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Abstract
The increasing morphology of interest in understanding the behaviour of biological neural networks, and the expanding utilization of artificial neural 
networks in different fields and scales, both require a thorough understanding of how technological computing works. However, von Neumann in 
his classic ”First Draft” warned that it would be unsound to use his suggested paradigm to model neural operation, furthermore that using ”too fast” 
processors vitiates his paradigm, which was intended only to describe (the timing relations of) vacuum tubes. Thus, it is worth scrutinizing how the 
present technology solutions of anatomy can be used to mimic biology. Some electronic components anatomy bears a surprising resemblance to 
some biological structures. However, combining them using different principles can result in systems with inferior efficacy. The paper discusses 
how the conventional computing principles, components, and thinking about computing limit mimicking biological systems of morphology and 
anatomy.
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Introduction

For today, the definition of ’xeromorphic computing ‘started to diverge: 
from ”very large scale integration (VLSI)with analogy components that 
mimicked biological neural systems” changed to ”brain-inspired computing for 
machine intelligence” [1] or “a realistic solution whose architecture and circuit 
components resemble to their biological counter-parts” [2] or “implementations 
that are based on biologically-inspired or artificial neural networks in or using 
non-von Neu-mann architectures” [3]. How much resemblance to biology is 
required depends on the authors. Some initial resemblance indeed exists, and 
even some straightforward systems can demonstrate functionality in some 
aspects similar to that of the nervous system. “Successfully addressing these 
challenges of xeromorphic computing will lead to a new class of computers 
and systems architectures” [4] was hoped. However, as noticed by the judges 
of the Gordon Bell Prize, surprisingly, among the winners there have been no 
brain-inspired massively parallel specialized computers” [5]. Despite the vast 
need and investments, the concentrated and coordinated efforts, just because 
of mimicking the biological systems with comp tinging adequately. On one side, 
“the quest to build an electronic computer based on the operational principles 
of biological brains has attracted attention over many years” [6]. On the other 
side, more and more details come to light about the brain’s com-mutational 
operations. As that the operating principles of the large computer systems 
tend to deviate not only from the operating principles of the brain but also 
from those of a single processor, it is worth reopening the discussion on a 
decade-old question ”Do computer engineers have something to contribute 
to the understanding of brain and mind?” [6]. Maybe, and they surely have 
something to contribute to the understanding of computing itself. There is no 
doubt that the brain does computing, the key question is how? As we point 

out in section II, the terminology makes it hard to discuss the terms. Section 
presents that in general large-scale computing systems have enormously high 
energy consumption and low computing efficiency. Section IV discusses the 
primary reasons for the issues and failures the necessity of fair imitation of 
biological objects’ temporal behaviour in computing systems is discussed in 
section V. Neuromorphic computing is a particular type of workload informing 
the computational efficiency of computing systems, as section VI discusses 
it. Section VII draws parallel with classi vs. modern science and classic vs. 
modern computing. Section VIII provides examples, why a neuro morphic 
system is not a simple sum of its components.

