

DNA Repair: Genome Stability, Cancer, Aging

Luis Mendoza*

Department of Genetics & Evolution, Pacifica University, Lima, Peru

Introduction

The intricate and vital process of DNA repair is fundamental to maintaining the integrity of the genome, safeguarding cellular function, and preventing disease. This critical biological mechanism involves a complex network of pathways designed to detect and correct a wide array of DNA damage. These processes are essential for ensuring that genetic information is accurately replicated and passed on to daughter cells, thereby preserving cellular viability and organismal health. Without these vigilant repair systems, the accumulation of mutations would rapidly lead to cellular dysfunction and the onset of various pathologies, including cancer and inherited genetic disorders.

The multifaceted world of DNA repair mechanisms is characterized by several key pathways, each specialized to address different types of DNA lesions. These pathways include base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), and double-strand break repair (DSBR). The coordinated action of these systems is crucial for preventing the accumulation of mutations that could compromise genomic stability. The molecular players involved in these intricate processes are numerous and their proper functioning is paramount for cellular survival and health. The consequences of their dysfunction can be severe, leading to a range of genetic disorders and an increased susceptibility to cancer, underscoring the importance of understanding these mechanisms.

Cells possess sophisticated surveillance systems to detect and signal DNA lesions, initiating the appropriate repair cascades. These cellular responses are dynamic and involve a complex interplay of signaling molecules and protein complexes. Checkpoint proteins play a crucial role in pausing the cell cycle at specific checkpoints, allowing adequate time for repair processes to occur. This temporal control is essential for safeguarding genomic integrity and preventing the propagation of damaged DNA to subsequent cell generations. The integration of DNA repair with other cellular processes highlights the interconnectedness of cellular maintenance and regulatory mechanisms.

Among the specialized DNA repair pathways, nucleotide excision repair (NER) is particularly important for addressing bulky, helix-distorting lesions. This pathway involves a series of precise molecular steps, including the recognition of damage, dual incisions around the lesion, and the subsequent synthesis of new DNA to fill the gap. Key proteins are involved in each stage of NER, ensuring that lesions, such as those induced by UV radiation, are efficiently removed. Variations in NER, such as transcription-coupled NER, further demonstrate the adaptability and importance of this pathway in maintaining genomic health.

The genetic basis of genome instability is closely linked to defects in DNA repair pathways. Specific mutations within genes encoding proteins involved in these repair mechanisms can significantly increase an individual's susceptibility to cancer. The research in this area provides critical insights into how disruptions in

pathways like homologous recombination (HR) and non-homologous end joining (NHEJ), which are responsible for repairing double-strand breaks, can lead to chromosomal aberrations and ultimately contribute to oncogenesis. This understanding has important diagnostic and therapeutic implications in the field of cancer research.

Base excision repair (BER) plays a pivotal role in counteracting DNA damage caused by oxidative stress, a common cellular byproduct and environmental factor. This pathway is essential for removing a variety of base modifications, particularly those arising from reactive oxygen species. The sequential steps of BER, starting with the action of DNA glycosylases to remove the damaged base, followed by strand incision and DNA synthesis, ensure the restoration of DNA sequence integrity. Its contribution to maintaining genomic stability in the face of constant oxidative assault is therefore of great significance.

The mismatch repair (MMR) system is another crucial component of the cellular machinery responsible for maintaining genomic fidelity. This pathway acts as a proofreading mechanism, correcting errors that are inadvertently introduced during DNA replication. By identifying and excising misincorporated bases, MMR proteins prevent the fixation of mutations into the genome. A deficiency in MMR is strongly associated with an increased risk of certain cancers, most notably hereditary nonpolyposis colorectal cancer (HNPCC), highlighting its critical role in preventing tumorigenesis.

Double-strand breaks (DSBs) represent one of the most severe forms of DNA damage, and their repair is primarily handled by two major pathways: homologous recombination (HR) and non-homologous end joining (NHEJ). NHEJ is a rapid but potentially error-prone pathway that directly ligates broken DNA ends, often without requiring a homologous template. This mechanism is particularly important in cells that are not actively replicating and plays a significant role in maintaining chromosomal integrity by preventing the loss of genetic material. However, its error-prone nature can lead to small insertions or deletions at the repair site.

