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Abstract
Cancer is one of the major cause of death worldwide. Malignant cells display metabolic changes, when compared 

to normal cells, because of both genetic and epigenetic alterations. Number of drugs being used for the cancer 
treatment follows different mechanisms of action. Therapeutic strategies include targeting of drugs at specific genes 
or proteins/enzymes found in cancer cells or the internal tissue environment which contributes to growth and survival 
of these cells. Targeted therapy is often used along with chemotherapy and other treatments to restrict the growth 
and spread of cancer cells. During the past few decades, targeted therapy has emerged as a promising approach 
for the development of selective anticancer agents. There is a class of targeted therapy drugs called angiogenesis 
inhibitors which focus on blocking the development of new blood vessels in tumor tissues. In addition, anticancer drugs 
also include DNA intercalators, DNA synthesis inhibitors, transcription regulators, enzyme inhibitors etc. This review 
focuses on major classes of anticancer drug targets and their therapeutic importance.
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Introduction
Cancer is the second leading cause of death in Europe and 

America. Tremendous resources are being invested all around the 
world for developing preventive, diagnostic, and therapeutic strategies 
for cancer [1]. Several pharmaceutical companies and government/
non-government organizations are involved in the discovery and 
development of anticancer agents [2]. Identification of novel cytotoxic 
compounds has led to the development of anticancer therapeutics for 
several decades. Boom of knowledge in molecular sciences, genomics 
and proteomics has also helped in creating new potential drug targets. 
This has changed the paradigms of anticancer drug discovery toward 
molecularly targeted therapeutics. There are unique challenges and 
opportunities in discovery of anticancer drug delivery which might 
reflect at each stage of the drug development process [3]. Cancer is 
primarily a disease of uncontrolled cell division, thus identification 
of anti-proliferative compounds and their effects on regression of 
tumor size are the main aims for therapeutic discovery. For this 
purpose murine models of cancer were developed and several clinically 
important anticancer compounds were identified [1]. Differentiated 
result outputs among fast growing and slow growing tumors led 
investigators to modify the screening protocols to include a variety 
of cell lines and tumor types. The rationale that cancer cells are more 
likely to be replicating than normal cells makes the basis for targeting 
cell division process by most of the chemotherapeutics. Unfortunately 
significant toxicity is associated with chemotherapeutics as they lack 
specific action [1-3].

Double-helical DNA consists of two complementary 
strands running anti-parallel having sugar-phosphate poly-
deoxyribonucleotide backbone associated with specific hydrogen 
bonding between nucleotide bases [4]. In a given DNA sequence 
difference in chemical feature of the molecular surfaces in either groove 
forms the basis for molecular recognition by small molecules and 
proteins. B-form of the DNA i.e. biologically relevant double helix is 
characterized by a shallow wide major groove and a deep narrow minor 
groove [5]. DNA replication, transcription and protein synthesis are 
the major steps in cell growth and division. Being carrier of genetic 
information as well as central to tumorigenesis and pathogenesis, DNA 
is a major target for drug development. There is always a challenge for 
drug to achieve maximum specific DNA binding affinity. The other 
thing that needs consideration is that drug should not affect cellular 

and nuclear transport activity of the normal cells. Some of the most 
effective anticancer agents that target DNA are known to produce 
significant survival rate in cancer patients when used in combination 
with drugs having different mechanisms of action [6]. Besides DNA, 
RNA, enzymes and other proteins also contributes as major targets for 
anticancer drug development [7]. Structures of some anticancer drugs 
are depicted in Figure 1. In this review we have tried to discuss some 
molecular aspects of anticancer drug mechanisms.

