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Downscaling Future Temperature and Precipitation Values 
in Kombolcha Town, South Wollo in Ethiopia

Abstract
Whilst climate change is already manifesting in Ethiopia through changes in temperature and rainfall, its magnitude is poorly studied at regional levels. Therefore, the main 
aim of this study was statistically downscale of future daily maximum temperature, daily minimum temperature, and precipitation value in Kombolcha Town, South Wollo, 
in Ethiopia. For this the long term historical climatic data were collected from Ethiopian National Meteorological Agency for Kombolcha station and the GCM data were 
downloaded from the global circulation models of, the Canadian Second Generation Earth System Model from the link (http://climate scenarios.canada.ca/?page=dstsdi). 
For future climate data generation among the different downscaling techniques, the statistical down scaling method, a type of regression model was used and the variations 
of temperature (maximum and minimum) and precipitation in the town for annually and seasonally condition were analysis based on the base of the 2020s, 2050s and 
2080s. In the future, relative to the observed mean value of annual rainfall in Kombolcha town, mean value of annual rainfall will decrease 1.36% - 7.03% for RCP4.5and 
5.37% -13.8% for RCP8.5 emission scenarios in the last 21 century. Both maximum and minimum temperature of the town will be increased in the future time interval for 
both RCP4.5 and RCP8.5 emission scenarios. The rise in temperature will exacerbate the town maximum heat effects in warm seasons and decrease in precipitation is 
expected along with a possible risk of water supply scarcity due to a low level of water supply access and a high rate of urbanization.
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Introduction

Global climate has changed over the last century mainly, due to 
anthropogenic factors [1]. Climate change is described as the most universal 
and irreversible environmental problem facing the planet Earth [2] and 
becoming one of the most threatening issues for the world today in terms of its 
global context and its response to environmental and socioeconomic drivers 
[3]. The Intergovernmental Panel on Climate Change (IPCC) in its Fourth 
Assessment Report observed an increase of 0.74 ± 0.18°C in mean annual 
global temperature [1]. According to [4] most scholars have agreed that the 
global annual average temperature is likely to be 2°C above pre-industrial 
levels by 2050. This may makes the world more intense rainfall, frequent and 
intense droughts, floods, heat waves, and other extreme weather events.

Africa is considered as the most vulnerable continent to climate change in 
the world [5]. According to AR4, it is very likely that all of Africa will warm up 
during this century and that, throughout Africa and in all seasons, the warming 
will be larger than the global annual mean warming [6]. According to future 
projections, precipitation and temperature will increase over Eastern Africa in 
the coming century [7]. It is predicted that the temperature in Africa continent 
will rise by 2 to 6°C over the next 100 years [8].

Regionally, in East Africa, studies indicate that in countries like Burundi, 
Kenya, Sudan, and Tanzania people are badly hit by the impacts of climate 
chang [9,10]. Temperature projections in the region indicates that, the median 
near-surface temperature in the 2080 to 2099 period will increase by 3°C to 
4°C when it compared to the 1980 to 1999 period. It has to be underlined 
that this increase is about 1.5 times the projected global mean response [6]. 
Because of significant dependence on the agricultural sector for production, 
employment, and export revenues, Ethiopia is seriously threatened by climate 
change, which contributes to frequent drought, flooding, and rising average 
temperatures [11]. In the country, the daily temperature observations show 

significantly increasing trends in the frequency of hot days, are much larger 
increasing trends in the frequency of hot nights. The average number of ‘hot’ 
days per year increased by 73 (an additional 20% of days) between 1960 
and 2003 [12]. In the country related with precipitation, consistent models’ 
ensemble of different model, indicating increases in total precipitation occurring 
in ‘heavy’ events, and increases in the magnitude of one-day maxima and five-
day maxima rainfall [13].

Whilst climate change is already manifesting in Ethiopia through changes 
in temperature and rainfall, its magnitude is poorly studied at regional levels 
[2]. This is because of that, the results of the temperature and precipitation 
data that obtained from meteorological observation of some regions are 
missing and limits the downscaling of future weather values from general 
circulation models. Now a time we can determine the consequences of climate 
change earlier and our self for necessary adaptation measures by simulate 
changes in climatic elements of the present and future from global general 
circulation models (GCMs) [12]. However, due to, coarse resolution of the 
GCM output it is difficult to apply the raw data of GCMs at a local scale, such as 
the watershed scale or points of emphasis of this study urban climate change 
without downscaling [14]. Therefore, in order to use the results of general 
circulation model to study the impact of climate change on a local scale, it is 
common to downscale and bring the results into the finest resolution. This can 
be done through the development of tools for downscaling GCM predictions of 
climate change to regional and local or station scales [15].

