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Introduction
Cancer is a disease that initiates with mutation of essential 

regulatory genes such as, oncogenes and tumor suppressor genes [1]. 
Successive accumulation of mutations in genes is considered to be 
basic to the process of carcinogenesis [2] (Figure 1). As to how the 
cancer causing mutations arise has been the question at the heart of 
the field ever since.

In the late 1960s, James and Elizabeth Miller proposed a hypothesis 
stating the basic principles of carcinogenesis [3,4]. They proposed 
that the first step in the multi stage phenomenon of tumorigenesis is 
the covalent binding of chemicals to cellular macromolecules, DNA, 
RNA and proteins. These chemicals or species are able to react with 
macromolecules owing to their electrophilicity. Since the publication of 
this hypothesis, researchers have been highly interested in elucidating 
the mechanisms underlying chemical carcinogenesis. Studies in this 
discipline have shown that carcinogenesis by several chemicals involves 
either a direct action of the chemical on cellular DNA or conversion 
of the parent chemical to a reactive form, which can then react with 
cellular DNA to produce permanent changes in the DNA [5].

DNA damage is known to play a potent role in mutagenesis and 
carcinogenesis [6] (Figure 1). Reaction of DNA bases with electrophilic 
agents, oxidising substrates, reactive metabolites or ultraviolet light 
produces covalently modified bases that are termed as DNA adducts 
[7-10]. Most of the research has focused on adducts derived from 
chemicals of exogenous origin such as hydrocarbons, aromatic amines, 
mycotoxins, etc. However, even in DNA of normal cells, several 
categories of endogenous adducts have been detected. Such adducts 
include oxidized bases, alkylated bases, exocyclic base adducts, and 
a range of unidentified adducts referred to as I-compounds [11]. 
Identification of these adducts by various techniques has led to an 
understanding of why and how they can initiate cancer [12,13].

The etiology of most human cancers remains unknown but it 
is presumed that the major carcinogenic risk to humans is posed 
by endogenous carcinogens. DNA mutation is an essential step in 
carcinogenesis and increased levels of DNA lesions have been detected 
in various tumors, implying the role of such damage in the etiology of 
cancer [14]. It is known that oxidatively modified DNA is abundant in 
many human tissues, especially in tumors [15,16].
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Abstract
One of the most intriguing scientific mysteries is the origin of cancer. DNA damage plays a potent role in 

mutagenesis, carcinogenesis and ageing. There has been growing realization in recent years that endogenous 
substrates or metabolites may be an important source of damage caused to cellular DNA. Further, evidence 
indicates that endogenous DNA damage occurs at a high frequency as compared to exogenous damage. Such 
findings have debunked the notion that the genetic material is pristine in the absence of exogenous carcinogens. An 
in-depth knowledge of the types of endogenous DNA damage is essential for understanding the influence of damage 
caused by endogenous substrates on the induction of cancer. Therefore, in this review, we have focused on several 
classes of endogenous metabolites and their putative role in mutagenesis and carcinogenesis from a structural, 
biological and analytical perspective. The mechanisms by which endogenous substrates may contribute to cancer 
pathogenesis have also been discussed with the objective that the implications from the findings summarised 
may pave way for a better understanding of the mechanisms underlying the induction of disease such as cancer. 
These results, complemented by other data, strongly support one of the theories of carcinogenesis according to 
which endogenous agents may have a major contribution in spontaneously induced cancer. It is obvious that if an 
approach could be developed leading to a diminution in endogenous DNA damage, the incidence of diseases such 
as cancer might be significantly reduced.
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Figure 1: Schematic representation of DNA damage and its consequences: 
The genetic material i.e. DNA sustains damage from both exogenous and 
endogenous sources. If the successive accumulation of DNA damage goes 
unrepaired, it can lead to apoptosis, senescence or cancer.
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oxidants under appropriate conditions or microenvironment. Our 
studies provide strengthening evidence for the role of the endogenous 
chemicals as genotoxins in spontaneously induced cancer. 

In this review, we have discussed several classes of endogenous 
metabolites in relation to their putative DNA damaging potentials. 
The findings will hopefully help frame questions about the risks posed 
by endogenous metabolites and encourage further research to answer 
some of these questions. Further, it is hoped that this study will provide 
insight into the contribution of endogenous DNA damage which leads 
to mutagenesis, wherein lies the baseline of human cancer.

