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Abstract
Objective: Identifying the origin of human biological traces detected at crime scenes by comparing DNA profiles to national or international forensic 
databases is often key to provide new orientations to police investigations. However, when unknown profiles are established, investigators can 
benefit from forensic genetics to propose new leads, for example by predicting the physical appearance of individuals. Since blood traces are of 
primary interest for forensic investigators and often lead to the extraction of usable genetic material, in this study, we developed a methodology to 
predict the biological age from blood samples based on the analysis of DNA methylation of human genomic regions.

Methods: We first established a cohort of blood samples obtained from 170 French donors aged from 0 to 101 years old. We analyzed the 
methylation status of 5 age-associated CpG sites using the SNaPshot method, a primer-extension based assay routinely used in the French 
forensic police laboratories. Using a training set of 136 samples, we generated an age-prediction model based on multiple regression analyses of 
DNA methylation data and we tested its predictive performances on a validation set.

Results: The SNaPshot assay was adapted to limiting quantities of genomic DNA relevant for forensic investigations. The DNA methylation levels 
were established for 5 age-related CpG sites in 170 blood samples collected from French male and female donors. We established a statistical 
model optimized for 5 CpG sites that can explain 97% of age variation with a Mean Absolute Error (MAE) of 3.45 years between the estimated 
biological and chronological age of individuals.

Conclusion: We developed an approach to predict the biological age of individuals strictly based on the methylation levels of 5 CpG sites from 
circulating blood samples and that is compatible with routine genetic analyses in French forensic police laboratories.

Keywords: DNA methylation • Bisulfite conversion • SNaPshot • Age prediction • Mathematical model • Chronological and biological age 
comparison • Blood samples
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Introduction
In the early 20th century, Alphonse Bertillon introduced anthropometric 

measurements as a statistically sound approach for forensic identification 
in criminal investigations in France [1]. More than a century later, criminal 
investigations heavily rely on molecular biology and genetics to establish 
DNA profiles, based on short tandem repeat sequences analysis, that can 
be compared to national or international forensic DNA databases in order to 
identify individuals. When established DNA profiles remain unidentified, an 
alternative genetic approach can be proposed to orientate investigation leads, 
narrow down potential suspects and help reveal the truth. Indeed, during 
the last decade, a broad base of forensic genetics studies have focused on 
predicting phenotypic traits such as gender, skin, eye and hair colour as well 
as biogeographic origins of individuals, and, to a lower extent predisposition 

to baldness and freckles [2-8]. While these phenotypic features were mainly 
inferred from DNA Polymorphic Nucleotide Region (SNP) analyses [4-6,9,10], 
predictions of additional features such as the biological age have also emerged 
from epigenetic studies of DNA methylation [11-16]. DNA methylation is 
defined as the transfer of a methyl group onto the C5 position of cytosines 
primarily located at CpG sites throughout the genome. DNA methylation marks 
undergo highly dynamic patterns to control gene expression, and contribute to 
define cell and tissue identity as robustly stable marks throughout individual 
life [12]. Interestingly, several studies have revealed that a number of CpG 
site subsets rather display variable DNA methylation levels, either gain or loss, 
during individual aging in humans [17]. These observations at the genomic 
scale led to the concept of epigenetic clock [12]. The correlation between DNA 
methylation levels and the chronological age, based on birth declarations, has 
been driving a large research effort to predict the biological age of individuals 
from age-related changes in the epigenetic landscape and to evaluate the 
impact of environmental factors or diseases on human life span [18]. Being 
capable of predicting the age of an individual also has obvious applications 
in the forensic field for the analysis of unknown DNA traces collected at crime 
scenes to facilitate the identification of victims or potential responsibilities.

In the recent years, several studies have proposed age prediction models 
based on the analysis of DNA methylation changes for different tissues of 
primary interest in forensic investigations: semen [19], blood [20-22], saliva 
[22-24], or hard tissues such as teeth and bones [22,25,26]. Concomitantly, 
different methodologies have been developed to either analyze a limited 
number of CpG sites (SNaPshot, EpiTYPER, Pyrosequencing) or to perform 
genome-wide studies (massive parallel sequencing) [2,20,22,24,27-30]. As a 

mailto:mathieu.gabut@interieur.gouv.fr
mailto:mathieu.gabut@interieur.gouv.fr
mailto:snps-lps69-dip-recherche-developpement@interieur.gouv.fr


J Forensic Res, Volume 15:02, 2024Ropert C, et al.