Angiogenesis Inhibitors
Angiogenesis (AG) is the process by which tumour develops new 

blood supply (neovascularisation) for the growth and metastasis. 
Small tumours can obtain oxygen and nutrients by diffusion but 
as they become enlarged they need to develop new blood vessels 
for the fulfillment of required nutrients for growth, invasion and 
metastasis. Different anti- and pro-angiogenic factors are involved 
in the development of blood vessels in a complex equilibrium [8]. In 
physiological processes such as wound healing this equilibrium may 
go in favor of angiogenesis by inflammation or hypoxia. But on the 
other hand it may be the part of the pathological process in cancer 
or other chronic inflammatory diseases. Vascular endothelial growth 
factor (VEGF), angiogenin, transforming growth factor-β (TGF-β) and 
fibroblast growth factor (FGF) are some pro-angiogenic factors that 
are released in tumor associated angiogenesis which in turn induces 
the proliferation, migration and invasion of endothelial cells in new 
vascular structures [8]. Platelet derived growth factor receptor and cell 
adhesion molecules (e.g., integrins) play important role in the process of 
angiogenesis. Oxygen deprivation, oncogenic mutations, inflammation 
and mechanical stress are the stimulus that initiates growth of new 
vessels in tumor (angiogenic switch). This leads to vascularisation 
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interaction with VEGFR-2 phosphorylation site. For last three decades 
AG has been taken as an appealing target for anticancer drugs [9]. Till 
know about thirty AG inhibitors are in clinical trials and some of them 
have been approved for the treatment of malignancy. AG inhibitors 
play role as cytostatic rather than cytotoxic drugs. The anti-angiogenic 
drugs have capability to reduce the production of pro-angiogenic 
factors as well as their binding efficacy to respective receptors which 
results into their blockage of action [8,9].

DNA Intercalators and Groove Binding Agents
Intercalation and groove binding are the major mechanisms 

underlying drug-DNA interaction. Insertion of a planar molecule 
between DNA base pairs is known as intercalation which results 

and expression of pro-angiogenic factors in tumor [8]. Some of the 
angiogenesis inhibitors and their mode of action are shown in Table 1.

VEGF signaling through its receptor tyrosine kinase is the major 
inducer of angiogenesis. VEGFR-1, 2, and 3 are the three receptor 
tyrosine kinases of VEGFR family which mediate the angiogenic effect 
[9]. In endothelial cells stimulation of VEGFRs, other tyrosine kinases, 
G-proteins and serine/threonine kinases cause massive activation of 
signaling pathways. Src homology 2 (SH2) and b-cell (Shb) protein act 
as adapter molecules in VEGFR mediated signaling in angiogenesis. 
Endothelial cell migration, proliferation, and survival are the 
important processes involved in angiogenesis. These event takes place 
by the activation of PI3K (phosphatidylinositol 3-kinase) and Akt/PKB 
(serine threonine kinase/protein kinase B), by virtue of Shb protein 
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Figure 1: Structure of some anticancer drugs.
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regulates the supply of intracellular dNTP [35]. The consequences of 
imbalance in the substrates for DNA synthesis may lead to mutagenesis 
and cell death. Thus maintenance of a balanced dNTP pool is a 
fundamental cellular function by RNR shows its importance in cell 
survival. Because of this activity differential expression of RNR is 
tightly regulated during cell cycle [36,37]. Aberrant replication forks, 
activation of S-phase checkpoint, and cell-cycle arrest are the some key 
goals that might be achieved by targeted inhibition of RNR [37]. RNR is 
expressed at relatively low level in normal cells while in cancer cells its 
expression level is very high for maintaining high dNTP pools required 
for DNA synthesis and proliferation. Using a structure and mechanism 
based approach scientist have designed and developed novel class of 
RNR inhibitors with potential clinical use. Recently COH29, an RNR 
inhibitor was discovered that showed activity in tissue culture and 
human tumor xenografts in mice [38]. S-phase arrest was observed in 
cell cultures treated with COH29 which is consistent with inhibition 
of RNR and its established role of catalyzing the rate-limiting step in 
dNTP synthesis and therefore DNA synthesis [39,40]. Novel binding 
pocket in RNR have been identified which is located on such a position 
that makes it potentially capable of multiple functional and biologically 
relevant effects. Gemcitabine (2',2'-difluoro-2'-deoxycytidine, dFdC) is 
metabolized intracellularly to 5'diphosphate (dFdCDP). It is another 
potent inhibitor of ribonucleotide reductase and a very promising 
anticancer drug [41]. Several DNA synthesis inhibitors have been 
enumerated along with their mode of action in Table 3.