Terminology of Neuron Morphic Comput-
ing

In his “First Draft” [7] Von Neumann mentions the need to develop the 
structure, giving consideration to both their design and architecture issues. 
Given that von Neumann discussed computing operations in parallel with neural 
operations, his model is biology-inspired, but because of its timing relations, itis 
not biology-mimicking. After carefully discussing the timing relations of vacuum 
tubes in section 6.3 of his draft, he made some reasonable omissions and 
provided an abstraction this is known as “classic computing paradigm” having a 
clear-cut range of validity. He warned that a technology using “too fast “process 
sorsvitiates that paradigm, and that it would be any how un sound to apply 
that neglect ion to describe operations in the nervous system [8]. “This is the 
first substantial work that clearly separated logic design from implementation 
The computer defined in the ‘First Draft’ was never built, and its architecture 
and design seem now to be forgotten.”[9]The comprehensive review [3] 
analysed the complete amount of three decades of related publications, 
based on frequently used keywords. Given that von Neumann constructed a 
brain-inspired model and defined no architecture, it is hard to interpret even 
the taxonomy that ”Xeromorphic computing has come to refer to a variety of 
brain-inspired computers, devices, and models that contrast the pervasive von 
Neumann computer architecture.” [3] If it is the architecture that his followers 
implemented von Neumann’s brain-inspired model and abstract ion meant 
for the ”vacuum tube interpretation “only, what is its contrast, the definition 
of ”neuro morphic computing? Because of the ”all-in-one” handling and the 
lack of clear definitions, the area seems to be divergent; improper methods 
or proper methods outside their range of validity are used Von Neumann’s 
model distinguished the [payload] processing time and the [non-payload, but 
needed] transport time. Any operation, whether neuromorphic or conventional 
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or analog must comprise these two components. Von Neumann provided 
a perfect model valid for any kind of computing, including xeromorphic one 
Notice that these components mutually block each other: an operation must 
not start until its operands are delivered to the input of the processing unit, 
and its results cannot be delivered until their processing finished. This latter 
point must be carefully checked, especially when using accelerators, recurrent 
relations of computed feedback. Importantly, the transfer time depends both on 
the physical distance of the respective elements in the computing chain and 
on the method chosen to transfer the data [10]; it can only be neglected after 
a meticulous analysis of the corresponding timing relations. The need for also 
using the time in neural spikes was early noticed Activity is assumed to consist 
of neuronal ensembles – spikes clustered in space and time” [11] (emphasis 
in original). However, if the packets are sent through a bus with congestion, 
the information is lost (or distorted) in most cases, especially in large systems. 
Here we attempt to focus on one vital aspect of biology-mimicking technical 
computing systems: how truly they can represent the biological time.

Issues with Large Scale Computing

Given that we can perform a “staggering amount of (1016) synaptic activity 
per second” [12] assuming one hundred machine instructions per synaptic 
activity, we arrive in the xaOps region. It is the needed payload performance, 
rather than nominal performance (orders of magnitude between), for neural 
operation. However, the worst limiting factor is not large number of operations. 
In the bio-inspired models, up to billions of entities are organized into specific 
assemblies. They cooperate via communication, which increases exponentially 
with increasing complexity/number. The communication here means sending 
data and sending/receiving signals, including synchronization The major issue 
is that technology cannot mimic the ”private buses” of biology. To get nearer 
to the biological brain’s computationally and energetically efficient operation, 
we must mimic a completes of biological features. Only a small portion of 
the neurons are working simultaneously in solving the actual task; there is 
a massive number of very simple (’very thin’) process ors rather than a ’fat’ 
processor; only a portion of the functionality and connection are pre-wired, the 
rest is mobile; there is an inherent redundancy, replacing a faulty neuron may 
be possiblevia systematic training The vast computing systems can cope with 
their tasks with growing difficulty. The examples include demonstrative failures 
already known (such as the supercomputers Gyoukouand Aurora’18, or the 
brain simulator SpiNNaker) and many more may follow: such as Aurora’21 
[13], the China mys-tic supercomputers and the EU planned supercomputers 
Also, the present world champion (as of 2020 July) F ugak ustalled [14] at 
some 40% of its planned capacity, and in a half year could increase only 
marginally. As displayed in Figure 1, the efficiency of computers assembled 
from parallelized sequential processors depends both on their parallelization 
efficiency and number of processors. It was predicted: “scalingthus put larger 
machines at an inherent disadvantage”, since “this decay in performance is 
not a fault of the architecture, but is dictated by the limited parallelism” [15]. 
As discussed in detail in [12-16], the efficiency of the parallelization of the 
large systems is essentially defined by the workload they run. The artificial 
intelligence it’s the most disruptive workload from an I/O pattern perspective. 
For orientation see [17] and the estimated efficiency of simulating the brain in 
Figure 1. The performance scaling is strongly nonlinear [16]. When targeting 
neuro morphic features such as “deep learning training”, the issues start to 
manifest at just a couple of dozens of processors [18,19].