Pro-oxidant and antioxidant properties of uric acid
Uric acid (2, 6, 8–trioxopurine) (Figure 3) is formed in mammals as 

an end product of purine metabolism [28]. It is derived exclusively from 
the oxidation of xanthine and hypoxanthine by the enzyme Xanthine 
Oxido Reductase [35]. In the human plasma, uric acid is present in 
saturating concentrations (up to 0.6 mM) [36], making it one of the 
major antioxidants in humans. Numerous studies have shown that 
uric acid is able to scavenge singlet oxygen [37,38] as well as hydroxyl 
radicals [39]. 

Antioxidant potential of uric acid

Over the past 60 million years, a marked increase in life-span has 
occurred in human evolution [40]. It seems evident that the evolution 
of protective mechanisms against oxygen radicals may have been a 
major factor in increasing the life span of humans and decreasing the 
rates of age related cancers [40-46]. In 1982, Ames et al proposed that 
uric acid provides a primary defence against human cancer and it may 
be partly responsible for relatively long life span of humans based upon 
its high serum concentration, its capacity to scavenge singlet oxygen 
and to inhibit lipid peroxidation in humans [47]. Since the publication 
of this hypothesis, numerous reports documenting the role of uric acid 
as an antioxidant were generated in the ensuing years [48].

Uric acid and disease risk

There has been increasing concern that hyperuricemia may have 
a significant role in various disorders such as hypertension [49], acute 
renal injury [50], cardiovascular disease [51-53] and MetS-metabolic 
syndrome [54-56]. Owing to its low solubility, elevated uric acid in 
blood gets deposited in tissues leading to some disease conditions like 

Historically, research into the role of DNA damaging agents has 
focused primarily on toxic chemicals of exogenous origin, attention is 
now being shifted to by-products of endogenous origin [17]. Evidence 
indicates that endogenous DNA damage occurs at a high frequency 
as compared to exogenous damage and the types of damage caused 
as a result of endogenous cellular processes are identical or similar to 
those produced by various exogenous agents [18]. This emphasis on 
the role of endogenous metabolites as DNA damaging agents is due 
to the technological developments that are able to detect adducts of 
endogenous origin in cellular DNA [19-23]. While studying the role of 
exogenous carcinogens in animal models, analogous DNA adducts were 
also found in control groups [24]. Research studies like this triggered 
the search for the physiological substrates that produced these DNA 
adducts and other pathways that lead to endogenous genotoxicity.

There is increasing evidence that considerable DNA damage 
is caused by adducts produced from endogenous substrates that 
arise as a result of normal or aberrant metabolism. For example, 
malondialdehyde which is produced as a result of lipid peroxidation 
and eicosanoid metabolism has been shown to react with cellular DNA 
to form a propanodeoxy-guanosine adduct [25,26]. Further, there has 
been evidence that this adduct exists at significant levels in the DNA 
of rats and humans and is also an efficient mutagen in E.coli [25,26]. 
Thus, there is strong implication that adducts formed by endogenous 
substrates may contribute to the etiology of genetic diseases and therein 
the baseline of human cancer.

Based on the multitude of evidences on the role of endogenous 
metabolites as DNA damaging agents, studies in our laboratory 
have also shown that several classes of endogenous metabolites such 
as L-DOPA [27], Uric acid [28], Serotonin [29], Melanin [30], and 
Bilirubin [31], etc. are capable of causing DNA breakage. We have 
also proposed a probable mechanism for the genotoxicity induced by 
these endogenous substrates (Figure 2). Our studies suggest that these 
metabolites are capable of binding to DNA as well as Cu (II). A ternary 
complex of DNA-Cu (II)-endogenous metabolite may thus be formed 
owing to such binding affinities. These metabolites have also been 
shown to generate harmful reactive oxygen species either alone or in 
the presence of transition metal ions such as Cu (II) which ultimately 
cause cellular DNA breakage. We have earlier proposed that several 
antioxidants, both of plant and animal origin such as uric acid [28], 
tannic acid [32,33] and flavonoids [34] are capable of acting as pro-

