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Abstract

We construct double cross biproduct and bi-cycle bicrossproduct Lie bialgebras from
braided Lie bialgebras. The main results generalize Majid’s matched pair of Lie algebras
and Drinfeld’s quantum double and Masuoka’s cross product Lie bialgebras.
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1 Introduction

As an infinitesimal or semiclassical structures underlying the theory of quantum groups, the
notion of Lie bialgebras was introduced by Drinfeld in his remarkable report [3], where he
also introduced the double Lie bialgebra D(g) as an important construction. Some years
later, the theory of matched pairs of Lie algebras (g, m) was introduced by Majid in [4].
Its bicrossed product (or double cross sum) m><g is more general than Drinfeld’s classical
double D(g) because g and m need not have the same dimension and the actions need not
be strictly coadjoint ones.

Since then it was found that many other structures in Hopf algebras can be constructed
in the infinitesimal setting, see [5] and the references cited therein. Also in [6], Majid in-
troduced the concept of braided Lie bialgebras and proved the bosonisation theorem (see
Theorem 4.4) associating braided Lie bialgebras to ordinary Lie bialgebras. Examples of
braided Lie bialgebras were also given there. On the other hand, there is a close relation
between extension theory and cross product Lie bialgebras, see Masuoka [7].

Natural and interesting questions are the following: Are there any more general results
on this to uniform all the existing results together? What conditions will be needed? We
give answers to these questions in the present paper. Majid’s and Masuoka’s results will be
generalized as corollaries of our main results.

This paper is organized as follows. In Section 2, we recall some definitions and fix some
notations. In Section 3, we review the notion of matched pairs of Lie coalgebras as dual
version of Majid’s matched pairs of Lie algebras. In Section 4, we construct double cross
biproduct Lie bialgebras through two braided Lie bialgebras. In Section 5, we construct bi-
cycle bicrossproduct Lie bialgebras, which is a generalization of Masuoka’s cross product Lie
bialgebras. The main results are stated in Theorems 4.6 and 5.7.

Throughout this paper, all vector spaces will be over a fixed field of character zero. The
identity map of a vector space V is denoted by idy : V — V.
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2 Preliminaries

Definition 2.1 (see [8]). A Lie coalgebra is a vector space L equipped with a linear map
6 : L - L® L, called a cobracket, satisfying the co-anticommutativity and the co-Jacobi
identity:

(CL1): & = —716,
(CL2): (14+&+ &%) (0 ®id)s =0,

where 7: LQL > LQRL, . LRLKR®L — L®L® L are twistings defined by
Tu®v)=vQu, {uRVRW)=1vwWwRu.

We would like to use the sigma notation d(a) = > a1 ® ag = a1 ® ag for all a € L to
denote the cobracket, then the above conditions can be written as

(CL1): Zal ® ag = —Zaz ®ay,

(CL2): Zan ® a2 ® as +Za12®a2®a11 +Za2 ®a11 ®ayz =0.
In fact, (CL2) is equivalent to one of the following two equations by (CL1):

Zal ® az; ®a22+2a21 ® age ® ay +Za22®a1 ® a1 =0,

Z(M ® a21 ® azy = Zan ®ai2 ®az —Zan ® a2 ® a2

Definition 2.2. A Lie bialgebra H is a vector space equipped simultaneously with a Lie
algebra structure (H, [, |) and a Lie coalgebra (H,0) structure such that the following com-
patibility condition is satisfied:

(LB):  4([a,b]) :Z [a,b1] ® by + Zbl ® [a,ba] + Zal ® [ag,b] + Z [a1,b] ® as,
and we denote it by (H, [, ],0).
Note that (LB) is equal to
5([a,0]) = a,bi] @by + > b1 @ [a,by] = Y [bya1] ®az — > a1 ® [b,ag).
We can also write them as ad-actions on tensors by
§([a,b]) = a>8(b) —b>d(a) = a>5(b) + 6(a) <b.
Let A, H be both Lie algebras and Lie coalgebras; for a,b € A, h,g € H, denote maps
a:HA— A pP:-HRA—-H ¢:A—-H®A, ¢Yv:H—ARQH
by
ah®a)=hea, Bh®a)=haa, ¢a)=)» ac_y®aq), )= he) ®ha).

We now fix some notions.
For a Lie algebra H and a linear map « : H ® A — A such that

a([,]@idA) :a(idH®a) —a(idH®a)(T®idA),
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[h,g]>a=h>(gra)—g>(h>a), forh,ge H, ac A,

then (A, «) is called a left H-module. For a Lie coalgebra H and a linear map ¢ : A - H® A
such that

(0n ®@ida)¢ = (idy ®@¢)¢ — (1 ®ida)(idn ®¢)d>,
D_ a1 ® a2 ® ) = D a() B a) @ag) = Y a1 @ a2 @ a),

then (A, ¢) is called a left H-comodule. If H and A are Lie algebras, A is a left H-module
and a(idg @[, ]) =, |(a®ida) + [, |(idg ®a) (T ®ida), h>[a,b] = [h>a,b] + [a, h>b], then
(A, [, ], @) is called a left H-module Lie algebra. If H is a Lie coalgebra and A is a Lie algebra,
A is a left H-comodule and ¢[, ] = (idH @[, (¢ ®@ida) + (idg @[, |)(7 ® ida)(ida ®¢),

o(la,b]) = > a1y @ [aq),b] + > b—1) ® [a,b@)], then A is called a left H-comodule Lie
algebra. Right Lie (co)module and L1e (co)module Lie (co)algebra can be defined similarly,
see also [5].