The Statistical Downscaling Model (SDSM) is a freely available tool that 
produces high resolution climate change scenarios result from GCMS for local 
scale climate change study [16]. The SDSM provides reasonably good results 
after calibration with NCEP predictor variables [1] and establish a relationship 
between past local climate and past GCM outputs and extend this relationship 
into the future, to generate future local climate series from future GCM output 
[17]. The projection of future climate value is critical information that is needed 
to assess the impact of potential climate change on human beings and on the 
natural environment [18]. It is also helpful for long-term planning development 
at both regional and national levels for mitigation and adaptation strategies of 
future climate change as, it gives opens space for a set of potential responses 
[19].

In Ethiopia, studies like, statistical downscaling for daily temperature and 
rainfall in South Wollo [20], the study of future changes in climate parameters in 
Amhara Regional State [2], future climate studies in northwestern Ethiopia for 
assessing the hydrological response of the Gilgel Abay River to climate change 
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in the Lake Tana Basin [12], climate change impact on the Geba Catchment 
in Northern Ethiopia [21], GIS based quantification and mapping of climate 
change vulnerability hotspots in Addis Ababa [14], Impacts of Climate Change 
Under CMIP5 RCP Scenarios on the Hydrology of Lake Ziway Catchment [22], 
Impact of Climate Change on Hydrology of the Upper Awash River Basin [23], 
Impact of Climate Change on Evapotranspiration and Runoff in Awash basin 
[24] and Climate Change Impact on Water Resources in the Awash Basin [25] 
were conducted by using downscaling applications in different time intervals 
throughout all direction of the country to detect climate change impacts in 
agricultural and hydrological applications. But, applications of statistical 
downscaling of general circulation models for future time temperature and 
precipitation value estimation for industrial town of Kombolicha, South Wollo in 
Ethiopia has not been undertaken.

It is important to some large cities of East and North African [26,27] and 
Addis Ababa city in Ethiopia [14,18] use of downscaled results from GCMs to 
assess future projections and to identify adaptation measures were explored 
recently. Only a few studies are available for Kombolcha town, which differ 
in method and temporal scale from these studies [28] and [29]. So, in order 
to fill the above listed limitation by establish a relationship between past 
local climate and past GCM outputs and extend this relationship into the 
future time interval required scientific evidence on statistically downscaling 
of future temperature and precipitation values since, it is vital for policymakers, 
researcher, planner to formulate the adaptation and mitigation options of future 
temporal and spatial variation in the study area. Therefore, the main aim of 
this study was statistically downscale of future daily maximum temperature, 
daily minimum temperature, and precipitation value in Kombolcha Town, South 
Wollo, in Ethiopia.

Materials and Methods

Description of the study area

The study was conducted in Kombolcha town, which is found to the North 
East of Ethiopia in Amhara regional state of South Wollo Zone. The town is 
located in a range of altitudes and longitude between11º1'30"- 11º15'0" N 
latitude and 39º40'30" - 39 º 49’30” E longitudes. It is one of the industrial 
towns in Amhara regional state of Ethiopia. Based on the 2007 national 
census conducted by the central statistical agency of Ethiopia (CSA), 
Kombolcha has a total population of 85,367 of whom 41,968 are men and 
43,399 women; 58,667 or 68.72% are urban inhabitants living in town of 
Kombolcha, the rest of the population is living at rural Kebles around the 
town (Figure 1).

The town is a plain land with altitudes difference of 1,500 m - 1,840 m 
above sea level and surrounded by hills. It is crossed by Borkena River and 
numerous small streams. The Borkena valley and the gullies formed by the 
streams from the surrounding hills have made the configuration of the town 
undulating. The average annual maximum temperature for Kombolcha 
over the last 30 years (1976-2005) was 26.3ºC and the average annual 
minimum temperature was 12.69ºC. Also in the last 30 years the average 
annual rain fall for the town was 1021.6 mm. The monthly rainfall 
distribution of town indicates that July and August are the wettest months 
of the year in the past time (1976-2005) (Figure 2); they get more than 250 
mm of average monthly rainfall. Also, as shown in Figure 2, there is high 
variation between the daily maximum and minimum temperature of the 
town in the time interval of 1976-2005.