Transcription Regulators
In all living cells transcription is required for the growth and 

survival. However, tumor cells require excess levels of transcription, 
including ribosomal RNA and mRNA transcription by RNA 
polymerase I and RNA polymerase II respectively. Mutations are 
responsible for the enhanced transcription in cancer cells. DNA 
transcription is dependent on the spatially and temporally coordinated 
interaction between transcriptional machinery and transcriptional 
regulatory components. Different transcription factors (TFs) have been 
reported to associate with cancer. Transcription deregulation can occur 
by aberrant activation, repression, temporal/spatial dyscoordination, 
structural changes including mutations, translocations, and fusion. 
Dysregulation of transcriptional and thereby post-transcriptional 
processes contributes to cancer initiation [51]. The TF nuclear factor 
(NF)-kB is a family of five reticuloendotheliosis (REL) proteins. The 
protein influences gene transcription that allows its translocation 
into the nucleus. Its inhibition sequesters the complex (NF-kB and its 
inhibitor IkBα) in the cytoplasm in an inactive conformation. Activation 
of NF-kB transcription factor may lead to IkBα degradation. NF-kB 
has been known to be active constitutively in several cancer types. 
It is associated with the regulation of cell survival, cell proliferation, 
invasion, metastasis and apoptosis inhibition. Thus inhibition of NF-
kB transcription factor may result into retarded tumor formation [51]. 
Targeting of a TF might inhibit several cancer related genes, since 

in the reduction of lengthening and helical twist of the DNA [18]. 
Approximately 4 kcal per mol free energy is used to establish the 
intercalation cavity. Some favorable contributions viz., hydrophobic, 
ionic, hydrogen bonding, and vander Waals forces are also involved 
[18]. DNA intercalating agents may be divided into mono (e.g. 
ellipticine, actinomycins and fused quinoline compounds) and bi/
poly (e.g. ditercalinium and echinomycin) functional intercalating 
molecules. The two intercalating units (usually cationic) in bifunctional 
intercalators are separated by a spacer chain that must be long enough 
to allow double intercalation [19]. Recognition and function of DNA-
associated proteins (polymerases, topoisomerases, transcription 
factors and DNA repair systems) are disturbed by DNA intercalating 
agents. Bi/tricyclic fused or non-fused ring structures have been 
traditionally used as DNA intercalating agents. They are known to 
be used as antimalarial, antibiotic, antitumor and antineoplastic 
agents. The intercalators may be toxic or non toxic depending on the 
presence/absence of various functional groups viz., basic, cationic, 
or electrophilic required for genotoxicity [20,21]. Groove binding 
molecules (usually crescent-shaped) unlike intercalators bind to the 
minor groove of DNA as a standard lock-and-key model and do not 
induce large conformational changes in DNA. Here, for the creation 
of binding site, cost of free energy is not required and the associations 
are stabilized by intermolecular interactions [22]. DNA intercalators 
are less sequence selective and show a preference for G-C regions. On 
the other hand groove binding molecules are more sequence selective 
and do not show G-C region preference [23]. Intercalators and groove 
binders have proven clinical utility both as anticancer and antibacterial 
agents. For example mitomycin and anthracyclines are exemplified 
both as DNA crosslinker as well as groove-binding molecules [24]. 
Table 2 shows some more example of DNA intercalators used as 
anticancer agents.

DNA Synthesis Inhibitors
It is well established that without purines, pyrimidines, serine, and 

methionine the de novo synthesis of DNA in mammalian cells can not 
be possible. Folates belong to the family of B9 vitamins that are essential 
to mammalian cells. Folic acid is not a naturally occurring folate, it 
is composed of a pteridine ring, para-aminobenzoic acid (pABA) 
and glutamate [33]. In cells folic acid undergoes reduction process 
mediated by dihydrofolate reductase (DHFR) which ultimately leads 
to production of folate polyglutamates. These polyglutamates serve as 
one-carbon donors in de novo synthesis of purines, thymidylate, and 
polyamines [34]. The understanding of the role of folate derivatives in 
humans has led to the identification and development of antifolates 
as therapeutic agents. This idea got support from the observation of 
serum folate deficiency among patients with acute leukemia in the 
early 1940s leading to new postulation that acute leukaemia might be 
the result of folate deficiency [33]. Ribonucleotide reductase (RNR) is 
an enzyme responsible for the de novo conversion of ribonucleoside 
diphosphate (NDP) to deoxyribonucleoside diphosphate and also 

