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ABSTRACT 

 
Phenylephrine (PE) induces cardiac hypertrophy through multiple signaling pathways including pathways 

involving protein kinase C (PKC) activation. Docosahexaenoic acid (DHA), an omega-3 fatty acid, has been 

shown to reduce the PE-induced hypertrophic responses.  However, the effects of DHA on PKC activation 

and translocation are controversial. The present study investigates the effect of DHA on PE-induced 

activation of PKC. The results indicate that PE induces PKCα translocation (from cytosol to plasma 

membranes) and activation in cardiomyocytes during the hypertrophic responses. Although DHA itself has 

no significant effect on basal PKC translocation and activation, it effectively reduced PE-stimulated PKC 

translocation and activation. The results of the present study suggest a possible mechanism explaining how 

dietary fish oil may inhibit development of cardiac hypertrophy and therefore may be an attractive dietary 
agent for preventing cardiac hypertrophy in patients with heart failure.  
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INTRODUCTION 

 

Congestive heart failure is a major cause of morbidity and 

mortality from cardiovascular disease.  In the United 

States, 4.8 million Americans suffer from heart failure and 

the mortality approaches 50% over 5 years.  Despite 

current therapies for heart failure, mortality remains high.  

The cost for treating heart failure exceeds 30 billion 

dollars per year. Progressive hypertrophy of 

cardiomyocytes can lead to heart failure and increased 

morbidity.  Cardiac hypertrophy, which is commonly 

characterized by an increase in size of cardiomyocytes via 

a relative increase in cellular proteins in the absence of cell 

division (Morgan and Baker, 1991; Rupp et al, 1992), 

usually occurs as a compensatory mechanism secondary to 

increased workload in patients with hypertension or 

decreased muscle mass following myocardial infarction 

(Dhalla et al, 1987). Since we believe that modification of 

dietary factors has widespread effects upon the 

development of cardiovascular diseases, our group has 

been interested in dietary factors that modulate the 

development of heart failure.  Most dietary factors (ie. 

lipid intake, folic acid) affect the development of 

atherosclerosis. Recent data from epidemiological (Bang 

et al, 1976; Albert, 1998; Kris-Etherton et al, 2002) and 

prospective randomized clinical trials (Burr et al, 1989; 

Singh et al, 1997; GISSI-Prevenzione, 1999) suggests that 

omega-3 polyunsaturated fatty acids may also affect the 

development of cardiac arrhythmias and prevent sudden 

death.  We have been studying the effects of omega-3 fatty 

acids upon the cardiac hypertrophic response.  In our 

initial studies (Siddiqui et al, 2004), we found that the 

omega-3 fatty acid, docosahexaenoic acid (DHA), 

inhibited the cardiomyocyte hypertrophic response to 

phenylephrine (PE).  This study was aimed at identifying a 

signalling pathway by which DHA might inhibit cardiac 

hypertrophy. 

 

Activation of PKC is known to affect multiple 

cardiovascular functions, including vascular permeability, 

cell migration, and growth (Lynch et al, 1990; Naruse and 

King, 2000); extracellular matrix production (Smirnov et 
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al, 1989; Cagliero et al, 1991; Naito et al, 2002) and 

expression of various cytokines (Okada et al, 1998; 

Kondo et al, 2000); ion conductance and transport 

activity (Aviv, 1994); intracellular calcium homeostasis 

and properties of contractile proteins (Bowman et al, 

1997); ischemic preconditioning of the heart (Strasser et 

al, 1999); genesis of arrhythmias (Mochly-Rosen et al, 

2000); and induction of cardiac hypertrophy  (Jalili et al, 

1999b; Sabri and Steinberg, 2003).  While PKC’s 

importance in cardiovascular functions cannot be 

doubted, its precise involvement is poorly understood 

and unquestionably complex. 

 

The PKC family of serine-threonine kinases functions 

downstream of nearly all membrane-associated signal 

transduction pathways involved in myocardial hypertrophy 

(Molkentin and Dorn, 2001). The three groups of the PKC 

family of kinases comprise approximately 13 different 

isozymes [Conventional (PKCα, -β I, -β II, -γ), novel 

(PKCδ, -ε, -θ, -η, -µ), and atypical (PKCζ, -ι, -ν, -λ)]. 