Figure 1. Map of the study area (Source: Arc GIS 10.7).
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Figure 2. Observed monthly mean rainfalls, Tmax and Tmin of the study area (1976-2005).
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Materials, Software and Models to be 
used

Different materials, softwares and models were used in 
this research.

Software like: Arc GISversion 10.7.1 to locate the study area, PCP 
INSTAT to covert the long term daily data in to monthly and annual base 
time interval XLSTAT for homogeneity and outlier data test for the observed 
meteorological data, Mendeley Desktop application for reference citation from 
different sources.

Models like: Climate model (canESM2) to generate the base time and 
future time climate scenario data for RCP4.5 and RCP8.5 emission scenario. 

Data description

Historical meteorological variables such as rainfall, maximum and 
minimum temperature were required as predicant to downscale the respective 
global GCM data statistically to the local climate variables. So, the long 
term (1976-2005) historical climatic data were collected from the Ethiopian 
National Meteorological Agency (NMA) only for Kombolcha station. Because, 
in the town there is no other meteorological stations with temperature and 
precipitation records. From the 30 years data of the station (1976-2005), 20 
years data (1976–1995) were used for model calibration and the remaining 10 
years data (1996–2005) were used for model validation.

The GCM Data which were required to project and quantify the future 
value of rainfall and temperatures in the study area and to calculate the 
relative change of these climate variables variables between the current and 
the future time horizon was downloaded from the global circulation models of, 
the Canadian Second Generation Earth System Model (canEMS2) from the 
link (http://climate scenarios.canada.ca/?page=dstsdi) which is freely available 
for the African window. From this GCM (CanEMS2) future scenario weather 
data for the ground stations were generated by using statistical downscaling 
method (SDSM) for the two emission scenarios (RCP 4.5 and RCP8.5) from 
2006 -2100 based on the means of the 20 ensembles of SDSM. The base 
time scenario for both RCP4.5 and RCP8.5 emission scenarios also generate 
for the evaluation of the model performance by comparing the mean value of 
observed and base time weather parameter in monthly and annual base.

Data preparation 

The climate data that were collected from their respective source for model 
input were first captured with Microsoft excel 2007 spreadsheet following the 
day of the year entry formula; second the data were checked for the missing 
value, outlier, consistency, homogeneity and finally, by using INSTAT plus 
software, the daily data were summarized into annual, monthly and seasonal 
time scale based on the objective this study.

Statistical check about the outlier value determination of meteorological 
data was conducted using Grubbs outlier data test in statistical software of 
XLSTAT. The data in the time interval were tested and the presence of outlier 
in the data set was determined when p-value of the test was greater than 
significant level of 0.05. In addition to this, Z-score was also used to dictate the 
outlier data by displayed the Z-score value in bold weather it is maximum or 
minimum. After this data was arranged in normal data level by optimized this 
outlier data sets, because most statisticians would agree that outliers should 
not be removed automatically rather than they should be carefully studied [30].

Standard Normal Homogeneity Test (SNHT) from XLSTA statistical 
software was used for homogeneity test of meteorological data. Because, 
SNHT is one of the most popular homogeneity tests in climate studies and 
the test supposes that tested values are independent and identically normally 
distributed (null hypothesis) and alternative hypothesis assumes that the 
series has a jump-like shift or break [30] and results was determined by the 
compaction of the significance level of alpha value (0.05 or 0.01) with the 
computed p-value with the null hypothesis (Ho) and alternative hypothesis 
(Ha);When the computed p-value greater than the alpha valve the data is 
homogenous [31].

Downscaling Method

Climate scenarios data from a global climate model (GCM) are usually 
at a large scale, for this mater, downscaling is mandatory for impact and 
adaptation studies as they require detailed local data. Among the different 
downscaling techniques, the SDSM a type of regression model was used in 
this study. Because a number of studies indicate that the SDSM yields reliable 
estimates of extreme temperatures, seasonal precipitation, totals and inter site 
precipitation behaviors for a given study area [14,21] in addition to this SDSM 
is widely applied in many regions of the world over a range of different 
climatic condition and permits the spatial downscaling of daily predictor–
predictand relationships using multiple linear regression techniques (Yihun 
et al., 2013). 

SDSM used SDSM4.2.9a decision support tool which was downloaded 
from https://www.sdsm.org.uk/for the assessment of regional climate change 
impacts. This decision support tool was developed by [16] and used to 
downscale large predictors. The SDSM software reduces the task of statistically 
downscaling daily weather series into, quality control, data transformation, 
screening of predictor variables, model calibration, weather generation (using 
observed predictors), statistical analyses, graphing model output, and scenario 
generation (using climate model predictors). 