Limitations Due to Technical Implemen-
tation

Biology uses purely event-driven (asynchronous) computing, while 
modern electronics uses clock-driven (synchronous) systems. The changing 
technology and the ever-growing need for more computing also increased the 
physical size, both of the processors and the systems targeting high processor 
performance. Synchronizing the operation of elements of computing chain 
that have logical dependence, furthermore that because the finite physical 
size leads to “time skew” in the same signal’s arrival times, it introduces a 

dispersion to the synchronization signal. The dispersion of synchronizing the 
computing operations vastly increases the cycle time, de-creases the utilization 
of all computing units, and enormously increases the power consumption of 
computing [20], and it is one of the primary reasons for the inefficiency of the 
Application Specific Integrated Circuit (ASIC) circuits. Figure 2 shows how 
the merit “dispersion” has changed during the years due to demands against 
computing and the implementation technology. The definition of dispersion 
and its detailed discussion is given by Boahen KA [8]. The red diagram line 
“Proc dispersion” (i.e., the dispersion inside the processor) has grown to a 
value about a hundred times higher than the one at which von Neumann 
justified his “procedure”. The dispersion diagram line, alone vitiates applying 
the classic aradigm to our processors. From the other diagram lines, one can 
see that the technical implementation that the data must be delivered between 
the technology blocks “memory” and “processor”, and make the value of 
”system dispersion” orders of magnitude higher. This feature is mistakenly 
attributed to the consequence of the “von Neumann architecture” as the “von 
Neumann bottleneck”. A case where the classic paradigmis really “unsound” 
given that it neglected the transfer time. How the workload turns this ”technical 

Figure 1. The 2-parameter efficiency surface (in function of parallelization efficiency 
measured by benchmark HPL and number of processing elements) as concluded from 
Amdahl’s Law.

Figure 2. The history of some relative temporal characteristics of processors, in function 
of their year of production. Notice how cramming more transistors in a processor 
changed disadvantageously their temporal characteristics.
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implementation”(stemming from the Single Processor Approach (SPA)) into 
a real bottleneck is illustrated with the case when neural-like communication 
shall be served. The inset in Figure 3 shows a simple xeromorphic use 
case: one input neuron and one output neuron are communicating through 
a hidden layer, comprising only two neurons. Figure 3A mostly shows the 
biological implementation: all neurons are directly wired to their partners, 
i.e., a system of “parallel buses” (the axons) exists. Notice that the operating 
time also comprises two non-payload times: the data input and data output, 
which coincide with the non-payload time of the other communication party. 
The diagram displays the logical and temporal dependencies of the neuronal 
functionality. The payload operation (”the computing”) can only start after the 
data is delivered (by the, from this point of view, non-payload functionality: 
input-side communication), and the output communication can only begin when 
the computing finished. Important that: i/the communication time is an integral 
part of the total execution time, and ii/the ability to communicate is a native 
functionality of the system. IN such a parallel implementation, the performance 
of the system, measured as the resulting total time (processing + transmit-
ting), and scales linearly with increasing both the non-payload communication 
speed and the payload processing speed. The present technical approaches 
assume a similar linearity of the performance dependence of the computing 
systems as “Gustafson’s formulation  gives an illusion that as if N [the number 
of the processors] can increase indefinitely” Gustafson’s ’linear scaling’ 
neglects the communication en-tirely(which is not the case, especially in 
xeromorphic computing). The interplay of the improving parallelization and 
the general hardware (HW) development covered for decades that the scaling 
was used far outside of its range of validity [16]. Figure 3B shows at echnical 
implementation of a high-speed shared bus for communication. To the grid’s 
right, the activity that loads the bus at the given time is shown. A double arrow 
illustrates the communication bandwidth, the length of which is proportional 
to the number of packages the bus can deliver in a given time unit. The high-
speed bus is only very slightly loaded. We assume that the input neuron can 
send its information in a single message to the hidden layer furthermore that 
the processing by the neurons in the hidden layer both starts and ends at 
the same time. However, the neurons must compete for accessing the bus, 
and only one of them can send its message immediately, the other(s) must 
wait until the bus gets released. The neurons at a few picoseconds distance 
from each other must communicate through the shared bus, in the several 
nsec range. As the timing analysis in pointed out the resulting transfer time. 