Figure 2: The schematic model proposed for the formation of a ternary complex: the redox cycling of endogenous metabolite, DNA and copper ion complex 
leads to generation of reactive oxygen species (ROS) which inflicts breakage in DNA.
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gout or rheumatoid arthritis [28]. Although uric acid is known as a 
potent antioxidant, recent studies have demonstrated that elevated 
serum uric acid is independently and significantly associated with 
excess cancer risk and mortality [57]. There is a relevant correlation of 
hyperuricemia with augmented risk of certain cancers like colorectal, 
breast and prostate and others [58-62]. It has been suggested that its 
pro-inflammatory properties may have an important contribution in 
the pathogenesis of cancer [57]. Furthermore, statistical data suggests 
that elevated serum uric acid is strongly associated with increased 
premature cancer death in both men and women [63-65]. In a study 
involving patients with terminally end stage cancer, high levels of 
serum acid were predictive of reduced survival time of the patients [66]. 
Evidence indicates that there is a dose dependence and time varying 
link of serum uric acid with cancer mortality [67]. Based on extensive 
data, it has been proposed that excess uric acid (intracellular and 
extracellular) contributes to tumorigenesis. According to this model, 
elevated serum uric acid when present extracellularly, stimulates tumor 
cell proliferation and migration and it induces inflammatory stress 
causing transformation, when it enters the cell [57]. Such studies are 
implicative of a more intricate role of uric acid in cancer biology than 
that of a general antioxidant. 

Pro-oxidant effects of uric acid

It is known that uric acid is able to bind Cu (II) [68]. Our studies on 
uric acid have demonstrated that it can cause breakage of calf thymus 
DNA and supercoiled plasmid DNA in the presence of Cu (II) and 
molecular oxygen. We have shown that uric acid generates hydroxyl 
radicals in the presence of Cu (II) and it also causes the reduction 
of Cu (II) to Cu (I) which is an essential intermediate in the DNA 
cleavage reaction. The involvement of oxygen species in the reaction 
was confirmed by the inhibition of DNA breakage in the presence of 
oxygen radical scavengers [28].

Based on the abovementioned studies, we have proposed the 
formation of a ternary complex by the uric acid, DNA and Cu (II) system 
which could damage DNA. There is also a possibility of formation 
of urate anion by the reaction of uric acid with oxygen radicals. The 
urate anion has been shown to inactivate enzyme systems and thus 
may be able to damage DNA [69]. Our results do not detract from the 
established antioxidant role of uric acid in extracellular fluids. Instead, 
our studies support the idea that several antioxidants (in this case, uric 
acid), are able to act as pro-oxidants under appropriate conditions.

DNA reactive activities of bilirubin and its metabolic 
precursor biliverdin

Biliverdin (Figure 4A) and bilirubin (Figure 4B) are heme 
degradation products. Heme is degraded to biliverdin by the action of 
heme oxygenase. Biliverdin is further reduced to bilirubin mediated 
by biliverdin reductase [70]. These bile pigments have been attributed 

with harmful as well as beneficial properties. Both bilirubin and 
biliverdin have been reported to play antioxidant roles in the body 
based on their radical scavenging properties [71]. For example, it has 
been shown that these compounds can prevent superoxide production 
[72], quench singlet oxygen [73], inhibit lipid peroxidation [74] and 
scavenge peroxynitrite [75,76]. 

Biliverdin is considered as a soluble and non-toxic compound [77]. 
Although, some studies have indicated that it can have toxic roles. It has 
been found that biliverdin concentrations are significantly increased in 
hepatic necrosis [78]. Evidence indicates that biliverdin can also cause 
overexpression of some oncogenes in the liver [79]. It has also been 
associated with Bronze Baby syndrome [80].

Normal plasma concentrations of bilirubin range from 5 to 17 µM 
[81] almost all of which is bound to albumin [82] or exists as a conjugate 
with glucuronic acid [83]. Albumin bound bilirubin is considered one 
of the naturally occurring antioxidants of human extracellular fluids 
[68]. It was the pioneering study by [84] which launched the idea 
that endogenous bilirubin is one of the most potent antioxidants in 
the serum. Further studies have demonstrated that bilirubin reduces 
oxidative stress in neurons [85] and cardiomyocytes [86].

It has also been found that bilirubin functions as a physiological 
neuroprotectant [85]. As reported by Hayashi et al., bilirubin also 
exerts anti-inflammatory effects [87]. Contrary to these findings, 
several studies have shown that bilirubin is toxic to cells in vitro 
as well as in vivo [88,89]. Increased levels of bilirubin in plasma are 
known to be related with disease conditions such as jaundice and 
hyperbilirubinemia [83]. Further, it has also been found that elevated 
concentrations of bilirubin (greater than 300uM) may contribute to the 
development of neurological dysfunctions [90] as well as impairment 
of cellular functions in brain [91]. Inhibition of various membrane 
bound enzymes by bilirubin has also been reported [92]. 