Selection of predictors 

Selecting a predictor is an important step in the downscaling process. It is 
an iterative procedure consisting of a rough screening of the possible settings 
and predictors, which is repeated until an objective function is optimized [32]. 
In this, screen variable operation was done after a quality control check and 
transformation of rainfall data by fourth root. Identifying the best predictors 
was conducted on the relationships which were drawn between a suite of 
global scale predictors and local scale predictand, based on linear correlation 
analysis and scatter plots; and finally the predictors with the highest correlation 
were selected.

From Canadian climate change scenario group website (http://climate 
scenarios.canada.ca/?page=dstsdi) for the African window, the National 
Centers for Environmental Predictions (NCEP 1961–2005) reanalysis data 
and canESM2 predictor variables for RCP4.5 and RCP 8.5 are obtained on 
a grid by grid-box basis from a resolution of 2.8° latitude and 2.8° longitude. 
So, the required predictor data that represent the town were down loaded 
from Kombolcha station and the determination of empirical relationships 
between gridded predictors (such as mean sea-level pressure) and single-site 
predictands (such as station precipitation) was performed for all parameters 
(rainfall, maximum temperature and minimum temperature). The predictor data 
files downloaded from the grid of interest (station of the study area) consists of 
the following three directories [16]. 

(a) NCEP_1961-2005: This directory contains 45 years of daily observed 
predictor data, derived from the NCEP reanalysis, normalized over the 
complete 1961-1990 period. 

(b) RCP4. _2006-2100: This directory contains 95 years of daily GCM 
predictor data, derived from the canESM2 experiment, normalized over the 
1961-1990 period. 

(c) RCP8.5_2006-2100: This directory contains 95 years of daily GCM 
predictor data, derived from the canESM2 experiment, normalized over the 
1961-1990 period.

Large-scale predictor variable information from National Center for 
Environmental Prediction (NCEP_1961-2005) reanalysis data set is used 
for the calibration and validation of SDSM with the observed precipitation, 
maximum and minimum temperature data of this study; and also RCP 4.5 
and RCP8.5 _1961-2100 data were used for the baseline and future time 
climate scenario generation of the station by using linear correlation and 
scatter plot partial correlation analysis for appropriate downscaling predictor 
variables selection through the screen variable option of SDSM. This statistic 
identifies the amount of explanatory power of the predictor to explain the 
predictand [16]. For this, first, all the predictors Table 1 from historical records 
were correlated with the past observed (1976-2005) maximum temperature, 
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minimum temperature, and precipitation. Then, the predictors with the highest 
correlation(r) and zero p-values were selected for each weather parameters. 
Finally, for the selection of the best predictor variables for each predictand 
(rainfall, maximum and minimum temperature) scatter plot was carried out in 
screen variable option of SDSM software. 

Calibration and weather Generation of SDSM

The SDSM was calibrated for each parameters for the first 20 years (1976-
1995) of observed data and predictor variables of NCEP reanalysis data sets 
and the last 10 years (1996-2005) of observed data from Kombolcha station 
were used for evaluation (weather generation) of the calibration data. Similar 
to calibration of the model, weather generation was carried out from predictors 
of NCEP reanalysis datasets using independent observed data in a time series 
(observed data which was not used for calibration).

Statistical Downscaling Model (SDSM) can be simulated on monthly, 
seasonal and annual basis, but, for this study, the model was simulated 
at monthly level by the process of conditional for rainfall parameter and 
unconditional for temperature parameter in order to see the monthly variation 
of precipitation, maximum and minimum temperature values. According 
to [1], during calibration and validation of SDSM, direct link are established 
between predictors and predictands under unconditional model process and in 
conditional models there is an intermediate process between regional forcing 
and local weather. As a result, in conditional process the observed data were 
transformed by the fourth root before calibration and validations were done, 
but for unconditional process the observed data were used directly for model 
calibration and validation without transforming the data. 

The performance of the model during model calibration and validation 
was measured by using statistics like mean, variance, sum, minimum and 
maximum values of simulated and observed data by summary statistics 
analysis operation of SDSM software before scenario generation. This was 
used to select an appropriate event threshold value, variance inflation and bias 
correction of the model. In addition to the above listed statistics, coefficient of 
determination (R2) for simulated and observed data was used for performance 
measure of the model. However, for discussion coefficient of determination 
(R2) and mean of observed and simulated data comparison of all parameters 
were selected and the condition for each predictand (rainfall, maximum and 
minimum temperature) was presented in the following section.