Once activated, PKC isozymes translocate from cytoplasm 

to discrete subcellular membrane sites (Mochly-Rosen, 

1995). Many observations suggest that different isoforms 

of PKC are recruited to membranes with different stimuli, 

phosphorylate different sets of cellular substrates, and may 

regulate different cellular functions. PKC 

activation/translocation is initiated during hypertrophic 

responses by a variety of stimuli including pressure 

overload (Gu and Bishop, 1994; Jalili et al., 1999a; 

Takeishi et al., 1999; De Windt et al., 2000), bradykinin 

(Clerk et al, 1996), hypoxia (Goldberg et al, 1997), 

myotropin (Sil et al, 1998), norepinephrine (Rohde et al, 

2000), angiotensin II (Rouet-Benzineb et al, 2000), 

endothelin-1 (Ito et al, 1997), and mechanical stress 

(Yamazaki et al, 1995). Although PKCα, -βII, -δ, and -ε 
are broadly distributed in the cytoplasm of non-stimulated 

cardiomyocytes (Braz et al, 2002), recent studies implicate 

PKCα as a critical regulator of the cardiomyocyte 
hypertrophic response, in part via ERK1/2–MAPK 

activation (Braz et al, 2002). 

 

Conflicting reports about the role of DHA in regulating 

PKC activities have appeared in the literature.  DHA has 

been shown to both activate and inhibit PKC activity 

and its translocation to membranes. For example, free 

DHA, DHA containing phospholipids or diacylglycerol 

caused translocation and activation of PKC in several 

cellular systems (Hrelia et al, 1992; Hardy et al, 1994; 

Giorgione et al, 1995; Goldberg and Zidovetzki, 1997; 

Huang et al, 1997).  In contrast, a number of studies 

have suggested that DHA actually inhibits PKC 

activation (Mirnikjoo et al, 2001).  For example, studies 

have shown that DHA was a highly potent inhibitor of 

phosphatidylserine (PS)- and diolein (DO)-stimulated 

PKC in rat colon cells (Holian and Nelson, 1992). 

Furthermore, DHA also reduced activation of 

membrane-bound PKC in isolated cardiomyocytes 

(Bordoni et al, 1992) and suppressed PKC activity in 

thioglycollate-induced rat peritoneal macrophages 

(Tappia et al, 1995). The present investigation was 

therefore undertaken to clarify the effects of DHA on 

PKCα activation during hypertrophic responses in 

neonatal cardiomyocytes. 

MATERIALS AND METHODS 
 

Materials 

The cardiomyocyte isolation kit was purchased from 

Worthington Biochemical Corporation (Lakewood, NJ). 

Horse and fetal bovine serum were obtained from 

Hyclone (Logan, UT). DHA and other fatty acids were 

obtained from Nu Chek Prep, Inc. (Elysian, MN). Anti-

ANF antibody was obtained from Peninsula 

Laboratories, Inc. (San Carlos, CA). Anti-sarcomeric α-
actinin came from Sigma-Aldrich Chemical Co. (St. 

Louis, MO) and anti-PKCα antibody was from Upstate 
Biotechnologies, Inc. (Lake Placid, NY). Anti-mouse or 

anti-rabbit Alexa Fluor 546 and 480 antibodies were 

purchased from Molecular Probes (Eugene, OR). 

Phenylephrine and all other chemicals were obtained 

from Sigma-Aldrich Chemical Co. 

 
Isolation of cardiomyocytes 

Neonatal cardiomyocytes were obtained using an isolation 

system from Worthington Biochemical Corporation. 

Hearts were harvested from 1- to 3-day-old Wistar rats. 

The isolated hearts were cleared of connective tissue and 

atria, minced into approximately 1 mm blocks, and then 

incubated with trypsin for overnight digestion. The next 

day, trypsin activity was neutralized by the trypsin 

inhibitor and the tissues were further digested with 

collagenase. Single cells were obtained by filtering the 

digest through a 70 µm filter. Cells were pre-plated to 

remove fibroblasts, and cardiomyocytes were isolated 

using the Worthington’s protocols. Dead cells, cellular 

debris, and contaminating fibroblasts were further 

removed by centrifugation on a 5 ml layer of an Optiprep 

density gradient solution (Axis-Shield PoC, Oslo, 

Norway). This preparation yielded a 95% pure population 

of cardiomyocytes as analyzed by sarcomeric α-actinin 
staining (Haq et al, 2000).  Isolated cardiomyocytes were 