Name Mode of Action References
Angiostatin K13 Inhibitor of endothelial cell growth and angiogenesis. [10]

DLαDifluoromethylornithine Inhibition of ornithine decarboxylase (ODC) and blocks angiogenesis [11]

Endostatin Inhibits endothelial cell proliferation; Potent inhibitor of angiogenesis and tumor growth as well. [12]
Fumagillin Inhibitor of endothelial cell proliferation and angiogenesis. [13]
Genistein Down regulates the transcription of genes involved in controlling angiogenesis. [14]

Minocycline Inhibits endothelial cell proliferation and angiogenesis. [15]
Staurosporine Blocks angiogenesis by inhibition of up regulated VEGF expression in tumor cells. [16]
(±)Thalidomide Inhibits biosynthesis of tumor necrosis factor α (TNFα); inhibits angiogenesis. [17]

Table 1: Angiogenesis inhibitors and their mode of action as anticancer agent.
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it regulates different downstream target genes. In cancer therapy, 
the drugs that targets TFs are less known than inhibitor molecules 
targeting the signal transduction. Recently novel immunotherapies 
have been documented against some transcription factors. For example 
transcription factor WT-1 and PML-RARα are the targets for the 
treatment of leukemia and acute promyelocytic leukemia respectively 
[52,53]. Drugs that potentially target the transcription machinery 
include cyclin-dependent kinases (CDKs), RNA polymerases or 
components of associated transcriptional complexes. Inhibitor such 
as triptolide, that targets the general transcription factors TFIIH and 
JQ1 to inhibit BRD4 are administered to target the high proliferative 
rate of cancer cells [54]. Tumor suppressor genes or oncogene 
antagonists have been used as an attempt at cancer therapy targeting 
TFs. It is reported that ETS transcription factors, especially Ets-1 have 
capability to inhibit cell growth, metastasis and tumor angiogenesis. 
But no reports are available regarding trials of gene therapies targeting 
ETS transcription factors. Considering that TFs that regulate growth, 
apoptosis, angiogenesis, invasion and metastasis related genes in tumor 
cells could be molecular targets for cancer gene therapy [54]. Some 
examples of transcription regulators are shown in Table 4.

Enzyme Inhibitors
In contrast to normal cells, the metabolic properties of cancer cells 

are different and they depend on aerobic glycolysis for their energy 
requirement. In addition they have dysregulated fatty acid synthesis, 
Warburg-like glucose metabolism and glutaminolysis. Studies have 
shown that several enzymes in metabolic pathways act as anticancer 
targets and their inhibition is responsible for mediating apoptotic death 
in cancer cells. Hence inclusion of inhibitors of metabolic enzymes 
(e.g. glucose transporters, fatty acid synthase, hexokinase, lactate 
dehydrogenase A, pyruvate kinase M2, pyruvate dehydrogenase kinase 

and glutaminase etc.) in cancer therapy regimen are also important 
to enhance the efficacy of chemo/radiotherapy [60]. Estrogens and its 
receptors (ERs) are known to play important role in the progression 
and development of breast cancer [61-62]. Estrogens influence breast 
cancer through the ERα pathway, increases genetic mutations, and/or 
effects on DNA repair pathway [63,64]. Biosynthesis of estrogens from 
androgens involves a cytochrome P450 enzyme known as aromatase, 
encoded by the aromatase gene CYP19. Its expression is regulated by 
tissue-specific promoters [65]. It has been found in all the tissues in 
body including breast, brain, skin bone and muscles. It is found that 
the expression of aromatase is increased many folds in breast cancer 
tissues. Inhibition of this enzyme has been shown to be responsible 
for the decreased level of estrogen. Thus in the progression and 
development of hormone responsive breast cancers aromatase enzyme 
may have significant effects and their inhibitors (AI) can be utilized as 
chemopreventive agent [66]. AIs can be divided into steroidal (Type I 
inhibitors) or nonsteroidal (Type II inhibitors). Type I inhibitors binds 
covalently while type II binds reversibly to the aromatase enzyme. 
Amino glutethimide (Ist generation); formestane and vorozole (IInd 
generation); anastrozole, letrozole, and exemestane (IIIrd generation) 
are some examples of AIs. Testolactone, a first generation AI and is 
approved for treatment of advanced breast cancer in the United 
States [67]. Due to the development of resistance to AIs there is need 
to develop new aromatase inhibitors that could offer less severe side-
effects and increased clinical efficacy. Unwinding and rewinding of the 
DNA helix during various processes such as replication, repair, and 
chromatin remodeling, entanglement of DNA occurs. The enzyme 
DNA topoisomerases a nature's tool solve the problem by performing 
topological transformations in DNA. They form a covalent adduct 
with DNA resulting into a transient DNA break through which strand 
passage can occur. The two types of topoisomerases i.e., type I and type 
II enzymes involves a nucleophilic attack of a DNA phosphodiester 