Climate projection for future period

Based on the objective of this study, to see the future temperature and 
precipitation values for Kombolcha town, the future data of these climate 
variables were downloaded from CanESM2 for Kombolcha meteorological 
station. The future data were also generated for RCP 4.5 and RCP 8.5 
emission scenarios by SDSM method based on the average of 20 ensembles. 
The variations of temperature (maximum and minimum) and precipitation in 
the town for annually and seasonally condition were analysis based on the 
base of the 2020s, 2050s and 2080s.

Results and Discussion

Input data quality control

The meteorological data sets (rainfall, maximum and minimum 
temperature) in the study area contend a total of 0.3-0.5% missing data from 
the whole observed data of rainfall and temperature, which were used in this 
study. Since the missing data are too small, the values were filled by averaging 
of previous and following days of records [33,34].

Homogeneity of meteorological data was tested by Standard Normal 
Homogeneity Test (SNHT) XLSTA of statistical software. Since p-values of 
the test were greater than the alpha value for both significance levels (0.01 
and 0.05), the data were considered as homogeneous in the time series of 
observed data. The homogeneity test result for Kombolacha meteorological 
station indicated in Table 2. 

Selection of downscaling predictor variables

The number of selected predictors for all weather parameters (rainfall, 
maximum and minimum temperature) varies from four to five in the study 
area (Table 2). The correlation (R) statistics and p-values were used to 
explain the strength of the relationship between the predictor and predicted. 
So, in this study, Predictor variables which have a high correlation 
value(R) and zero p-values were selected. Even there were common 
predictors for all weather parameter; in most cases the valve of correlation 
(R) was different from parameter to parameter. The results also show  
a strong association between mean temperatures at 2m (Nceptempgl.dat) for 
all weather parameters in most case. In addition to this, as the results provide 
in Table 3 the amount of explanatory power (partial correlation R valve)for 
each predictor is unique.

In the town, the selected predictors have better chance of the association 
with all predicand as the values of p is zero and Predictor like 500hpa 
geo potential height (Ncep500gl.dat) with maximum temperature, mean 
temperature at 2m (Nceptempgl.dat) with minimum temperature and 850 
hpa geo potential height (Ncepp850gl.dat) with rainfall has higher positive 
association. On the other hand, surface air flow strength (Ncepp1-fgl.dat) 
predictor has higher negative association with both maximum and minimum 
temperature and there is no, any predictor which has negative association with 
rain fall in the town (Table 3). 

Model calibration, weather generation and its perfor-
mance 

Before future scenario generation the results of the observed data for 
maximum temperature, Minimum temperature and precipitation are correlated 
with the modeled data during the calibration and validation periods using 
the coefficients of determination. SDSM was calibrated for each parameters 
separately for the first 20 years (1976-1995) of observed data and predictor 
variables of NCEP reanalysis data sets, weather generation was done for the 
last 10 years (1996 - 2005) of observed data set; the mean result of simulated 

Predictor Variable Description Predictor Variable Description
Ncepmslpgl.dat Mean sea level pressure Ncepp5zhgl.dat 500hpa divergence
Ncepp1_fgl.dat Surface air flow strength Ncepp_fgl.dat 850 hpa air flow strength
Ncepp1_ugl.dat Surface zonal velocity Ncepp_ugl.dat 850 hpa zonal velocity
Ncepp1_vgl.dat Surface Meridians velocity Ncepp_vgl.dat 850 hpa meridians velocity
Ncepp1_zgl.dat Surface velocity Ncepp_zgl.dat 850 hpa vortices
Ncepp1thgl.dat Surface wind direction Ncepp850gl.dat 850 hpa geo potential height
Ncepp1zhgl.dat Surface divergence Ncepp8thgl.dat 850 hpa wind direction
Ncepp5_fgl.dat 500hpa air flow strength Ncepp8zhgl.dat 850 hpa divergence

Ncepp5_ugl. Dat 500 hpa zonal velocity Ncepprcpgl.dat Relative humidity at 500 hpa
Ncepp5_vgl.dat 500 hpa meridians velocity Nceps500gl.dat Specific humidity at 500hpa
Ncepp5_zgl. Dat 500 hpa vortices Nceps850gl.dat Specific humidity at 850 hpa
Ncepp500gl. Dat 500hpa geo potential height Ncepshumgl.dat Surface specific humidity
Ncepp5thgl.dat 500hpa wind direction Nceptempgl.dat Mean temperature at 2m

Table 1. Twenty-six Predictor variables derived from African window for the study area.
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Parameters Minimum Maximum Mean SD
Alpha( )

0.05pvalue 0.01pvalue
Rainfall 749.1 1319.3 1021.6 148.13 0.325 0.333
Maxi T 25.44 27.6 26.3 0.529 0.775 0.775
Min T 11.75 13.54 12.659 0.497 0.105 0.109

Table 2. SNHT for meteorological data of Kombolcha station.