3 Matched pairs of Lie algebras and Lie coalgebras

The general theory of matched pairs of Lie algebras was introduced by Majid in his Ph.D.
thesis and published in [4]. He summarized his theory in his book [5]. In this section, we
review the notion of matched pairs of Lie coalgebras, which is the dual version of Majid’s
matched pairs of Lie algebras. We will use it to construct double matched pairs in the next
section.

Definition 3.1 (see [5, Definition 8.3.1]). Assume that A and H are Lie algebras. If (4, «)
is a left H-module, (H, ) is a right A-module, and the following (BB1) and (BB2) hold,
then (A, H,«, B) (or (A, H)) is called a matched pair of Lie algebras:

(BB1): h»la,b] =[h>a,b] +[a,h>b]+ (h<a)>b— (hab)>a,
(BB2): [h,g]<a=[h,g<a]+[h<a,g]+h<(gra)—g<(h>a)

Lemma 3.2 (see [4]). Let (A, H) be a matched pair of Lie algebras, then we get a new Lie
algebra on the vector space A & H with bracket given by

[(a,h), (b,9)] = ([a,b] + hob—g>a,[h,g|+hab—g<a).
We denoted it by A<t H.

Proposition 3.3 (see [5, Proposition 8.3.4]). Assume that A and H are Lie bialgebras,
(A, H) is a matched pair of Lie algebras, A is a left H-module Lie coalgebra, and H is a
right A-module Lie coalgebra. If

(idg ®a) (6p ®ida) + (B®ida ) (idg ®54) =0,
i.e.,
(AAL): > hi®hypa+» h<a @ap =0,

then A< H becomes a Lie bialgebra.
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Example 3.4. A skew-pairing between Lie bialgebras is a linear map w : H ® A — k such
that (see [5])

w([h, g],a) = w(h,a1)w(g,a2), w(h,[a,b]) =w(hi,b)w(hs,a).

For such a skew-pair, we can define a right A-module of H as h <a = w(he,a)hy, since the
right-hand sides of

h<la,b] = w(hy, [a,b])h1 = w(ha1, b)w(haz, a)hy = w(hg, a)w(hi2,b)h11
and
(h<1 (I) ab— (h < b) <4a = w(hz, b)w(hlg,a)hn

are equal because H is a Lie coalgebra. Similarly, there is a left H-module of A by h>a =
w(h,az)a;. It is easy to see that they form a matched pair of Lie algebras and the condition
in Proposition 3.3 holds. In this case A >t H becomes a Lie bialgebra which we denote by
A<, H. This is a generalization of Drinfeld’s double Lie bialgebra when A = H*°P.

Definition 3.5. Two Lie coalgebras (A, H) form a matched pair of Lie coalgebras if (A, ¢)
is a left H-comodule and (H,)) is a right A-comodule, obeying the conditions

(BB3):  (id®6)¢ = (¢ ®1id)d + (7 ®id)(id ®¢)d + (¢ @ id)¢ + (id @7) (¢ @ id) ¢,
(BB4): (§®id)y = (id®e¢)d + (id @7)(id @) + (id @9) + (T ® id) (id @¢)1p.

In sigma notation, the above conditions are

(BB3): Za —1) ® a1 ® a(p)2

= Zau_ ) @ a1(o) ®a2+zaz(_1 ® a1 & az(g)

+ D 0-1)0) ® a-1)(1) @ a(0) — D a(-1)(0) @ A(0) D A(-1)(1),
(BB4): ) hoy1 ® hygy2 ® hqy)

:Zh1®h2(o)®h2 +Zh1 ) @ h2 @ hi(

+ Do) ® hiay(-1) @ hayo) = D haay-1) ® hioy @ hay o)

Lemma 3.6. Let (A, H) be a matched pair of Lie coalgebras, we define D = A w4 H as the
vector space A® H with Lie cobracket ép(a) = (04 + ¢ —716)(a), op(h) = (dg +¢ — 1) (h),
that 1is,

5D(a) = Z a1 ® ag + Z a(—1) X ag) — Z a(o) & a(-1)
=D M ®ha+) ho®ha) =D ha) ®h),
this makes A w4 H into a Lie coalgebra.

Proof. It is easy to show that dp satisfies the coanticommutitive condition. We now intend
to show (14 ¢ + ¢2)(0p ®id)ép(a) = 0. By definition of §p we have

(9p @id)dp(a) = dp(a1) ® az + dp (ac-1)) ® a() = In(a()) ©a(-1)
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= a11 ® a12 ® az(1l) + ay—1) ® a1(g) @ az(2)
— a1(0) ® axq 1)®a2( ) 11 ®a1)2 ® a()(4)
+a(—1>(o> ®an ( )* a(-1)(1) @ a(-1)(0) @ a(0)(6)
ag)1 @ a(o)2 @ a( 1>(7) a()(-1) @ a(0)(0) © 4(-1)(8)
+a(0)(0) © 4(0)(-1) @ a(-1)(9);
§(0p ®id)ép(a) = a2 ® ag ® a11(10) + a1(g) ® az ® a1y (11)
—a1(—1) ® a2 ® a1 (g)(12) + a_1)2 ® a(g) ® a(_1y1(13)
a1 (1) ® a) ® a-1)(0)(14) = a-1)0) @ a0) @ a(-1)(1)(15)
— (0)2 @ (1) @ a(0)1(16) — a(0)(0) ® a(-1) @ a(o)(-1)(17)
+a(0)(-1) ® a(—1) © a(0)(0)(18);
€ (6p ®id)dp(a) = az ® a1 ® a12(19) + az ® a1(_1) ® a1(g)(20)
—az ® a1(g) ® a1(~1)(21) + a@) ® a—1)1 ® a1)2(22)
+a(0) ® a(-1)(0) @ a1y (1)(23) — a(0) @ a(-1) (1) ® A(-1)(0)(24)
— a(-1) © 4(0)1 @ a(0)2(25) = a(-1) @ a(0)(-1) © (0)(0)(26)
a(o)(-1)(27)-
It follows from the braided Jacobi identity of A that (1) + (10) + (19)
H-comodule, (13) + (9) — (26) = 0, (4) — (17) + (27) = 0, (22) — (8) + (18) = 0. By the
condition (BB3) of matched pair of braided Lie coalgebras, —(16)+(2) —(21)+(5)—(24) = 0,