Name Mode of Action References
Bleomycin Inhibits DNA synthesis; causes cleavage at specific base sequences. Induces apoptosis and inhibit angiogenesis. [25]

Carboplatin Forms DNA adduct and induce apoptosis. [26]
Carmustine DNA alkylating/crosslinking agent effective against glioma and other solid tumors. [27]

Chlorambucil Alkylates DNA; In leukemia cells induces apoptosis by p53dependent mechanism. [28]
Cyclophosphamide (nitrogen mustard) Crosslinks DNA and causes strand breakage. [29]

cisDiammineplatinum(II)
dichloride (Cisplatin) Induces apoptosis by forming cytotoxic adducts with the DNA dinucleotide d(pGpG). [30]

Melphalan Forms DNA intrastrand crosslinks by alkylation of 5'(GGC) sequences. [31]
Mitoxantrone Inhibits DNA synthesis by intercalating DNA. [32]

Table 2: DNA intercalators/groove binding agents and their mode of action as anticancer agent.

Name Mode of Action References
(±)Amethopterin
(Methotrexate) Blocks thymidine biosynthesis via inhibition of dihydrofolate reductase (folic acid antagonist) [42]

3Amino1,2,4benzotriazine
1,4dioxide

Hypoxia activated antineoplastic agent [43]

Aminopterin Mechanism same as methotrexate but more potent. [44]

Cytosine- β D-arabinofuranoside Selective inhibitor of DNA synthesis. [45]

5-Fluoro5' deoxyuridine Inhibits proliferation of cancer cells transformed by HRas or Trk oncogenes [46]

5-Fluorouracil Depletes dTTP and inhibits thymidylate synthetase; it forms nucleotides that can be incorporated into RNA and 
DNA and induces p53dependent apoptosis [47]

Ganciclovir
In suicide gene therapy of solid tumors, the gene for Herpes
simplex virus thymidine kinase is delivered to tumor cells and expressed, which in turn activates ganciclovir 
cytotoxicity.

[48]

Hydroxyurea Blocks the synthesis of deoxynucleotides by inactivating ribonucleoside reductase resulting into inhibition of DNA 
synthesis and induction cell death. [49]

Mitomycin C Inhibits DNA synthesis, nuclear division, and proliferation of cancer cells. [50]

Table 3: DNA synthesis inhibitors and their mode of action as anticancer agent.
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bond by a tyrosyl residue [68]. Type I enzyme is composed of 
N-terminal, core, linker and the C-terminal domains [69-71]. 
Different natural and synthetic molecules are known to target DNA 
topoisomerases represents the important class of antitumor drugs. The 
transesterification reaction involved in cleavage and relegation of DNA 
backbone is exploited by cytotoxic agents. Table 5 shows example of 
some enzyme modulators used as anticancer agents.