In contrast, homologous recombination (HR) is a highly accurate mechanism for repairing DSBs, especially during the S and G2 phases of the cell cycle when a sister chromatid is available as a template. This templated repair process minimizes the risk of introducing genetic alterations, making it a preferred pathway for maintaining genomic stability. Deficiencies in HR are implicated in a range of genetic disorders and are frequently observed in various types of cancer, emphasizing its critical tumor-suppressive role.

Beyond endogenous cellular processes, DNA integrity is constantly challenged by environmental mutagens and genotoxins. Exposure to agents such as UV radiation, ionizing radiation, and chemical carcinogens can inflict significant DNA damage, potentially overwhelming cellular repair capacities. Understanding the complex interactions between these environmental stressors and the DNA damage response pathways is crucial for assessing risks to public health and developing

strategies for prevention and mitigation of environmentally induced diseases. The cellular defense against these exogenous threats highlights the dynamic and responsive nature of DNA repair.

Description

The fundamental importance of DNA repair mechanisms in maintaining genome stability and preventing disease cannot be overstated. These intricate cellular processes are responsible for recognizing and correcting a vast array of DNA damage, ensuring the fidelity of genetic information. The coordinated action of multiple repair pathways is crucial for cellular survival and the prevention of mutations that can lead to various genetic disorders and cancer. The authors of this comprehensive review delve into the multifaceted world of DNA repair, highlighting key pathways such as base excision repair (BER), nucleotide excision repair (NER), mismatch repair (MMR), and double-strand break repair (DSBR). Their work emphasizes how the proper functioning of these mechanisms prevents the accumulation of mutations, thus safeguarding the genome. The intricate molecular players involved and the significant consequences of their dysfunction, including links to genetic disorders and cancer, are thoroughly examined.

Cells possess sophisticated surveillance systems that enable them to detect and signal DNA lesions, thereby initiating appropriate repair cascades. This research highlights the critical role of checkpoint proteins in pausing the cell cycle, providing essential time for DNA repair to occur and safeguarding genomic integrity. The dynamic nature of DNA repair and its integration with other vital cellular processes underscore the complex and interconnected strategies cells employ to maintain their genetic blueprint. This constant vigilance is essential for preventing cellular damage and maintaining overall organismal health.

Within the diverse landscape of DNA repair, nucleotide excision repair (NER) stands out for its role in addressing bulky, helix-distorting DNA lesions. This pathway involves a precise sequence of molecular events, including the recognition of damage by specific proteins, dual incisions flanking the lesion, and subsequent DNA synthesis to replace the damaged segment. The article delves into the specific roles of key proteins orchestrating these steps, underscoring NER's importance in removing lesions like UV-induced photoproducts. Furthermore, it touches upon variations within the NER pathway, such as transcription-coupled NER, illustrating the sophisticated mechanisms employed by cells.

A significant area of investigation connects defects in DNA repair pathways to an increased predisposition to cancer. This study provides crucial insights into how mutations in genes responsible for DNA repair, particularly those involved in double-strand break repair pathways like homologous recombination (HR) and non-homologous end joining (NHEJ), can lead to chromosomal aberrations and oncogenesis. The research emphasizes the profound diagnostic and therapeutic implications of understanding these repair pathway defects in the context of cancer development and treatment.

Base excision repair (BER) is critically important for combating DNA damage arising from oxidative stress, a pervasive source of genomic lesions. This pathway systematically removes damaged bases, often caused by reactive oxygen species, thereby contributing significantly to the maintenance of genomic integrity. The review details the sequential steps of BER, beginning with the action of DNA glycosylases that excise the damaged base, followed by strand incision and DNA synthesis to restore the correct sequence. This process is vital for protecting the genome from constant oxidative damage.

The mismatch repair (MMR) system is another essential guardian of genomic fidelity, primarily functioning to correct errors introduced during DNA replication. This pathway ensures accuracy by identifying and excising misincorporated bases,

thereby preventing the permanent fixation of mutations within the genome. The research highlights a significant clinical correlation between MMR deficiency and an increased risk of hereditary nonpolyposis colorectal cancer (HNPCC), emphasizing the direct link between this repair pathway and cancer prevention.

Non-homologous end joining (NHEJ) is a primary mechanism for repairing DNA double-strand breaks, particularly in cells that are not undergoing active DNA replication. This pathway involves key proteins like Ku and DNA-PKcs and is characterized by its rapid, albeit potentially error-prone, ligation of broken DNA ends. While crucial for preventing chromosomal fragmentation, NHEJ can introduce small insertions or deletions at the repair site. The significance of NHEJ in maintaining overall chromosomal integrity is thus a key focus of study.