Predictor
Predictand

MaxT R2 P Tmin R2 P Rainfall R2 P
Ncepp1-fgl.dat -0.277 0 -0.353 0 0.077 0
Ncepp1-vgl.dat -0.118 0       
Ncep500gl.dat 0.295 0 0.203 0 0.072 0
Nceps500gl.dat      0.086 0
Ncepp8thgl.dat -0.212 0       
Ncepp850gl.dat   -0.11 0 0.249 0
Ncepshumgl.dat   0.369 0 0.096 0
Nceptempgl.dat   0.568 0   

Table 3. Selected predictor variables in Kombolcha town. 

and observed data of all predictand data variations were determined. Figure 
3a shows the mean of simulated and observed precipitation data of the study 
area from Kombolcha meteorological station. All most all months of the year 
have underestimated simulated results for precipitation. In the model, even 
the above variation was observed, in related with a mean of observed and 
mean of simulated rainfall data at the monthly level but, the value of coefficient 
of determination (R2) which shows the overall association of observed and 
simulated data was 0.929 for the study area. So, the overall agreements of 
the observed and simulated mean results were very good with, related to the 
coefficient of determination (R2). Figure 3b shows R2 value of Kombolcha 
station in the study area. This show high variation and good agreement of 
observed data and simulated data from SDSM. The mean of observed and 
simulated maximum temperatures in the study area show a little variation in 
monthly levels. As shown in Figure 4a, the simulated maximum temperature 
mean graph superimposed on observed maximum mean temperature graph, 
this may be due the condition that the simulated and observed mean maximum 
temperature have all most equal means. In addition to this point, R2 values 
show good relationship between the observed and simulated data Figure 4b.

The minimum temperatures of the town have almost equal mean result 
for observed and simulated conditions at the baseline time throughout all 
month of the years as indicated in Figure 5a. As a result of this graph of 
simulated and observed minimum mean temperature in the baseline period 
are superimposed each other in all months of the year. At the same time, 
R2 value shows the presence of great conformity between the observed and 
simulated mean minimum temperature as indicated in Figure 5b. In this study 
from the three weather parameters (rainfall, maximum and minimum tempera), 
the SDSM model simulation result shows good performance for maximum 
temperature next to the minimum temperature when it evaluates by coefficient 
of determination.

Future temperature and precipitation

Future precipitation: The mean results of future precipitation, which 
was downscaled from canESM2 GCM by using NCEP-NCAR predictors show 
significant variation when it compared with the reference period (1976-2005) 
mean rainfall of the town for all rainfall season (annual, Kiremt and Belg).

The mean value of rainfall for the Belge rain season for all three future time 
horizons of this study Table 4 will indicate a higher value than the base time 
mean value of Belg season rainfall for RCP4.5 emission scenario. However, 
for RCP8.5 emission scenario the mean value of Belg rainfall will indict lower 
value as compared to observed time mean Belg rainfall value. The maximum 
increasing and decreasing mean value of Belg rainfall will occur in 2020s for 
RCP4.5 and RCP8.5 respectively (Table 4). Maximum increase and decrease 
will occur by 2020s, for both RCP4.5 and RCP8.5 respectively 2020s = 2006 
-2035, 2050s = 2036 – 2065 and 2080s = 2066 – 2095. 

In the future, relative to the observed mean value of Kiremt rainfall in 
Kombolcha town, mean value of Kiremt rainfall will decrease for both RCP4.5 
and RCP8.5 emission scenarios in all three-time horizons (Table 5). The 
maximum decreasing rate will occur in 2050s for both RCP4.5 (16.75%) 
and RCP8.5 (26.7%). The decreasing rate of mean Kiremt season rainfall is 
higher for RCP8.5 relative to RCP4.5 in respective future time interval of this 
study. As cited by Belay et al.(2013), Arndt et al. (2011) indicate that the future 
projections Kiremt rainfall will decline by 20% in Ethiopia and also indicated that 
seasonally maximum precipitation reduction is projected during the Ethiopian 
local rainy season of Kiremt in the future time horizons.