—(25)+(11)—(3)+(14)—(6) = 0, —(7)+(20) — (12)+(23) — (15) = 0. Therefore, (CL2) holds
on A. Similarly, (CL2) holds on H. Hence (CL2) holds on the direct sum space A@® H. [

+a-1) ® aq)0) ®

( = (. Since A is a left
(

Proposition 3.7. Let (A, H) be a matched pair of Lie coalgebras with both of them Lie
bialgebras, and A is left H-comodule Lie algebra, H is right A-comodule Lie algebra, such
that

([, ]H®idA)(idH®¢) + (idH®[, ]A)(g&@idA) =

i.e.,

(AA2): > [hai]®aog+ Y ho@ [h1,a] =0,

then the direct sum Lie algebra structure makes A w4 H into a Lie bialgebra. We call it the
double cross coproduct Lie bialgebra.

Proof. The Lie coalgebra structure is as in Lemma 3.6. The Lie algebra structure is as in
A@® H. We only check the condition (LB). There are four cases: A® A, H® H, A® H, and
H ® A. We only check the first two cases. For a,b € A,

op([a,b]) = 6a([a,b]) + é([a,b]) — 76([a,b]),
a>0p(b)+dpla)sb=ar(0+¢—70)b)+ (0 +¢d—7¢)(a)<d
= [a,b1] @ ba(1) + b1 @ [a,52](2) + b1y @ [a, )] (3)
— [a, b(o)] ® b_1)(4) + a1 ® [az,b](5) + [a1,b] ® az(6)
+ a1 @ [a(0),b](7) — [a(0),b] @ a1 (3)-
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Now because A is a Lie bialgebra, we get 6([a,b]) = (1) + (
H-comodule Lie algebra, ¢([a,b]) = (7) 4+ (3), 7¢([a,b]) = (8
condition (LB) is valid on A. For z,y € H,
0p(h. g1) = 8([h, g]) + % ([h. g1) — 79 ([h. g)).
hedp(g) +op(h)<g=hv(6+¢ —7¢)(g) + (0 + ¢ —T9)(h) <
= [h, 1] ® 92(1) + 91 ® [h, 2] (2) + [h,g(o)] ®91)(3)

= [h 9] ® 90y (4) + h1 @ [ha, 9] (5) + [h1, g] © h2(6)

+ R, 9] ® hy(7) = hay © [ho), 9] (8)
Now because H is a Lie bialgebra, we get 0([a,b]) = (1) + (2) + (5) + (6). Since H is a right

A-comodule Lie algebra, ¢([a,b]) = (7) + (3), 7¢([a,b]) = (8) + (4). Hence the compatibility
condition (LB) is valid on H. O

+ (5) + (6). Since A is a left

2)
)+ (4). Hence the compatibility

Example 3.8. A skew-copairing between Lie bialgebras is a linear map R: k - H® A
which is denoted by

R=R'@R’=r=r'@r’cH®A
such that
R'®6(R*) = [R'.r'|@r*@R? §(R')®R*=R'@r' ®[R* .

For such a skew-copair, we can define a right A-comodule of H by (h) = [h, R'] ® R?, a
left H-module of A by ¢(a) = R' ® [a, R?]. It is easy to see that they form a matched pair
of Lie coalgebras and the condition in Proposition 3.7 holds. In this case A »4 H becomes a
Lie bialgebra which we denote by A »«* H. This is a generalization of Drinfeld’s codouble
Lie bialgebra when A = H*¢°P.

4 Yetter-Drinfeld modules and double cross biproduct

The concept of Yetter-Drinfeld modules over Lie bialgebras was introduced by Majid in [6]
(where he call it Lie crossed modules), which he used to construct biproduct Lie bialgebras.
This is a Lie version of biproduct Hopf algebras introduced by Radford in [9].

Definition 4.1. Let H be simultaneously a Lie algebra and a Lie coalgebra. If V is a left-H
module and left H-comodule, satisfying

(YDl): (b(h > 7)) = [h, U(—l)] (9 V(0) + V(-1) ® h> V(0) =+ hl X h2 > v,
then V is called a left Yetter-Drinfeld module over H.

We denote the category of Yetter-Drinfeld modules over H by E/\/l It can be shown that
H M forms a monoidal category if H is Lie bialgebra [6].

Definition 4.2. Let A be simultaneously a Lie algebra and Lie coalgebra. If V is a right
A-module and right A-comodule, satisfying

(YD2): ¢(v<aa)=v)® [va),a] +v@g)da®@va)+vdar @ a,

then V is called a right Yetter-Drinfeld module over A.
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We denote the category of Yetter-Drinfeld modules over A by Mﬁ.
The next condition was also introduced by Majid in [6], which is a modification of the
condition (LB).

Definition 4.3. If A is a Lie algebra and a Lie coalgebra and H is a right Yetter-Drinfeld
module over A, we call H a braided Lie bialgebra in M4, if the following condition is satisfied:

§([h, g)) = [h, 1] ®g2+91® [N, g2] +h1® [ha, g] + [h1, g] ®ho—s(h®g), (LBS) for H,
where
s(h®g) =g1)>h®@ge) +he @h_1)ybg—h—1)>g®hey — go) @ g1 > h.