cultured for 24 hr in a humidified incubator in the presence 

of 95% O2/5% CO2. The cells were grown on laminin- and 

collagen-coated plates in F-10 medium containing 10% 

horse serum, 5% (v/v) fetal bovine serum, 100-units/ml 

penicillin, 100µg/ml streptomycin, and 0.1 mM 

bromodeoxyuridine (to prevent low-level non-myocyte 

proliferation). Cardiomyocytes were washed twice with 

serum-free medium (F-10 medium without serum) and 

then treated with DHA (5 µM) under serum-free 

conditions for 24 hr. Cells were then incubated with PE 

(100 µM) in fresh medium with or without a fresh supply 

of DHA (5 µM). Cells were incubated for another 48 hr in 

a humidified incubator in the presence of 95% O2 and 5% 

CO2 to induce hypertrophic responses. The DHA solution 

was made fresh each time from a pure sealed stock 

solution by dissolving the fatty acid in ethanol so that the 

final concentration of ethanol added to the culture medium 

did not exceed 0.05%. Control cells were treated with 

equal amounts of ethanol in each case. 
 

Characterization of hypertrophy 

Hypertrophy was induced by incubating cardiomyocytes 

under serum-free conditions in the presence of 100 µM PE 

for 48 hr under the incubation conditions described above.  

Incubation in the presence of serum-free conditions for a 

total of 78 hr does not result in the detachment of cells 
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from laminin-coated surfaces, and morphological features 

under the microscope appear to be normal. Hypertrophy 

was assessed by monitoring cell surface area, expression 

of sarcomeric α-actinin, and ANF. 

 
Cardiac myocyte surface area 

The cardiac myocyte surface area was measured as 

described previously (Simpson, 1983). Cells were 

observed under a Leica DMR microscope (Leica 

Microskopie und systeme, GmbH, Postfach, Germany) 

and pictures were taken with a MagnaFire digital camera 

(Optronics, Goleta, CA) for analysis. All cells were 

randomly selected by a blinded operator for tracing the 

surface area of 10 cells in each group. Result represents 

the mean±SE of three experiments and analyzed by 

ANOVA and Tukey’s multiple comparison tests. 

Significant differences within groups are reported. 

***P<0.05. 

 
PKC activity 

The total PKC activity in membrane fractions was 

assayed using a PKC assay kit containing a specific 

substrate peptide for PKC in the presence of [γ-32P] ATP 

and an inhibitor mixture that blocks protein kinase A and 

calmodulin kinase activities (Upstate Biotechnologies, 

Inc, Lake Placid, NY). The 32P-substrate from each 

treatment was separated from residual [32P] ATP using 

p81 phosphocellulose paper, and the radioactivity 

incorporated into the substrate was measured by 

scintillation counting as described previously (Siddiqui 

and Exton, 1992). 

 
Subcellular localization and activation of PKC 

Following treatment with DHA and subsequent 

stimulation with PE, the cells were homogenized and the 

cytosolic and membrane fractions isolated by 

centrifugation at 100,000 x g for one hr at 4oC.  The 

membrane proteins were separated on 8% SDS-PAGE as 

described (Siddiqui et al, 2004). The relative distribution 

of PKCα was determined by densitometric analysis using 
a KODAK imaging system (Eastman Kodak company, 

Rochester, NY). 

 
Translocation of PKC in cardiomyocytes 

Following treatment with PE and DHA, cardiomyocytes 

were fixed with 3% paraformaldehyde and then blocked 

with 1% bovine serum albumin (BSA) in phosphate-

buffered saline (PBS). Proteins were detected using 

specific antibodies (anti-ANF, anti-α-sarcomeric actinin, 

anti-PKCα antibodies) in a 1:200 dilution in blocking 

buffer and either Alexa 546- or Alexa 480-labelled anti-

mouse or anti-rabbit (1:200 dilution in blocking buffer) 

antibodies. Cells were examined under a fluorescence 

microscope and pictures were taken using a MagnaFire 

digital camera for analysis. 

 
Statistical analysis 

Results typically represent three experiments in each 

group and were analyzed by ANOVA and Tukey’s 

multiple comparison tests. Significant differences within 

groups are reported. ***P<0.05. 