Future expected mean annual rainfall in 2080s in Kombolcha town will 
show maximum decreased (13.8%) mean annual rainfall value relative to 
observed mean annual rainfall (Table 6). In the town RCP4.5 shows 7.03% 
and 1.36% decrement in the 2020s and 2050s respectively; RCP 8.5 also 
shows 5.47% and 7.22% decrement in the same respective time. This result 
is found in the same line with Asore et al. (2010), all models and scenarios 
show a decrease in mean annual precipitation and consequently, a decrease 
in runoff in lower Awash River Basin, where the area of this study found; The 
Projection of future mean annual rainfall conditions suggest that the annual 
mean rainfall in the Central Rift Valley area is most likely to decrease (Belayet 
al., 2013), the generated future scenarios results show decreasing trend for 
mean annual precipitation in upper Awash Sub-basin, of Ethiopia [4] and also 
as cited by [21], Monireh et al. (2013) was also indicated up to 25% decline of 
mean annual precipitation in Ethiopia for the future time interval.

Future temperature: Mean maximum temperature value which expected 
in the future three-time horizons (2020s, 250s and 2080s) for the two emission 
scenarios (RCP4.5 and RCP8.5) in Kombolcha town for Belg, Kiremt and 
annual season are given in Table 7. In the town throughout the three-time 
horizons mean maxim temperature of the three seasons (Belg, Kiremit and 
annul) for both RCP4.5 and RCP8.5 emission scenarios indicates increment 
value when it compares with the base time mean maximum temperature.

In the town the maximum increment of Belg season mean maximum 
temperature will be occurred in 2050s for both RCP4.5 and RCP8.5 with a value 
of 1.88ºC and 1.77ºC respactively. For Kiremt season this will be occurred in 
2020s for both RCP4.5 (1.52ºC) and RCP8.5 (1.48ºC). In annual base even 
the increment will be occurred in 2020s for both RCP4.5 and RCP8.5, the 
value is small when it compares with the Belg and Kiremt season increment 
values.

The mean annual, Kiremt and Belg minimum temperature value of 
Kombolcha town for the time of the 2020s, 2050s and 2080s are indicated 
in Table 8. The expected mean annual, Kiremt and Belg season minimum 
temperature of the town show increment values when it compares to base time 
value of respective seasons.
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Figure 3. Simulated and observed mean daily precipitation (a) and (R2) in studyarea. 
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Figure 4. Simulated and observed mean daily maximum temperature (a) and R2 (b) in the study area. 
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Figure 5. Simulated and observed mean daily minimum temperature (a) and R2 (b) of the study area.

Observation Projected Belg rainfall(mm)

 RCP4.5 RCP8.5
Base period 2020s 2050s 2080s 2020s 2050s 2080s

215.69 231.9 221.6 221 195.1 198.4 198.9
Increase/Decrease (%) 7.5∗ 2.75 2.59 -9.57∗ -8.04 -7.78

Table 4. Mean of future Belg season rainfall relative to the base period.

Observation
Projected Annual rainfall(mm)

RCP4.5 RCP8.5
Base period 2020s 2050s 2080s 2020s 2050s 2080s

1023.43 951.5 1009.5 968.5 967.5 949.5 882.2
Increase/Decrease (%) -7.03 -1.36 -5.37 -5.47 -7.22 -13.8

Table 5. Futures mean Kiremt rainfall change relative to the base period rainfall.
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Observation
Projected Annual rainfall(mm)

RCP4.5 RCP8.5
Base period 2020s 2050s 2080s 2020s 2050s 2080s

1023.43 951.5 1009.5 968.5 967.5 949.5 882.2
Increase/Decrease (%) -7.03 -1.36 -5.37 -5.47 -7.22 -13.8

Table 6. Future annual rain fall change relative the base time.

Observation
Maximum Temperature (℃)

RCP4.5 RCP8.5
Base period 2020s 2050s 2080s 2020s 2050s 2080s

Belg(27.87℃) 27.93 29.75 28.19 27.93 29.64 28.26
Difference 0.06 1.88⃰ 0.32 0.05 1.77⃰ 0.39

Kiremt(28.10℃) 29.62 29.2 28.67 29.58 29.29 28.26
Annual (26.86℃) 26.97 26.86 26.94 26.97 26.9 27.12

Difference 0.11 0 0.08 0.11 0.04 0.26

Table 7.  Future annual, Kiremt and Belg season mean maximum temperature.