Theorem 4.4 (see [6, Theorem 3.7]). If A is a Lie bialgebra and H is a braided Lie bialgebra
m Mﬁ, then the biproduct A >a H form an ordinary Lie bialgebra.

In the following, we construct the double cross biproduct of braided Lie bialgebras. Firstly,
we give conditions for A to be a braided Lie bialgebra in g/\/l

6([a,b]) = [a,b1] @ba+b1® [a,by] +a1®@[az, b] + [a1,b] ®ag—s(a®b), (LBS) for A,
where
s(a®b) = b(—l) >a® b(o) + a) @ a—1) > b— a(—y) > b® ag) — b(o) ® b(,l) > a.

Definition 4.5. Let A, H be both Lie algebras and Lie coalgebras, obeying the following
conditions:

(BB5): da(hra)=hra; ®az+a; @ h>ag + hioy>a ® h(y — hay @ h) > a,
(BB6): dpy(h<a)=h1®hy<da+hi<a®hs+a1)@h<ag —h<ag) ®aryy,
(BB7):  ¢([a,b]) = a1y ® [a),b]+b_1) @ [a,b)| +a(—1) 1b @ a@gy—b_1) <a ® b,
(BB8):  ¢([h. g]) = [ 90)] ® 901) + [P0y, 9] ® bty + 9(0) ® > g1y — o) @ g hqyy,
(YDB):  ¢(h>a)+(h<a) = [h,a_1)] @ a@) + a1 @h>a_y +hi@h>a

+ h(o) & [h(l),a] + h(o) da® h(l) 4+ h<a; ® ag,
then we call (A, H) a double matched pair.

Note that (BB5) and (BB8) have appeared in [5, Proposition 8.3.5] when Majid constructs
A »q H. Now we give the main result of this section.

Theorem 4.6. Let (A, H) be matched pair of Lie algebras and Lie coalgebras and let (A, H)
be double matched pair, A is a braided Lie bialgebra in g/\/l, H is a braided Lie bialgebra in
Mﬁ, define the double cross biproduct of A and H, denoted by AvaH, A H = A<t H as
Lie algebra, AvH = A w4 H as Lie coalgebra, then Ap<H becomes a Lie bialgebra.

Proof. First we check the axiom (LB) on H ® A. For h € H,a € A, by (BB5), (BB6),
(YDB) we get the third equality below:

6p([h,a]) = 6a(hva)+ ¢(hva) — Té(hea)+ dp(h<a) +Y(h<a) — T¢(h<a)
=da(h>a)+dg(h<a)+ ¢(h>a)+Y(h<a) —7(p(h>a) + p(h<a))
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=hva; ®a(l) + a1 @ h>az(2) + by >a® h)(3) — ha) ® hg) > a(4)
+h1 ® hg<a(5)+h; <a® ha(6)+a—1) ® h<ag)(7)—h<a@) ® a—1)(8)
+ [hya_p] ® (0)(9)+a( 1) @ b a-1)(10) 4+ hy @ hy > a(11)

+ hoy @ [h1y, a] (12) + h(oy 9a @ b1y (13) + h <a; ® az(14)

— a(p) ® [h, a1} (15) hba( 1) ® a(_1)(16) — ha>a ® hi(17)

— [hq),a] @ by (18) — h(1) ® h(yy <a(19) — ag @ h < a1 (20)
:h>(5+¢—7¢)(a)+(5+w—np)(h)<1a:hDéD(a)erD(h)qa

where
h>é(a) = (1) + (17) + (2) + a1 ® h<az = (1) + (17) + (2) — (20),
h¢(a) = (5) 4+ (6) + (13), h>T1o(a) = (9) + (14) + (8),
O(h)<a=(7)+ (11) — (10) + (12), 9 (h) <a = (15) + (3) + (16),
TY(h) <a = (4) + (19) + (18),

thus the fourth equality.
Next we investigate the case of (LB) on A ® A:

6D([a,b]) = (5,4([@,6]) + ¢([a, b]) - T(Z)([a, b])
= [a,b1] ®ba(1) + b1 ® [a,b2](2) 4+ a1 ® [az,b](3) + [a1,b] ® az(4)
— b(—l) >a® b(O)(5) = a(p) & a(-1) > b(ﬁ) =+ a(-1) >b® CL(O)(7)
+ b(g) & b(_l) >a(8) 4+ a(-1) @ [(I(O), b] (9) + b(_l) ® [a, b(o)] (10)
+ a(—1) < b® a(o)(ll) — b(_l) <4a® b(O)(12) - [a(o), b} X a (—1) (13)
— [a, b(o)]b & (_1)(14) —a() ®a(—1) < b(15) + b(o) ) < a(16)
=a>(0+¢—7¢)(b)+ (0 +¢—T1¢)(a)ab=ar>dp(b) +<5D(a)<1b,
where by (LBS) we get d4([a,b]) = (1) + --- + (8); by (BB7) we get ¢([a,b]) = (9) + (10) +
(11) — (12). In the next equality,
a>8(b) = (1) +(2), aré(b) =—(5) = (12) + (10), a>7¢(b) = (14) — (8) — (16),
d(a)<ab=(3)+(4), ¢(a)<ab=(9)+ (7)+ (11), 7¢(a)<b=(6)+ (15) + (13). 0O
We remark at this moment how Theorem 4.6 generalized Majid’s Theorem 4.4. On the
one hand, we get an ordinary Lie bialgebra through two braided Lie bialgebras A and H as

in Theorem 4.6, here A need not be a Lie bialgebra as in Theorem 4.4. On the other hand,
when the maps 8 and 1 are zero maps, Theorem 4.6 reduces to Theorem 4.4.