Gene Regulation
Epigenetic alterations in DNA are potentially reversible and 

hence are involved in the earliest steps of malignant transformation. 
Interventions using epigenetically active compounds are considered as 
promising targets for anti-cancer therapy [82,83]. Beside these a number 
of challenges remain prior to any epigenetic intervention against cancer. 
Massive deregulation of the epigenetic machinery including DNA 
methylation, histone modifications and non-coding RNAs contributes 
to all major cancer hallmarks [84]. In eukaryotic cells acetylation and 
deacetylation of histones is an important event for transcriptional 
regulation for which histone acetyltransferase (HATs) and histone 
deacetylases (HDACs) are responsible, respectively [85]. Acetylation 
to lysine group of chromatin produces relaxation which intern allows 
increased transcription of the gene. On the other hand deacetylation 
increases condensation of chromatin thereby decreasing the rate of 
transcription of particular part of the chromatin [86,87]. It is found 
that HDACs are over expressed in tumors and this inhibits expressions 
of tumor suppressor genes. Thus HDACs inhibition may be considered 
as a potential strategy for cancer treatment. Vorinostat and romidepsin 
are the two HDAC inhibitors that have been approved by the FDA 
(US Food and Drug Administration) as anticancer therapeutic [88,89]. 
Metal-binding compounds such as clioquinol (a zinc ionophore) are 
increasingly believed to be an important group of anticancer agents. It 
has been reported that clioquinol induces apoptosis by the inhibition 
of NF-κB signaling pathway in human cancer cells [90]. Clioquinol 
targets cyclin D1 gene at both transcriptional and post-transcriptional 
regulation level in cancer cells. It is believed that clioquinol promotes 
mRNA degradation of the cyclin D1 gene regulated by miR-302C. This 

implies that metal-binding compounds might affect gene expression 
at different regulatory levels. Out of which the post-transcriptional 
gene regulation may be a potential target for chemotherapy [91]. 
P-glycoprotein (P-gp) is a transmembrane permeability glycoprotein 
and member of ABC super family (ATP binding cassette). It functions 
as a carrier mediated primary active efflux transporter and widely 
distributed throughout the body. P-gp is encoded by MDR1/ABCB1 
gene and was firstly identified in human cancer cells. It was found to 
be present in pancreas, elementary canal, kidney, capillary endothelial 
cells of blood brain barrier and in various other tissues like lungs, heart, 
adrenals, spleen and skeletal muscle [92]. The optimal P-gp expression 
is always required for its protective function as its over expression 
leads to multi drug resistance while toxic reactions occurs because 
of its low expression level [93]. In various cancers a correlation was 
found between increased P-gp expression and MDR1 gene mRNA 
transcription which shows its connection to MDR in cancer. A few 
novel antitumor drugs which are able to suppress P-gp expression are 
under development. Lanthanum, a new anticancer compound have 
been reported to block P-gp expres sion especially in MDR cancerous 
cells [94]. Gefitinib another compound is a selective tyrosine kinase 
inhibitor has capability to inhibited P-gp function and has been used in 
the treatment of lung cancer [95]. Some of the gene regulator and their 
targets are shown in Table 6.

Microtubule Inhibitors
Microtubules a component of cytoskeleton is composed of α and β 

tubulin. This heterodimer is involved in many biological process viz., 
cell signaling, cytokinesis, intracellular transport, maintenance of cell 
shape, and polarity [104]. Due to their role in mitosis they become 
an important target for anticancer drug development. In eukaryotes 
during cell division mitotic spindle is responsible for the movement of 
chromosomes to the opposite sides of the cell. These mitotic spindles 
are nothing but are composed of microtubules having tubulin as its 
monomer [105-107]. Molecules that interfere with microtubule 
assembly are known as microtubule inhibiting agents. Currently 
these agents are used in clinical therapy as they are able to suppress 

Name Mode of Action References

Actinomycin D Inhibits cell proliferation by forming complex with DNA and blocks production of mRNA (RNA polymerase inhibition); Induces 
apoptosis. [55]

Daunorubicin Complexes to DNA and blocks production of mRNA by RNA polymerase. [56]
Doxorubicin Inhibits reverse transcriptase and RNA polymerase by binding to DNA. [57]

Homoharringtonine Binds to the 80S ribosome in eukaryotic cells and inhibits protein synthesis by interfering with chain elongation. [58]
Idarubicin Antileukemia agent with higher DNA binding capacity and greater cytotoxicity than daunorubicin [59]

Table 4: Transcription regulators and their mode of action as anticancer agent.