Depends linearly on the number of “neurons” in the system, and the systems 
spend most of their time waiting for the arbiter. The “high-speed bus” has 
marginal importance in this case: it is only slightly utilized. This effect is so 
strong, that in vast systems a “communicational collapse” follows, when the 
“roofline”  approached. The output neuron can only receive the message 
when the first neuron completed it. Furthermore, the output neuron must first 
acquire the second message from the bus, and the processing can only begin 
after having both input arguments. This constraint results in sequential bus 
delays both during on-payload processing in the hidden layer and the payload 
processing in the output neuron. At this point, one can stick to synchronous 
computing, which increases dispersion to an intolerable level. It leads, however, 
to the need of mitigating the dispersion using methods such as “spikes mare 
dropped if the receiving process is busy over several delivery cycles” The other 
option is to proceed without synchronization (i.e., mixing the synchronous and 
asynchronous operating modes). The HW gates always have an input signal, 
and when started, they perform the operation they were designed for. If the 
correct input signal reached its input, then it works as we expect. Otherwise, 
the output is undefined, as its input is. Adding one more neuron to the layer 
introduces one more delay, which explains why “shallow networks with many 
neurons per layer . . . scale worse than deep networks with less neurons” 
[18] the system sends them at different times in the different layers (and 
even they may have independent buses between the layers), although the 
shared bus persists in limiting the communication The neuromorphic systems 
that need much more communication, making their non-payload to payload 
ratio very wrong. The linear dependence at low nominal performance values 
explains why the initial successes of any new technology, material or method 
in the field, using the classic computing model, can be misleading: in simple 
cases the classic paradigm performs tolerably well thanks to that compared 
to biological neural networks, current neuron/dendrite models are simple, the 
networks small, and learning models appear to be rather basic.

The Importance of Imitating the Timely 
Behaviour

In both biological and electronic systems, both the distance between the 
entities of the network and the signal propagation n speed is finite. Because 
of this, in the physically large-sized systems the ’idle time’ of the processors 

Figure 3. Implementing neuronal communication in different technical approaches. A) The parallel bus, B) and C) the shared serial bus, before and after reaching the communication 
”roofline”.
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defines the final performance a parallelized sequential system can achieve. 
In the conventional computing systems, the ’data dependence ’limits the 
available parallelism: we must compute the data before using it as an argument 
for another computation. Thanks to the ’weak scaling’ this ’communication 
time ‘is neglected. In xeromorphic computing, however, as discussed in con-
section with Figure 3, the transfer time is a vital part of information processing. 
A biological brain must deploy a speed accelerator” to ensure that the control 
signals arrive at the target destination before the arrival of the controlled 
messages, despite that the former derived from a distant part of the brain . 
This aspect is so vital in biology that the brain deploys many cells with the 
associated energy investment to keep the communication speed higher for the 
control signal. To arrive at a less limiting architecture, additional ideas shall be 
borrowed from the biological architectures. Although the “private buses” cannot 
be reproduced technologically, introducing hierarchical buses and organized 
traffic, using computer network-like logical addressing and the “small world 
“nature of communication, more close imitation can be reached. 

The approach uses the following key novel ideas: 

• Implementing directly-wired connections between physically 
neighbouring cells

• Creating a particular hierarchical bus system

• Placing a special communication unit, the (Inter-Core Communication 
Block (ICCB))

Figure 4 shows (purple) between the computer cores mimicking neurons 
(green) creating a specialized ’fat core’ neuron (B) with the extra abilities 
to access the local and far memories (M) and to forward messages via the 
gateway (G) to other similar ’fat core’ neurons (similar gateways can be 
implemented for the inter-processor communication, and higher organizational 
levels). This organization enables both easy sharing of locally important state 
variables, keeps local traffic away from the bus and reduces wiring inside the 
chip. The ICCBs can closely mimic the correct parallel behaviour of biology. The 
resemblance between Figure 4A and in reference underlines the importance of 
making clear distinction between handling ’near’ and ’far’ signals. Furthermore, 
it underlines as well as the necessity of their simultaneous utilization. The 
conduction time in biological systems must be separately maintained in 
biology-mimicking computing systems. Making time-stamps and relying 
on the computer network delivery principles is not sufficient for maintaining 
correct relative timing. The timely behaviour is avital feature of the biology-
mimicking systems and cannot be replaced with the synchronization principles 
of computing. One possible way is to put a “time grid” on the processes 
simulating biology. This requirement results in the neurons continuing their 
calculation periodically from some concerted state. Such a synchronization 
method introduces a” biological clock period” that is a million-fold longer 
than the processor’s clock period. Although this effect drastically reduces the 
achievable computing temporal performance the synchronization principle is 
so common that also the special-purpose xeromorphic chips use it as a built-in 

feature. In their case, the speed of neuronal functionality is hundreds of times 
higher than that of the competing solutions, and the communication principles 
are slightly different (i.e., the non-payload/payload ratio is vastly different), the 
performance-limiting effect of the “quintal nature of computing time “persists 
when used in extensive systems. 