5 Bicycle bicrossproduct Lie bialgebras

This section is absolutely new, we construct bi-cycle bicrossproduct Lie bialgebras, which is
a generalization of double cross biproduct. Let A and H be both simultaneously Lie algebras
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and Lie coalgebras, A is a left H-module and a left H-comodule, H is a right A-module and
a right A-comodule, denote maps

c:H®H A, 0:AA—~H, P:A—-HQ®RH, @Q:H—->ARA

o(h,g)€A, 0(a,b)€H, Pla)=) ay®apgcHOH, Q(h)=> hyy®hp cADA,

we always omit the sum notation.
Let H be a Lie algebra and for a left H-module A, an antisymmetric bilinear map o :
H® H — A is a cocycle on H if and only if

(CC1): ho(g,l)+gro(l,h)+1>a(h,g) =o([h g]l) +0o([g.1],h) +o([l,h], ).

Let A be a Lie algebra and for a right A-module H, an antisymmetric bilinear map
f: A® A — H is a cocycle on A if and only if

(CC2): b(a,b)<c+0(b,c)aa+6(c,a)ab=0(a,b,c]) +6(b,[c,a]) + 0(c, [a, b]).

Let H be a Lie coalgebra and for a left H-comodule A, an antisymmetric bilinear map
P:A— H®H is a cycle on A if and only if

(CC3): a(-1) @ a@)p @ a()(2) + a(0) 1) @ G(0)[2) @ &(-1) F G(0)[2] @ &(-1) B G(0) 1
= a1 @ ap2 ap + apj2 ® ajg) @ app1 + ap) ® apyr @ ap2.
Let A be a Lie coalgebra and for a left A-comodule H, an antisymmetric bilinear map
Q:H— A® Ais acycle on H if and only if
(CC4): hoyy ® hoy(2) @ hr) + hry @ hoyay ® hoy2) + heoyiz) ® by ® hoy )
= h<1> & h<2>1 & h<2>2 + h<2>2 & h<1> & h<2>1 + h<2>1 & h<2>2 & h<1>.
In the following definitions, we introduced the concept of cocycle Lie algebras and cycle

Lie coalgebras, which are in fact not really ordinary Lie algebras and Lie coalgebras, but
weaker structures than them.

Definition 5.1. (i) Let ¢ be an anticommutativity map on a vector space H satisfying
(CC1)(we call it a cocycle over H), equipped with a anticommutativity map [, | : HQH — H,
satisfying the following cocycle Jacobi identity:

(CC5): [[h, gl 1] + [l9,1, h] + [[LA],g] =h<o(g,l)+g<a(l,h)+1<0(h,g),

then we call H a left cocycle Lie algebra.

(ii) Let 6 be an anticommutativity map on a vector space A satisfying (CC2)(we call it
a cocycle over A), equipped with a anticommutativity map [, |: A ® A — A, satisfying the
following cocycle Jacobi identity:

(CC6): [[a,b],c] + [[b,c],a] + [[c,a],b] = 0(a,b)>c+0(b,c)>a+0(c,a)>b,

then we call A a right cocycle Lie algebra.
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(iii) Let P be an anticocommutativity map on a vector space H satisfying (CC3) (we call
it a cycle over H), equipped with a anticommutativity map ¢ : H — H ® H, satisfying the
following cycle co-Jacobi identity:

(CC7): h11 @ h1a @ ho + h1a @ ho @ h11 + ho ® h11 ® h1a
= No) @ hqyyp) ® hy ) + Ay @ g ® o) + 1z ® oy ® oy,
then we call H a left cycle Lie coalgebra.
(iv) Let @ be an anticocommutativity map on a vector space A satisfying (CC4) (we call

it a cocycle over A), equipped with a anticommutativity map 6 : A - A ® A, satisfying the
following cycle co-Jacobi identity:

(CCS): a11 Va2 Raz+aj2®ays@Raj; +as X ar; K ao
= a(-1)(1) ® a(~1)(2) ® a(0) T A(~1)(2) ® A(0) ® A(~1)(1) TA(0)® A(~1)(1) ® A(~1)(2)>

then we call A a right cycle Lie coalgebra.

Although the structure of cocycle Lie algebras and cycle Lie coalgebras may be interesting,
we do not intend to devote on it. What we need is only the conditions from (CC5) to
(CC8) when both sides of them become zero for H and A are ordinary Lie algebras and Lie
coalgebras.

Definition 5.2. A cocycle cross product system is a pair of Lie algebras A and H, where A
is a left H-module, H is a right A-module, 0 : HR@ H — Aisacocycleon H,0: AQ A — H
is a cocycle on A and the following conditions are satisfied:

(TM1 [h,g]>a+ [o(h,g),al =h>(g>a) — g (h>a) +o(h,g<a) +o(h<aa,g),
(TM2 h<la,bl + [h,0(a,b)] = (h<a)<ab— (h<ab)<qa+b(h>a,b)+6(a,hb),
(TBB1): hb[a,b] +o(h,0(a,b)) = [h>a,b] + [a,h>b] + (h<a)>b— (hab)>a,
(TBB2): [h,g]<a+0(c(h,g),a) =[h,g<a]+[h<a,g]+h<a(g>a)—g<(hr>a).

E
E

Lemma 5.3. Let (A, H) be a cocycle cross product system of Lie algebras, then Aq g#s.0H
becomes a Lie algebra with brackets given by

[(a,h), (b,9)] ;, = ([a,0] + hob—g>a+o(h,g),[h,g] +hab—g<a+0(a,b)).
Proof. We should see

[k, [a,b]p] , + [a, [b,k]D] ;, + [b, [h,a]p] ,, = 0.
In fact,

[h, la,b]p] , = ho[a,b] + h<[a,b] + [h,0(a,b)],
la,[b,h]p] , = —[a, h>b] — O(a,h>b) + (h<ab)>a+ (hab)<a,
b, [h,alp] , = [b,h>a]l +0(b,h>a) — (h<aa)>b— (h<a)<b.