RESULTS AND DISCUSSION 

 
We previously reported that DHA reduces PE-hypertrophy 

through inhibition of the Ras→Raf-1→Erk1/2→p90rsk 

pathway (Siddiqui et al, 2004).  However, there is 

evidence that multiple signaling pathways are involved in 

the progression of cardiac hypertrophy (Hefti et al, 1997; 

Aoki et al, 2000; Molkentin and Dorn, 2001; Bueno and 

Molkentin, 2002), including those involving PKC (Gu and 

Bishop, 1994; Clerk et al, 1996; Goldberg et al, 1997; Ito 

et al, 1997; Sil et al, 1998; Jalili et al, 1999a; Takeishi et 

al, 1999; De Windt et al, 2000; Rohde et al, 2000; Rouet-

Benzineb et al, 2000). However, involvement of DHA in 

the activation of PKC remains controversial (Holian and 

Nelson, 1992; Hrelia et al, 1992; Hardy et al, 1994; 

Giorgione et al, 1995; Goldberg and Zidovetzki, 1997; 

Huang et al, 1997; Mirnikjoo et al, 2001). For this reason, 

we investigated the effect of DHA on PKC activation 

during PE-induced cardiac hypertrophy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 1. Effect of PE and DHA on cell surface area. 

Cardiomyocytes were treated with either ethanol (control), 

serum free media or DHA (5 µM in serum-free conditions) 

for 24 hr and then incubated with/without PE (100 µM) for 48 

hr.  Data are expressed as mean ± SEM for examination of 10 

cells in each group from three separate experiments and were 

analyzed by ANOVA and Tukey’s multiple comparison tests. 

Significant differences within groups are reported. 
***P<0.05. 

 
 

Our results demonstrated that cardiomyocytes undergo 

hypertrophy upon PE exposure (Figure 1). PE induced an 

increase in cell surface area by two fold (P<0.05).  DHA 

itself had no effect on cardiac cell size; however, DHA 

reduced the PE-stimulated increases in cell surface area. 

Results presented in Figure 2 demonstrated that PE 

treatment of cells caused extensive synthesis of sarcomeric 

α-actinin with well-organized z-band structure (as 

indicated by solid arrows). The PE-stimulated cells also 

exhibited expression of atrial natriuretic factor (ANF) (as 

indicated by dotted arrows), in characteristic perinuclear 

rings. Approximately 70-85% of the PE-stimulated cells 

under 20x magnification exhibit these rings. DHA 

treatment itself had no effect on cardiomyocytes; however, 

pretreatment of cells  with DHA  reduced the expression of  
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Figure 2. Effect of PE and DHA on α-actinin and ANF expression. Cardiomyocytes were treated with PE and DHA as 

described in the legend of Figure1. Solid arrows indicate the expression of sarcomeric α-actinin in z-bands (green 

fluorescence) whereas dotted arrows indicate expression of ANF (red fluorescence).  Results are a typical representation of 

five experiments. 
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sarcomeric α-actinin and ANF upon PE stimulation. ANF, 

a universal and specific marker of cardiac hypertrophy 

(Decker et al, 1995; Knowlton et al, 1995), was 

particularly affected. However, its role in the development 

of hypertrophy is not yet clear (Ito et al, 1993; Cao and 

Gardner, 1995; Calderone et al, 1998; Silberbach et al, 

1999). 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 3.  Effect of PE and DHA on PKC activity. 

Cardiomyocytes were treated with PE and DHA as described in 

the legend of Figure1.  The total PKC activity in membrane 

fractions of cardiomyocytes was assayed as described in the 

Material and Methods section.  Results are expressed as the 

mean±SE for three experiments and analyzed by ANOVA and 

Tukey’s multiple comparison tests. Significant differences 

within groups are reported. ***P<0.05. 

 

 

We next evaluated the effect of DHA upon PKC 

enzymatic activity.  Results presented in Figure 3 

indicated that PE increased PKC activity in membrane 

fractions four fold (P<0.05), as determined by 

phosphorylation of exogenous PKC specific peptide. DHA 

had no effect upon basal PKC activity, while DHA 

substantially reduced PE-induced activation of PKC.  