The Role of the Workload on the Comput-
ing Efficiency

As was very early predicted [34] and decades later ex-per mentally 
confirmed [15], the scaling of the parallelized computing is not linear. Even, 
“there comes a point when using more processors actually increases the 
execution time rather than reducing it” [15]. Paper by Keuper J and Preundt 
FJ [12] discusses first/second-order approaches to explain the issue. The first-
order approach explains the experienced saturation and the second-oder the 
predicted decrease. As Keuper J and Preundt FJ [12] discusses, the different 
workloads mainly due to their different communication-to-computation ratio, 
work with different efficiency on the same computer system. The neuromorphic 
operation on conventional architectures shows the same issues [19,20].

Limitations due to the classic computing paradigm 

The careful analysis discovers a remarkable parallel between the proposed 
‘modern computing’ vs. the classic computing and the modern science vs. the 
classic science. The parallel can help accept that what one cannot experience 
in every-day computing can be true when using computing under extreme 
conditions. Using another computing theory is a must, especially when 
targeting xeromorphic computing. In the frames of ”classic computing”, as 
was bitterly admit-ted  “any studies on processes like plasticity learning and 
development exhibited over hours and days of biological time are outside our 
reach”

System is not a simple sum of its component 

One must not conclude from a feature of a component to a similar feature 
of the system: the non-linearity discuses above are especially valid for the 
large-scale computing systems mimicking xeromorphic operation. We mention 
two prominent examples here. One can assume that if the time of the operation 
of a neuron can be shortened, the performance of the whole system gets 
proportionally better. Two distinct options are to use shorter operands (move 
less data and to perform lessbit manipulations) and to mimic the operation of the 
neuron using quick analog signal processing instead of slow digital calculation. 
The so-calledHPL-AIbenchmark used Mixed Precision rather than Double 
Precision operands in benchmarking their supercomputer. The name suggests 
as if in solving Ait asks the supercomputer can show that peak efficiency. We 
expect that when using half-precision (FP16) rather than double precision 
(FP64) operands in the calculations, four times less data are transferred and 
manipulated by the system. The measured power consumption data underpin 
our expectations. However, the computing performance is only three times 
higher than in the case of using 64-bit (FP64) operands. The non-linearity has 
its effect even in this simple case. In the benchmark, the housekeeping activity 
also takes time [16]. Another plausible assumption is that if we use quick analog 
signal processing to replace the slow digital calculation, as proposed in  or 
using different materials/effects the system gets proportionally quicker. Adding 
analog com-opponents to a digital processor, however, has its price. Given that 
the digital processor cannot handle resources outside of its world; one must 
call the Operating System (OS) for help. The required context switching takes 
time in the order of executing 104 instructions which dramatically increases 
the total execution time and makes the non-payload to payload ratio much 
worse. Similarly, it is not reasonable to decrease processing speed if the 
corresponding transfer speed cannot be reduced . Although these cases 
seem to be very different, they share at least the common feature. They change 
not only one parameter they also change the non-payload to payload ratio 
that defines the efficiency. The analysis of their temporal behaviour (including 
their connection to the computing system) limits the utility of any new material/
effect/technology; the detailed discussion.

Figure 4. Subfigure-A shows how to reduce the limiting effect of the SPA, via mimicking 
the communication between local neurons using direct-wired inter-core communication 
and the communication between the farther neurons via using the inter-cluster 
communication bus, in the cluster head, and subfigure-B shows a specialized ’fat core’ 
neuron.
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Conclusion 

The authors have identified some critical bottlenecks in current 
computational systems/neuronal networks rendering the conventional 
computing architectures unadoptable to large (and even medium) sized 
neuromorphic computing. Built with the segregated processor (SPA, wording 
from Amdahl he current systems lack autonomous communication of pro-
censors and have an inefficient method of imitating biological systems; mainly 
their temporal behaviour
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