By (TM2) we get the result. The other cases can be easily checked too. O
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Definition 5.4. A cycle cross coproduct system is a pair of Lie coalgebras A and H, where
A is left H-comodule, H is right A-comodule, P: A - H® Hisacycleon A,0: AQA — H
isacocycleon A, Q : H— A® A is a cycle over H and the following conditions are satisfied:

(TM3):  a_1)1 ® a(1)2 ® a(g) + a1 ® azp] ® ayp
= 0(—2) @ a(—1) ® a(g) — A(—1) B &(—2) D a(0)
+ap)(-1) @ apj(o) @ ajg + apj(-1) © ap) © ag) (o),
(TM4): hy @ hy1 ® hay2 + h1 @ ha1y ® higg
= h() ® h(1) ® 2y = ho) ® hz) ® hqy)
+ Ry 1) ® hay0) @ hygy + higy 1) ® hiay @ Rz 0)
(TBB3):  a(—1) @ a(0)1 ® a(0)2 + ap) @ ajg)(1) @ ap2)
= a1(—1) ®a1(g) ® az + az(—1) ® a1 ® az(g)
+ a-1)(0) ® a(-1)(1) ® A(0) ~ &(-1)(0) ® &(0) ® A(-1)(1)>
(TBB4):  h(oy1 ® hoy2 ® hay + hayp) @ hayp © by
= h1 ® ha(0) ® ha(1) + hi(0) ® h2 @ hi()
+ ho) @ hay-1) @ hayo) = Pay-1) @ ho) @ hay o)
Lemma 5.5. Let (A, H) be a cycle cross coproduct system of Lie algebras. Define
D = AP 4 QH
as the vector space A @ H with the Lie cobracket

op(a) =(6a+¢—71d+P)(a), dp(h)=(6u+v¢ -1+ Q)(h),
that 1is,

dp(a) = a1 ®az + a_1) @ ag) — a) @ a_yy + P(a),
dp(h) = h1 ® ha + hgy @ h(1y — h1y @ hy + Q(h),

this make AT #V:QH into a Lie coalgebra.

Proof. We only check the braided co-Jacobi identity on A. By definition of §p we have

(9p ®id)dp(a) = dp(a1) ® az + dp(a(-1)) © ag) = dp(a() ® a1
= a1 ® a1z ® az(al) + ay—1) ® ai(g) @ az(a2)

—ai) ®ai—1 ag(a3) + a1 ® a2 ® a(g)(ad)
+a-1)(0) @ a1 () (a5) — a(-1)(1) @ a(-1)(0) ® () (a6)
— a(0)1 ® 4(0)2 ® a(—l)W) — 4(0)(~1) ® a(0)(0) @ a(-1)(a8)
+a(0)(0) @ a(0)(—1) @ a(-1)(a9) + a1p1] @ a1y @ az(al0)
a1y () ® a1y @) ® a)(all) = ap)) ® ag) ® a-1)(al2)
+ap1 ® ap2 @ ap(alld) + apjo) @ apj1) @ ap(ald)
— apj) @ apj(o) © a)(ald) + apja) @ apye) @ a(al6),
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§2(5D ®id)dp(a) = az ® a;1 ® a12(bl) + az ® ai(—1) ® ai(g)(b2)
— a2 ® a1(g) ® a1(—1)(b3) + a@) @ a—1y1 ® a(_1)2(b4)
+a(0) © a(-1)(0) @ a(-1)(1)(b5) = 4(0) © a(-1)(1) @ @(-1)(0) (b6)
— (1) © a(0)1 ® a(0)2(b7) — a(—1) @ a(g)(~1) ® a(0)(0)(b8)
+a(-1) @ a(0)(0) ® &(0)(~1)(09) + a2 © a1y} @ a1()(b10)
+a(0) ® a(-1) (1) ® a(-1)(2)(b11) = a(1) @ aqo)n) @ a(o)[2)(b12)
+ap @ app @ a[l]g(bli%) + ajg ® ap)(o) @ ap)(b14)
— ajg ® apj() © apy(o) (b15) + agy © apjay @ ap ) (016),

£(0p ®id)dp(a) = a12 ® ag ® a1(cl) + ai(o) ®az ® al(,l)(c2)

—a1(—1) ® a2 ® ay(g)(c3) + a—1y2 ® ag) ® a—1)1(cd)
+a-1) (1) ® a0) ® a(-1)(0) (D) = a(=1)(0) © 4(0) © 4(-1)(1)(¢6)
— 4(0)2 ® a(—1) ® a0)1(€7) = a(o)(0) @ (1) @ a(0)(~1)(¢B)
+a(0)(-1) ® a(-1) @ 4(0)(0)(¢9) + a1[y © a2 ® a1py)(c10)
a1y @ a) ® a1 )(cll) = ag) @ a1y @ ag)p)(c12)
+apj2 © g ® appi(eld) + apja) @ ajg) @ apyo)(c14)
= apj(o) @ ap © ap1)(€15) + apy ) @ a @ ap ) (¢16).