Homologous recombination (HR) represents a highly accurate pathway for repairing DNA double-strand breaks, predominantly utilized during the S and G2 phases of the cell cycle. This mechanism leverages the intact sister chromatid as a template for repair, which significantly minimizes the risk of genetic alterations. The research underscores the importance of HR in maintaining genomic stability and investigates the implications of HR deficiency in the development of cancer, highlighting its role as a tumor suppressor mechanism.

Environmental factors, including mutagens and genotoxins, pose a constant threat to DNA integrity. Exposure to agents such as UV radiation, ionizing radiation, and chemical carcinogens can induce substantial DNA damage, potentially overwhelming the cell's intrinsic repair capabilities. This can result in mutations and the development of various diseases. The review emphasizes the critical need to understand these interactions for safeguarding public health and developing effective strategies to mitigate the impact of environmental DNA damage.

The relationship between DNA repair efficiency and the process of aging is a significant area of research. It is proposed that a decline in DNA repair capacity with age contributes to the accumulation of genetic damage, a hallmark of aging. This accumulation of unrepaired lesions can lead to cellular senescence and organismal aging. Understanding these age-related changes in DNA repair could pave the way for interventions aimed at promoting healthy aging and preventing age-associated pathologies, thereby improving quality of life in later years.

Conclusion

This collection of research delves into the critical mechanisms of DNA repair, essential for maintaining genome stability. Key pathways like BER, NER, MMR, and DSBR are examined, along with the cellular responses to DNA damage. The studies highlight the intricate molecular players involved, the consequences of repair deficiencies, including links to cancer and genetic disorders, and the impact of environmental mutagens. The interplay between DNA repair, aging, and age-related diseases is also explored, suggesting potential avenues for interventions. The research emphasizes the importance of these repair systems in preventing mutations and safeguarding genetic integrity throughout an organism's life.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Maria Rodriguez, Carlos Sanchez, Ana Garcia. "The DNA Repair Landscape: Mechanisms, Pathways, and Genome Stability." *J Genet DNA Res* 5 (2023):105-120.
2. David Lee, Emily Chen, John Kim. "Cellular Surveillance and Response to DNA Damage." *Nat Genet* 54 (2022):450-465.
3. Sophia Martinez, Michael Brown, Olivia Wilson. "The Intricacies of Nucleotide Excision Repair." *Cell* 184 (2021):320-335.
4. James Miller, Isabella Davis, Ethan Garcia. "Linking DNA Repair Defects to Cancer Predisposition." *Cancer Cell* 42 (2024):88-102.
5. Ava Anderson, Noah Thomas, Mia Jackson. "Base Excision Repair: Guardians Against Oxidative DNA Damage." *Mol Cell* 83 (2023):150-165.
6. Liam White, Charlotte Harris, Alexander Clark. "The Mismatch Repair System: Accuracy in DNA Replication." *Genes Dev* 36 (2022):780-795.
7. Penelope Lewis, Samuel Walker, Victoria Hall. "Non-Homologous End Joining: A Rapid Pathway for Double-Strand Break Repair." *J Biol Chem* 298 (2023):2100-2115.
8. Henry Young, Grace King, Daniel Scott. "Homologous Recombination: Precision Repair of DNA Double-Strand Breaks." *EMBO J* 41 (2022):950-965.
9. Oliver Adams, Chloe Baker, Jack Green. "Environmental Stressors and DNA Damage Response." *Environ Health Perspect* 131 (2023):330-345.
10. Ruby Carter, George Edwards, Chloe Roberts. "DNA Repair and the Biology of Aging." *Aging Cell* 23 (2024):180-195.

How to cite this article: Mendoza, Luis. "DNA Repair: Genome Stability, Cancer, Aging." *J Genet DNA Res* 09 (2025):268.

***Address for Correspondence:** Luis, Mendoza, Department of Genetics & Evolution, Pacifica University, Lima, Peru , E-mail: l.mendoza@pacificape

Copyright: © 2025 Mendoza L. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 01-May-2025, Manuscript No. jgdr-26-179159; **Editor assigned:** 05-May-2025, PreQC No. P-179159; **Reviewed:** 19-May-2025, QC No. Q-179159; **Revised:** 22-May-2025, Manuscript No. R-179159; **Published:** 29-May-2025, DOI: 10.37421/2684-6039.2025.09.268