Since this in vitro PKC kinase assay did not distinguish 

between PKC isoenzymes, we next investigated DHA 

effects upon PKCα, the primary PKC isoenzyme in 

cardiac tissue.  Using specific anti-PKCα antibodies, 
results of western analysis indicated that PE treatment 

indeed caused a 2.8-3.2 fold (P<0.05) increased 

accumulation of PKCα in the membrane fractions (Figure 

4). DHA itself had no significant effect on PKCα 

translocation but effectively reduced PE-stimulated 

increases in PKC translocation to membranes to a non-

significant 1.5-2.2 fold. Translocation of PKC to the 

membranes is well recognized as a mechanism for 

activation of classical PKC isozymes including PKCα 

(Parker and Murray-Rust, 2004; Spitaler and Cantrell, 

2004). Next, we evaluated translocation of PKCα using 

immunohistochemical analysis. Results shown in Figure 5 

demonstrated that PKCα is diffusely present throughout 

the cytoplasm in non-treated cells. PE treatment of 

cardiomyocytes caused translocation and accumulation of 

PKCα in membranes as evidenced by the disappearance of 
most of the diffuse staining from cytoplasm and 

appearance of intense staining along the cytoskeletal 

structure.  In DHA treated cells, most of the PKCα 

remained present throughout the cytoplasm. However, 

DHA partially inhibited PE-induced PKCα translocation 

to membrane sites. 

 

 
 

 
 
 

Figure 4.  Effect of PE and DHA on PKCα distribution in 

membranes. Cardiomyocytes were treated with PE and DHA as 

described in the legend of Figure 1. Membranes were isolated 
and separated on 8% SDS-PAGE as described in the Material 

and Methods section.  PKCα was detected by Western blotting 

using anti-PKCα antibodies and the relative distribution of 

PKCα was determined by densitometric analysis.  Results are a 

typical representation of three experiments. 

 

 

 
 

 
 

 

 

 

 
 

 

Figure 5.  Effect of PE and DHA on PKCα translocation in 

cardiomyocytes. Cardiomyocytes were treated with PE and DHA 

as described in the legend of Figure 1. Proteins were detected 

using anti-PKCα specific antibody and visualized with Alexa 

546- (red fluorescence) labelled anti-mouse as described in the 

Material and Methods section.  Cells were examined under a 

fluorescence microscope and images were captured using a 
MagnaFire digital camera (Optronics) for analysis. Results are a 

typical representation of three experiments. 

 

 

Results shown in Figures 3-5 indicated that DHA itself 

had no significant effects upon PKCα translocation and 
activation, but DHA was very effective at reducing PE-

induced PKC translocation to membranes. The 

hypertrophy inhibitory effect of DHA is unique to this 

fatty acid, since we have not observed inhibition of cardiac 

hypertrophy by other long chain fatty acids such as oleic 

acid, linoleic acid, linolenic acid, arachidonic acid, and 

eicosapentaenoic acid (Siddiqui et al, 2004). We have 

found in another study (data not Shown) that feeding diets 

rich in omega-3 fatty acids with equal amounts of DHA 
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and EPA (10-12%) resulted in greater proportion of DHA 

incorporation in cardiac tissues (24%) than that of EPA 

(3%). It appears that a greater proportion of DHA 

accumulation in cardiac tissues may be responsible for 

some of the unique effects of DHA in the cardiovascular 

system. However, our data does not imply that DHA is 

unique in effecting cardiac hypertrophy through PKC 

activation or translocation since these effects were not 

evaluated with different fatty acids. 

 

In this study, we evaluated the effects of DHA upon the 

hypertrophic response induced by the alpha-adrenergic 

agonist, PE. Although other important hypertrophic 

growth factors for the heart (i.e., angiotensin II, 

endothelin) exist, the effect of DHA upon the hypertrophic 

response to these growth factors will require additional 

study.  Similarly, there are also other signaling pathways 

that may contribute to PE-stimulated cardiac hypertrophy.  

Further studies are required to investigate if DHA has any 

effect on other signaling pathways.  Moreover, the 

molecular mode of action by which DHA affects PKC 

activity remains unknown. We hypothesize that DHA 

incorporates into the cell membrane where it alters 

structure and physical properties of the cell membrane. 

These alterations inhibit interaction (translocation) and 

activation of PKC within the cell membrane. The net 

effect is diminished activation of the enzyme. It is also 

possible that DHA inhibits phospholipase C and 

generation of inositol triphosphate and diacylglycerol 

activators of PKC. 

 

CONCLUSIONS 

 

Our studies demonstrate that DHA alone has no significant 

effects upon PKCα translocation and activation. 

Conversely, this fatty acid effectively prevents the 

activation and translocation of PE-induced PKCα. We 

conclude that DHA inhibition of PE-induced activation of 

PKCα contributes to the anti-hypertrophic actions of 

DHA. The results of this in vitro study need to be 

confirmed in vivo. If confirmed, DHA in fish oil may be 

an important dietary agent that modifies the development 

of cardiac hypertrophy. 
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