Evidence for pro-oxidant activity

In vitro studies in our laboratory have aimed at elucidating the 

Figure 3: The chemical structure of uric acid (2, 6, 8- trioxopurine).

Figure 4: The chemical structures of A) biliverdin and its metabolic derivative 
B) bilirubin.
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mechanism of DNA breakage reaction by these bile pigments. Our 
results have indicated that bilirubin is able to cause strand scission in 
DNA in the presence of Cu (II) via generation of reactive oxygen species 
[31]. Subsequently we compared the antioxidant and prooxidant 
activities of biliverdin and its metabolic derivative bilirubin [71]. Our 
findings imply that bilirubin, as compared to its metabolic precursor 
biliverdin is more efficient as an antioxidant and also as a prooxidant. 
Although there is enough evidence in the literature implicative of the 
toxic effects of these metabolites, the present literature is not sufficient 
to explain whether the elevated levels of these bile pigments are the 
result or cause of the toxicity. 

Role of estrogens and their metabolites as genotoxic 
agents

Naturally occurring estrogens (Estrone E1, Estradiol E2, Estriol 
E3) are a group of steroidal compounds (Figure 5). Although the 
physiological action of estrogens occurs at hormone responsive organs 
(testis, uterus, pituitary), they also exert some action at other organs 
(kidney, liver etc.) as well [93]. Numerous in vitro and in vivo studies 
have demonstrated that estrogens possess antioxidant properties 
[94]. It has been established that all estrogens at their micromolar 
concentrations exert antioxidant action [95-97].

Earlier research categorised estrogens as non genotoxic due to 
the inability of these metabolites to induce gene mutations in classical 
bacterial and mammalian mutation assays [98-100]. Nevertheless, 
with the advancements in sensitive methods to detect adducts and a 
thorough understanding of the estrogen metabolism, there has been 
strengthening evidence in support of estrogen mediated genotoxicity 
[101-103]. Pharmacological levels of estrogens have been shown to 
produce adverse effects such as embryotoxicity, teratogenicity and 
carcinogenicity [104,105]. Studies on animal models have documented 
that estrogens can act as tumor initiators [106,107]. Further, elevated 
concentrations of estrogens have also been found to be associated with 
cancer in humans. 

In 1960s and 1970s, the initial evidence for the DNA binding activity 
of estrogen metabolites was obtained [93]. In the ensuing years, more 
studies started shedding light on the diverse types of genetic insults 
caused by estrogens and their metabolites. It has been reported that the 
estrogens, estrone and estradiol are able to react with DNA as well as 
proteins [108,109]. Although the estrogen hormones are not able to link 
covalently with DNA per se, but their reactive metabolites are known 
to form covalent bonds with nucleotide bases [93]. Catecholestrogens, 
the major metabolites of the estrogens are known to oxidise to yield 
quinones which may form adducts by reacting with DNA. A hypothesis 
holds that these adducts may generate mutations that might initiate 
many human cancers [110]. Stack et al. [111] and Cavalieri et al. [112] 
have shown that various metabolites of estrogens, specifically estrone 
3, 4-quinone are able to form unstable adducts by reacting with DNA 
bases. In an in vivo study involving hamsters, it was found that exposure 
to estrogens for several months resulted in the enhancement of DNA 
adducts in kidney of the hamsters [113-115]. In another experiment, 
co-administration of estrogen with an anti-estrogen failed to affect the 
increase in adduct levels caused by estrogens [116].

Active oxygen radicals are known to be produced by the redox 
cycling of catecholestrogen metabolites [93]. Microsomal enzymes 
such as P450 are capable of catalysing the redox cycling of estrogen 
metabolites and thus generate oxygen radicals [117-119]. In a recent 
study, Seacat et al. [120] have shown that metal ions such as Cu (II) can 
also catalyse the oxidation of catecholestrogens generating hydroxyl 
radicals. The free radicals produced by redox cycling of estrogens 
enzymatically or non-enzymatically can induce DNA damage by 
different mechanisms [93]. For example, Nutter et al [121,122] have 
shown that the free radicals produced by the oxidation of estrogen 
quinones in cells are capable of inducing single strand breaks in DNA. 
Further, the reactive species produced by catecholestrogens have also 
been implicated in causing structural aberrations in the chromosomes 
[93].