Observation
Minimum Temperature

RCP4.5 RCP8.5
Base period 2020s 2050s 2080s 2020s 2050s 2080s

Belg(13.72℃) 14.03 13.87 14.23 14.71 14.54 15.06
Difference 0.61⃰ 0.15 0.51 0.99 0.82 1.34⃰

Kiremt(14.90℃) 15.55 15.29 16.51 16.19 15.07 15.63
Difference 0.65 0.39 1.61⃰ 1.29⃰ 0.17 0.73

Annual (12.63℃) 12.76 12.96 13.89 14.48 13.82 14
Difference 0.13 0.33 1.35⃰ 1.85⃰ 1.19 1.37

Table 8.  Future annual, Kiremt and Belg season mean minimum temperature.

The future mean annual minimum temperature of the town will be increased 
by 1.35ºC for RCP4.5 and 1.37ºC for RCP8.5 in 2080s when it compared 
to the historical mean annual minimum temperature of the town. This is 
the maximum increment values in the future three-time horizon. Similar 
nature with future mean annual minimum temperature in2080s, Belge 
and Kiremt season mean minimum temperature in the 2080s expected by 
the increment value for both RCP4.5 and RCP8.5 emission scenarios. In 
Belge the increment value for RCP8.5 (1.34ºC) will be higher than that of 
RCP4.5 (0.51ºC); the condition will be reverse in Kiremt when the mean 
minimum temperature will be increased by 1.61ºC and 0.73ºC for RCP4.5 
and RCP8.5 respectively.

In the future three-time horizons of this study the maximum Belg season 
mean minimum temperature increment will be occurred in 2020s for RCP4.5 
and in 2080s for RCP8.5. For Kiremt season mean minimum temperature with 
contradiction of Belg season mean minimum temperature, the increment will 
be occurred in 2080s for RCP4.5 and in 2020s for RCP8.5. 

Conclusion

Africa is considered as the most vulnerable continent to climate change 
in the world. Regionally, in east Africa countries like Burundi, Kenya, Sudan, 
and Tanzania people are badly hit by the impacts of climate change. Because 
of its significant dependence on the agricultural sector for production, 
employment, and export revenues, Ethiopia also seriously threatened by 
climate change, which contributes to frequent drought, flooding, and rising 
average temperatures.

Whilst climate change is already manifesting in Ethiopia through changes 
in temperature and rainfall, its magnitude poorly studied at regional levels. This 
is because of that, the results of the temperature and precipitation data that 
obtained from meteorological observation of some regions are missing and 
limits the downscaling of future weather values from general circulation models. 
One of the recent advances in climate science research is the development 
of global general circulation models (GCMs) to simulate changes in climatic 

elements of the present and future, which helps us to determine consequences 
earlier and prepare for necessary adaptation measures.

In Ethiopia, various downscaling applications and their potential to detect 
climate change impacts in agricultural and hydrological applications were 
conducted in different time intervals throughout all direction of the country. 
But, applications of statistical downscaling of general circulation models for 
future time temperature and precipitation value estimation for industrial town 
of Kombolicha, South Wollo in Ethiopia has not been undertaken. So, in order 
to fill the limitation by establish a relationship between past local climate and 
past GCM outputs and extend this relationship into the future time interval 
required scientific evidence on statistically downscaling of future temperature 
and precipitation values since, it is vital for policymakers, researcher, planner 
to formulate the adaptation and mitigation options of future temporal and 
spatial variation in the study area. Therefore, the main aim of this study was 
statistically downscale of future daily maximum temperature, daily minimum 
temperature, and precipitation value in Kombolcha Town, South Wollo, in 
Ethiopia.

The mean value of rainfall for the Belge rain season for all three future 
time horizons of this study will indicate a higher value than the base time 
mean value of Belg season rainfall for RCP4.5 emission scenario. In the 
future, relative to the observed mean value of Kiremt rainfall in Kombolcha 
town, the mean value of Kiremt rainfall will decrease for both RCP4.5and 
RCP8.5 emission scenarios in all three-time horizons. Also, in the town 
both RCP4.5 and RCP8.5 scenarios show a decrease in mean annual 
precipitation values throughout the three future time interval of this study. 
In the town throughout the three-time horizons both mean maxim and 
minimum temperature of the three seasons (Belg, Kiremit and annul) for 
both RCP4.5 and RCP8.5 emission scenarios indicates increment value 
when it compares with the base time mean maximum temperature. The 
rise in temperature will intensify the town maximum heat effects in warm 
seasons and decrease in precipitation is expected along with a possible 
risk of water supply scarcity due to a low level of water supply access and 
a high rate of urbanization in the town.
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