It follows from the condition (CC8) on A that (all)+(b11)+(c1l) = (al)+(bl)+(cl) = 0;
by (CC3) we have (al3) — (b13) + (c13) — (b12) — (al2) — (¢12) = 0; by (TM3) we get

(al0) — (b14) — (c15) + (a4) — (b8) + (c9) = 0,
(b10) — (c14) — (alb) + (b4) — (c8) + (a9) = 0,
(c10) — (ald) — (b15) + (c4) — (a8) + (b9) = O;
by (TBB3) we have
—(b7) — (b16) + (a2) — (¢3) + (ab) — (¢6) = 0,
—(c7) = (c16) 4 (b2) — (a3) + (b5) — (a6) = 0,
—(a7) — (al6) + (¢2) — (b3) 4 (¢b) — (b6) =0
Therefore, (CL2) holds on A. Similarly, (CL2) holds on H. O

The following conditions are needed by the next theorem. Note that (TBB5), ..., (TBBS)
are extended from (BB5), ..., (BB8); (TLB3) and (TLB4) are extended from (LBS); (TYD)
from (YDB). Here (TLB1) and (TLB2) are new ones.

(TBB5): da(h>a)+ Q(h<a)
=h>a ®ag+a1®h>a2+h(0)>a®h(1) —h(l) ®h(0)l>a
Ry ® [y, al+ [hay, a] @ by +o(hyaay) © ag)—a) ® o (hya),
(TBB6): dg(h<a)+ P(h>a)
=h ®h2<1a+h1<1a®h2+a(,1) ®h<1a(0) —h<1a(0) ®a(,1)
+ [ apy] © apg) + apy ® [h apy] + by ® 0(hay, @) = 0(ha), @) @ hgo),



Double cross biproduct and bi-cycle bicrossproduct Lie bialgebras 13

(TBBT): gzﬁ([a, b]) + ¥0(a,b)
= a(_1) @ [a0),b] + b1y ® [a,by] + a1y b @ agg) — b1y <a® b
+0(a,b1) @by +0(a1,b) ® az + ap) @ ap > b — by @ by >a,
(TBBS):  ¢([h, g]) + ¢olh, g]
= [h.90)] ® 90y + [h(0), 9] @ h1) + 9(0) ® e g1y — hoy ® 9> by
+h1 ®@o(h2,9) + 91 ®@0(h,g2) +h gy @ g —g<hay @ b,
(TLB1): 06(a,b) + Pla,b]
= a(-1) ® 0(a(), b) +b1) ® 0(a, b)) —0(a, bo)) @ b—1)—0(ae),b) ® a(-1)
tap) ®ap 9b+ap b @ ag) —bpya® by — by @ bz <a,
(TLB2): o (h,g) + Q[h, 9]
= (h),9) @ hay + o (h,9(0) ® 91) = by @ 7 (heo), 9) = 91) @ 7 (1, 9(0)
thoga) @9 +90) ®h>ge) —hay ®@g>hi) —g>ha) ® g,
(TLB3): 5([0,, b]) + Q0Y(a,b)
= [a,b1] ® by + b1 @ [a,bs] + a1 ® [az,b] + [a1,b] @ az
— b(_l) >a® b(o) —a() ®a—y) > b+ ac—y) > b® ag) + b(o) ® b(_l) >a,
(TLB4): 4([h, g]) + QI(h,g)
= [h,91] ® g2 + 91 ® [h, g2] + k1 ® [ha,g] + [h1, 9] ® ho
—hy®g>hay—h<ga)® g + 90) @h<ga)+ 9 <ha) @ hq),
(TYB): ¢(h>a)+(h<a)
= [hacy] ®a@) +an) @hva) + i ©hevat o) ® [ha), ]
+ hy<ta® hgy +h<ar @ az + apy @ o (h, a)) + hy @ 0(h,a).
Definition 5.6. (i) A left bi-cycle braided Lie bialgebras H is simultaneously a left cocycle
Lie algebra and a left cycle Lie coalgebra satisfying the above condition (TLB4).

(ii) A right bi-cycle braided Lie bialgebras A is simultaneously a right cocycle Lie a algebra
and right cycle Lie coalgebra satisfying the above condition (TLB3).

The next theorem says that we can get an ordinary Lie bialgebra from two bi-cycle braided
Lie bialgebras.

Theorem 5.7. Let (A, H) be a cocycle cross product system and a cycle cross coproduct
system, then the cocycle cross product Lie algebra and cycle cross coproduct Lie coalgebra
fit together to form an ordinary Lie bialgebra if the conditions (TBB5)-(TBBS), (TLB1)-
(TLB/), and (TYB) are satisfied. We call it the bi-cycle bicrossproduct Lie bialgebra and
denote it by Ag:g#g:gH.

Proof. We investigate the case of (LB) on A ® A:
0p ([a, b]D) =dp ([a, bl + 0(a, b))

— 5([a.b) + 6((a,b]) — 76 ([a,8) + P(fa,b)
+d0(a,b) + ¢b(a,b) — 76(a,b) + QO(a,b).
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Denote the right-hand side terms by (a), (b),..., (h):

a>dp(b)+dipla)db=a>(0+¢—79p+P)b)+ (0 +¢d—Tdp+ P)(a) b
= [a, bl] ®b2(1) + b ® [a bg]( ) — b1y > a® b)(3)

— b )qa@b(m( [a b)) (5) = [a,b(0)] © b(-1)(6)
+ by ®@ b—1)y > a(7 (—1) <a(8) + a1 ® [az,b](9)
+ [a1, ] ® az(10) + a(— [a(o),b](ll)—i-a( 1 >b®a(12)
+ a1y b ®a(13)— a0)®a( 1) >b(14) —ay ® a1y <b(15)
— [a(0),b] ® a(—1)(16) + 6 (a,b1) ® ba(17) + by ® 6(a, b2)(18)
+0(-1)@0(a, bo) ) (19) = 0(a, bo)) @b(-1)(20) ~bpy > a @by (21)
— by <a® b (22) — by @ bpgy > a(23) — byy) @ by <a(24)
+ a1 ® 0(az,b)(25) + (a1, b) ® az(26) + b_1) ® 0(a(),b)(27)
— 0(a(0),b) @ b—1)(28) + apy) @ ajy > b(29) + apy) @ ajg <1b(30)
+ap>b®ap(31) + ap b ® apy(32).

