

Conclusion

Neurological research is making substantial advancements across various conditions. Donanemab shows promise as a disease-modifying therapy for early Alzheimer's by slowing cognitive and functional decline [1]. For Parkinson's, prasinezumab targeting alpha-synuclein suggests potential in slowing disease progression [2], supported by highly accurate alpha-synuclein seed amplification assays for early diagnosis [10]. In acute ischemic stroke, endovascular thrombectomy improves outcomes even with large infarcts [3]. Tolebrutinib, a BTK inhibitor, demonstrates favorable reductions in disease activity for relapsing Multiple Sclerosis [4], while cenobamate is an effective new option for uncontrolled focal seizures in epilepsy [5]. ALS research with tofersen, though not meeting its primary endpoint, showed biomarker reductions in SOD1-mutated patients, indicating potential for genetically defined subgroups [6]. Migraine prevention has a new oral option in atogepant, which significantly reduces monthly migraine days [7]. Chronic neuropathic pain management improved with high-frequency 10-kHz spinal cord stimulation, offering superior relief and functional improvement [8]. Furthermore, EGFR-targeting CAR T cells show initial signs of tumor regression and manageable toxicity in glioblastoma, representing a hopeful new immunotherapy approach [9]. These collective findings underscore a period of dynamic progress in treating complex neurological disorders.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Mark A. Mintun, Paul S. Aisen, Liana G. Apostolova. "Donanemab in Early Alzheimer's Disease." *N Engl J Med* 384 (2021):1691-1704.
2. Genaro Pagano, Christian Czech, Robert A. Hauser. "Targeting alpha-synuclein with prasinezumab in Parkinson's disease: an open-label extension study." *Nat Med* 29 (2023):1924-1933.
3. Raul G. Nogueira, Tudor G. Jovin, Christopher R. Butler. "Endovascular Thrombectomy for Acute Ischemic Stroke with Large Core Infarcts." *N Engl J Med* 386 (2022):2003-2013.
4. Xavier Montalban, Giancarlo Comi, Robert J. Fox. "Tolebrutinib in patients with relapsing multiple sclerosis: a phase 2b, double-blind, randomized, placebo-controlled clinical trial." *Lancet Neurol* 22 (2023):1043-1052.
5. Gregory L. Krauss, William E. Rosenfeld, Pavel Klein. "Cenobamate for uncontrolled focal seizures: results from a multicenter, randomized, double-blind, placebo-controlled trial." *Lancet Neurol* 19 (2020):38-48.
6. Timothy M. Miller, Paul J. Shaw, Pamela J. Fink. "Phase 3 Study of Tofersen for SOD1 ALS." *N Engl J Med* 387 (2022):1099-1110.
7. Jessica Ailani, Sait Ashina, Richard B. Lipton. "Efficacy and Safety of Atogepant for the Prevention of Episodic Migraine: A Randomized Clinical Trial." *JAMA Neurol* 78 (2021):410-418.
8. Leonardo Kapural, B. Todd Sitzman, Kasra Amirdelfan. "Effect of High-Frequency (10-kHz) Spinal Cord Stimulation on Chronic Neuropathic Low Back and Leg Pain: The SENZA-RCT Randomized Clinical Trial." *JAMA Neurol* 79 (2022):331-340.
9. Nabil Ahmed, Vita S. S. A. Kim, Shoba A. Navai. "EGFR-targeting CAR T cells for glioblastoma: clinical trial results." *Mol Ther* 31 (2023):1741-1755.
10. Masahisa Shahnawaz, Amanda P. Sacino, Joanna L. Tan. "Diagnostic accuracy of alpha-synuclein seed amplification assays for Parkinson's disease and other synucleinopathies: a systematic review and meta-analysis." *Lancet Neurol* 22 (2023):1032-1042.

How to cite this article: Torres, Miguel A.. "Dynamic Progress in Treating Neurological Disorders." *J Clin Neurol Neurosurg* 08 (2025):317.

***Address for Correspondence:** Miguel, A. Torres, Department of Neurology, University of Barcelona, Barcelona, Spain, E-mail: miguel.torres@ub.edu

Copyright: © 2025 Torres A. Miguel This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-Oct-2025, Manuscript No. jcnn-25-173649; **Editor assigned:** 06-Oct-2025, PreQC No. P-173649; **Reviewed:** 20-Oct-2025, QC No. Q-173649; **Revised:** 23-Oct-2025, Manuscript No. R-173649; **Published:** 30-Oct-2025, DOI: 10.37421/2684-6012.2025.8.317