Name Mode of Action References

S(+)Camptothecin Binds irreversibly to the DNA topoisomerase I complex leading to the irreversible cleavage of DNA and the destruction 
of cellular topoisomerase I by the ubiquitin proteasome pathway. Induces apoptosis in many normal and tumor cell lines [72]

Curcumin Potent inhibitor of protein kinase C, EGFR tyrosine kinase and IκB kinase. Induces apoptosis in cancer cells. [73]
Deguelin Inhibitor of activated Akt. Does not affect MAPK, ERK1/2 or JNK. [74]

Etoposide Binds to the DNA topoisomerase II complex to enhance cleavage and inhibit religation; inhibits synthesis of the oncoprotein 
Mdm2 and induces apoptosis in tumor lines that over express Mdm2. [75]

Formestane Aromatase inhibitor [76]
Fostriecin Interferes with the reversible phosphorylation of proteins that are critical for progression through the cell cycle. [77]

Hispidin Potent inhibitor of protein kinase Cβ. [78]

2Imino1imidazolidineacetic
Acid (Cyclocreatine)

Creatine analog; decreases the rate of ATP production via
creatine kinase and reduces the proliferation of tumor cell lines characterized by high levels of creatine kinase 
expression.

[79]

Mevinolin Inhibits mevalonic acid production and induces apoptosis in numerous cancer cell lines, perhaps, in part, by inhibiting 
the isoprenylation of Rhofamily GTPases. [80]

Trichostatin A Histone deacetylase inhibitor that enhances the cytotoxic efficacy of anticancer drugs that target DNA. [81]

Table 5: Enzyme modulators and their mode of action as anticancer agent.
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microtubule dynamics in fast dividing tumor cells by misdirecting the 
formation of a functional mitotic spindle. Due to this G2–M phase cell 
arrest occurs which leads to apoptosis of the tumor cells. According 
to their mode of action, microtubule inhibitors (MI) may be classified 
as stabilizing and destabilizing agents. Microtubule stabilizing agent 
(MSA) acts by promoting polymerization and microtubule polymer 
mass in cells. Taxanes (paclitaxel and docetaxel) and epothilones are 
the examples of MSA. They occupy the binding site in the β-subunit of 
tubulin that lies on the interior surface of microtubules. Their binding 
results into the stabilization and suppression of microtubule dynamics 
leading to G2/M phase cell cycle arrest and ultimately, apoptosis. On the 
other hand microtubule destabilizing agents (vinca alkaloids) inhibit 
polymerization and decrease polymer mass [108]. The MIs that binds 
to colchicine, vinblastine and paclitaxel binding sites on tubulin are 
known for their potent anticancer activity and are the most commonly 
prescribed antitumor agents [109]. There are limitations for the clinical 
use of other microtubule targeting drugs as they are known to involve in 
drug resistance emergence and intolerable toxicity. The researches are 
going on to discover and develop novel chemotherapeutic microtubule 
inhibitor agents having lower drug resistance and tolerable toxicity 
[108,110,111]. Colchicine is a branded drug for the treatment of several 
diseases such as Gout and Familial Mediterranean fever. Although 
there is a need to further characterize its effectiveness and side effects 
in the case of cancer treatment. 2-Amino-4-phenyl-4H-chromene-
3-carboxylate a new class of novel microtubule-targeting agent with 
promising antitumor activity was recently developed. This molecule 
targets the potential colchicines binding site and induces apoptotic 
pathway [112-119]. Table 7 shows examples of microtubule inhibitors 
used as anticancer agent.

Conclusion
The modulation of angiogenesis, DNA (synthesis, transcription 

and translation), enzyme activity and microtubule inhibition remains 

an important therapeutic strategy against numerous diseases, including 
cancer. The current arsenal of anticancer agents targeting DNA or 
RNA activity is generally based upon their inhibitory activity against 
synthesis, transcription factors and enzymes. Besides effectiveness, vast 
majority of such anticancer agents exhibit lack of selectivity and are 
involved in drug resistance. This will limit the effectiveness of anticancer 
drugs. However, new therapeutic approaches that are currently being 
developed to circumvent these complications may definitely lead to 
discover novel anticancer drugs having low toxicity and resistance.
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