Although, the parent estrogen hormones do not possess reducing 
properties, estrogen metabolites such as catecholestrogens are 
capable of reducing metal ions such as Cu2+ to Cu+ or Fe3+ to Fe2+ 
[94]. The reducing capability of catecholestrogens may be attributed 
to their catechol structure which is absent in the parent hormones. 
It can be presumed that the mechanism of the pro-oxidant effect of 
catecholestrogens is based upon their capability of reducing transition 
metal ions such as Cu (II) to Cu (I) ions which has been shown to initiate 
lipid peroxidation via generation of free radicals [123]. Evidence has 
also indicated the pro-oxidant effect of estrogens metabolites in vivo 
[124-126].

Altogether, these studies emphasize the genotoxic effects of 
estrogen which have received little attention in the past. These findings 
are implicative of the possible role of estrogens in the complex process 
of hormone-induced carcinogenesis.

Contribution of neurotransmitters in carcinogenesis
Serotonin (5-hydroxytryptamine) is biochemically derived 

from the amino acid, tryptophan (Figure 6A). It is an important 
neurotransmitter in brain and spinal cord and affects several behaviours 
such as hunger, aggressiveness, sleep, mood and consciousness [127]. 
Studies in our laboratory have demonstrated that serotonin can cause 
strand breakage in DNA in the presence of Cu (II) via an oxidative 
mechanism [29]. We have shown that serotonin catalyses the reduction 
of Cu (II) to Cu (I) and this reaction is accompanied with hydroxyl 
radical formation. In order to elucidate the chemical basis of the DNA 

Figure 5: Chemical structures of natural estrogens: A) Estrone [E1]; B) Estradiol-
17β [E2] and C) Estriol [E3].
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breakage by serotonin, we also compared the efficiency of DNA cleavage 
of serotonin with its structurally related metabolites i.e. tryptophan 
and melatonin [127]. It has been reported that copper ions can bind 
to serotonin as well as its metabolite melatonin [128] (Figure 6B). Our 
studies indicated that only serotonin-Cu (II) complex is efficient in 
degrading DNA as compared to melatonin-Cu (II) or tryptophan-Cu 
(II). Based on our results, we have proposed that the phenolic group 
present in serotonin is important in causing DNA strand cleavage in 
the presence of Cu(II) and that this interaction involves the formation 
of quinone methide [127].

L-DOPA (L-3,4 dihydroxyphenylalanine) (Figure 6C) is formed 
from the hydroxylation of the amino acid, L-tyrosine mediated by 
the enzyme tyrosine hydroxylase. It serves as a metabolic precursor in 
several metabolic reactions such as the synthesis of melanin, dopamine, 
adrenaline and nonadrenaline. The nervous system is extensively rich 
in L-DOPA and its metabolites (dopamine, 3-o-methyl dopa) [129]. 
L-DOPA is prescribed as a drug to Parkinson’s patients for replenishing 
the loss of dopamine in human brain. In 1994, Halliwell and co-workers 
had proposed that L-DOPA and its metabolites can cause extensive 
DNA damage in the nervous system. In the ensuing years, numerous 
in vitro and in vivo studies were reported documenting the toxicity of 
L-DOPA and its metabolites.

Dopamine (Figure 6D) is formed from L-DOPA by the action of 
dopa decarboxylase. It is a chemical neurotransmitter in the central 
nervous system and accounts for 90% of the total catecholamines 
[27]. The dopaminergic system is involved in regulating various 
physiological processes such as emotion, cognition, neuromodulation, 
etc. [130-132]. Evidence has indicated that dopamine is capable of 
interacting with DNA [133]. It has been proposed that the availability 

of redox active catecholamines such as dopamine in the presence of 
copper ions may lead to cytotoxicity in the brain [129]. Further, the 
oxidative metabolism of dopamine and other catecholamines has been 
implicated in the generation of free radicals and quinines [134-136]. 
Numerous studies have documented the toxicity of dopamine and its 
metabolites in relevance to Parkinson’s disease [137-140]. Thus, it is 
a matter of concern that the current drug for Parkinson’s disease i.e. 
L-DOPA may increase the risk of such oxidative damage [141]. It has 
also been reported that dopamine can induce apoptosis in cells and 
thus it is implicated to possess antitumor properties [142,143].