)+
)+

)
)(

Then by (TLB3) we get
(a) + (k) = (1) + (2) + (9) + (10) — (3) — (14) + (12) + (7);
by (TBB7) we get
(b) + (f) = (11) + (5) + (13) — (4) + (17) + (26) + (29) — (23),
(c) + (9) = (16) + (6) + (8) — (13) — (18) — (25) — (31) + (21);
by (TLB1) we get
(d) + () = (27) 4 (19) — (20) — (28) + (30) + (32) — (22) — (24).
We investigate the case of (LB) on H ® H:

5D([hvg]D) = 5D([h7g] + U(h7g))
= 6([h, g]) + ¥ ([h. g]) = 7¢([h, g]) + Q([h, g])
+ (SO'(h,Q) + QSO-(hv g) - T¢O-(ha g) + PO’(h, g)'

Denote the right-hand side terms by (a), (b),..., (h):

hedp(g) +0p(h)ag=he 0+ -1+ Q)(9) + (5 +v¥ —T¢v+Q)(h)ag
= [h,91] ® g2(1) + g1 @ [h, 92| (2) + [h, 90)] ® 9(1)(3)
+9(0) @ h>g1)(4) + g(0) ® h<ag1)(5) — h>ga) ® g(0)(6)
—h<ga) @ g©0)(7) = 9) @ [h, 9(0)] (8) + 71 © [h2, ] (9)
+ [h1,9] ® ha(10) — h(gy ® g > h(1)(11) — higy ® g < h)(12)
+ [0y 9] ® b1y (13)=hq1) @ [ho), 9] (14) +9 > b1y @ hio)(15)
+ g <hy ® by (16) + o (h, g1) ®92(17) +g1®@0(h,g2)(18)
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+0(h, 9(0)) ®9(1)(19) =91y @0 (h, 9(0)) (20) +h > g1y R g2y (21)
+ h< 91y ® g<2>(22) +91)® h 92 >(23) +91)® h< 92 >(24)
+h1 @0 (h2,9)(25) + 0 (h1,9) © ha(26) + o (h(), 9) © h1y(27)
— hay®0 (h(o), 9)(28) =Ry ® g> hi9y(29) — by ® g < h<2> (30)
—g>hay @ hgy(31) — g<hpyy ® h(32).
Then by (TLB4) we get
(a) + (h) = (1) + (2) + (9) + (10) = (12) — (7) + (5) + (16);

by (TBB8) we get

by (TLB2) we get

(d) + (e) = (27) + (19) — (20) — (28) + (21) + (23) — (29) — (31).
We now check the axiom (LB) on H ® A. For h € H,a € A, we get the equality below:
dp([h,alp) = dp(h>a) + dp(h<a)
=5a(hva) + ¢(h>a) — 7é(h>a) + P(hva)
+dg(h<a)+p(h<a)—Tp(h<a) +Q(h<a).
Denote the right-hand side terms by (a), (b), ..., (h):
hép(a)+oph)<a=ho(+¢—71¢+P)la)+ (0+v -1+ Q)(h)<a
=h>a ®az(l) +h<gar ®a2(2) + a1 @ h>az(3)
+ a1 ®h<az(4) + [h, a—1)] @ a()(5) + a(-1) ® h>a()(6)
+a—1)y ®@h<a)(7) = h>ag ®a—)(8) —h<ag) @ a—)(9)
—a) ® [h,a_1)] (10) + hy @ ho > a(11) + hy @ hg <a(12)
+ h1>a® hy(13) + h1 <9a @ ha(14) + h) ® [h(1), a] (15)
+ h(oy>a ® h(1)(16) + h(g) <a @ h(1)(17) — h(1) ® h(g) > a(18)
—h1)y®@h(y 9a(19) = [hay, a]| @Dy (20)+0 (h, a_1)) Da)(21)
—a) @0 (h, a_1))(22)+ [h, apy)] @apg (23)+0 (h, apy) @ag(24)
+ ap® [h, apy] (25)+ap @0 (h, ajy)) (26)+h) @0 (h1), a) (27)
— 0(hay, a) ©h) (28)+h1y @0 (g, a) (29)+hy @ [hay, a] (30)
+ [hays a] © hig)(31) +0(hqy, a) @ hy(32).
Then by (TBB5) we get

(a)+ (h) = (1) + (3) + (16) — (18) + (29) + (31) + (21) — (22);
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by (TBB6) we get
(d)+ (e) = (12) + (14) + (7) — (8) + (23) + (25) + (27) — (28);
by (TYB) we get

(b) + (f) = (5) + (6) + (11) + (15) + (17) + (2) + (26) + (32),
(€) +(9) = (10) +(9) — (13) + (20) + (19) — (4) — (26) — (30). O

When the maps o, 8, P, ) are zeros in Theorem 5.7, we get Theorem 4.6. When the maps
o, ¥, P, Q are zeros in Theorem 5.7, we get [7, Proposition 1.8]. In fact, any maps of «, £,
o, ¥, g, 0, P, Q can be zero and then we get other types of propositions. What we need to
do is to let the corresponding maps in the conditions in Theorem 5.7 be zero, we left this to
the reader.

Added remarks

After finishing the work, the author finds that the notion of “braided Lie bialgebra” has
been introduced earlier by Sommerhéuser in his unpublished paper [10] to give another
construction of symmetrizable Kac-Moody algebras, where he calls it “Yetter-Drinfeld Lie
algebra.” On the other hand, our construction is somewhat the Lie version of the construction
of bialgebra in [1, 2], so this paper can have another name “Cross Product Lie Bialgebras.”
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