Dopamine combines with acetaldehyde, to yield 1-methyl-6,7-
diydroxy-1,2,3,4 tetra hydroisoquinoline (Salsolinol) [144,145] (Figure 
6E). This metabolite has been identified in rats and human brain tissues 
[146,147]. It has been speculated that salsolinol plays an important role 
as a neuromodulator of catecholaminergic neurotransmission [148]. It 
has been found that the neuromodulator function of salsolinol bears 
resemblance to L-DOPA remarkably [149-151]. Although, convincing 
evidence indicates that salsolinol and its metabolites possess neurotoxic 
properties [148]. (For example, salsolinol and its metabolites have been 
implicated to be involved in the pathogenesis of Parkinson’s disease 
[152]. It has been reported that salsolinol can induce accelerated 
apoptotic cell death in the presence of copper in neuroblastoma cells 
[153]. Evidence indicates that salsolinol can elicit apoptosis, possibly 
via generation of reactive oxygen species [154]. Interestingly, it is 
has been noted that salsolinol may either decrease or increase the 
generation of hydroxyl radicals [148]. Therefore, it has been postulated 
that salsolinol represents a double-faced molecule that can act either as 
a neuroprotector or a neurotoxin. Hypothesis holds that the disbalance 
in the proportion of neuroprotectivity and neurotoxicty of salsolinol 
leads to diseases such as Parkinson’s disease [155].

Melanin is synthesised from L-DOPA via the polymerisation of 
DOPA chrome [156]. This metabolite is known to protect the skin from 
solar carcinogenesis [30]. Although, it has also been found that melanin 
can generate free radicals and also cause oxidative DNA damage [30]. 
Evidence has indicated that melanin on UV irradiation produces base 
modification and strand breaks in whole cells [157,158]. Melanin has 
also been shown to bind to several metal ions such as iron, copper 
and zinc [159]. Studies in our lab have shown that melanin is able to 
damage DNA in the presence of copper ions mediated by ROS [30].

Conclusion
The high prevalence of sporadic cancer evidenced in our 

population cannot be justified on the basis of mutagenic capability 
and concentrations of the exogenous carcinogens present in our 
environment [160]. Thus, it is evident that mutations due to DNA 
damage by endogenous sources must play a significant role in most 
cases of cancer, in addition to exposure to exogenous carcinogens. 
In the past two decades, the discovery of considerable DNA damage 
occurring from endogenous sources [161] has provided the major 
impetus to the field of carcinogenesis research. Subsequently, research 
focused on the damage incurred by endogenous agents on DNA and 
the consequences thereof. Several investigations have documented the 
impact of endogenous background DNA damage on human cancer 
[6,161,162].

The picture emerging from this review reveals that the genome 
is vulnerable to hazardous cellular environment, particularly to the 
incessant flux of reactive products generated by normal or aberrant 
metabolism. These metabolites can induce damage to DNA by a variety 
of mechanisms, as discussed in this review. While such substances 

Figure 6: The structures of some neurotransmitters and related metabolites A) 
L-DOPA B) dopamine C) serotonin D) salsolinol and E) melatonin.
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may not possess the potency of several exogenous carcinogens, it can 
be presumed that lifelong exposure to endogenous toxicants results 
in accretion of cell damage that leads to many disorders including 
cancer [163]. It is conceivable that the cumulative effect of endogenous 
metabolites may be of physiological significance and could contribute 
to etiology of genetic diseases. Taken together, these findings imply a 
major contribution of DNA damage in mutagenesis and carcinogenesis.

We are left to grapple with several questions pertaining to the risk 
contributed by endogenous agents. Is the effect of DNA adduction 
arising from endogenous agents, additive, synergistic or antagonistic 
to that caused by exogenous carcinogens? What are the interactions of 
endogenous metabolites with xenobiotic agents? Also, what are the key 
steps in the carcinogenesis process that are triggered by endogenous 
metabolites? Distinguishing between exogenous and endogenous 
DNA damage is an intricate matter as some exogenous agents also 
occur endogenously and generate same DNA adducts as endogenous 
metabolites. While evaluating the contribution of endogenous 
metabolites in inducing DNA damage, a point worth being taken into 
consideration is that some of these substances are produced from 
more than one source. Unfortunately, due to technical and theoretical 
restrictions in current understandings of cancer origin, answers to such 
questions are presently beyond our grasp. These matters need to be 
addressed before the biological significance of endogenous metabolites 
may be fully appreciated.

It is expected that developments in analytical methodology will 
continue to progress at a swift pace, enabling sensitive ways to detect and 
quantitate endogenous DNA damage. Further, we need to accumulate 
more information on the biological consequences of DNA damage that 
arises due to endogenous processes. Such findings are crucial to the 
development of novel chemopreventive strategies. It is obvious that if 
an approach could be developed leading to a diminution in endogenous 
DNA damage, the incidence of cancer may be significantly reduced.
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