Page 2 of 7

forensic laboratory, our priority was to select an efficient and cost-effective 
approach to analyze blood samples that could directly be implemented to 
the laboratory routine analyses: the SNaPshot assay. Previous studies have 
reported the development of age-prediction models from blood samples, 
combining DNA methylation level quantifications by SNaPshot of 5 CpG sites 
localized in the vicinity of the ELOVL2, FHL2, KLF14, C1orf132 and TRIM59 
genes, and the use of linear regression models for age predictions [20,24,29-
31] (Supplemental Figure 1). These 5 CpG sites were also studied in the 
context of saliva and buccal swabs and referred to as robust multi-tissue age 
predictive epigenetic marks [23,32]. In the present study, our main goal was 
to adapt the SNaPshot assay and statistical age-prediction models to sets 
of blood samples obtained from the French population. We first challenged 
the SNaPshot approach using the 5 CpG sites mentioned above for low input 
DNA samples, to cope with the limiting genomic DNA amounts collected from 
crime scenes. We analyzed a population of 136 individuals, with equal gender 
representation and homogeneous age distribution between new borns and 
centenarians, and we established an optimized age prediction model based 
on DNA methylation level detection of 5 CpG sites (Supplemental Figure 1).

Materials and Methods
Sample collection 

This study was performed in accordance with the recommendations of the 
French National Ethics Committee legal framework (Comité Consultatif National 
d’Ethique pour les Sciences de la Vie et de la Santé). All adult participants and 
parents of minors, under the legal age of 18, signed a written informed consent 
for research purposes of collected samples. Peripheral blood samples were 
obtained from 170 living and anonymized French donors, including 78 males, 
88 females and 4 donors who did not declare their gender on the consent 
forms. The donors were evenly distributed among 6 age classes: 0-14 years, 
15-29 years, 30-44 years, 45-59 years, 60-74 years and over 75 years. From 
these samples, 144 (70 females, 70 males and 4 undetermined genders) were 
used to establish a training population, and the remaining 26 (18 females 
and 8 males) a validation population. Blood samples were collected and 
complemented with EDTA and stored at 4 ℃ until processing or on cotton 
swabs and processed promptly after collection following standard operating 
procedures.

DNA extraction and quantification
Genomic DNA was extracted for each blood sample using the Nucleospin™ 

Plasma XS Kit (Macherey Nagel, Düren, Germany) following manufacturer’s 
instructions. Extracted DNA samples were eluted in 50 μL of 5 mM Tris-HCl 
and quantified using the Quantifiler™ Trio DNA Quantification Kit (Applied 
Biosystems, Foster City, CA, USA) following the manufacturer's protocol.

Bisulfite conversion
Genomic DNA samples were resuspended in 20 μl and subjected 

to bisulfite conversion using the Premium Bisulfite kit (Diagenode, Liège, 
Belgium) following manufacturer’s instructions. The converted DNA samples 
were eluted in 15 μL of elution buffer from the kit. 

To determine the sensitivity and ruggedness of the bisulfite conversion, an 

assay was conducted on six different amounts of input DNA (1 ng, 5 ng, 10 ng, 
20 ng, 50 ng and 100 ng), obtained by serial dilution of one sample of genomic 
DNA, and analyzed in triplicates.

To ensure the consistency and reliability of the results for both the training 
and validation samples, 20 ng of genomic DNA were used to perform the 
bisulfite conversion and all samples were analyzed in duplicate. A negative 
control (no DNA) was used to detect a potential contamination. Two additional 
controls were also included to validate each SNaPshot assay. First, a blood 
sample with a known profile was systematically included to assess the 
variability of results between series of SNaPshot analyses. Secondly, a control 
composed of unconverted and unmethylated human genomic DNA (Epitect 
Control DNA Set, Qiagen, Hilden, Germany) was included to assess the 
bisulfite conversion efficiency.

PCR, multiplex SNaPshot and capillary electrophoresis
The Polymerase Chain Reaction (PCR) steps, multiplex SNaPshot and 

capillary electrophoresis were carried out under the same conditions as 
previously described [33,34]. Briefly, five CpG sites, respectively located in 
the vicinity of the genes ELOVL2, FHL2, KLF14, C1orf132, and TRIM59 were 
considered in our study. The characteristics of the selected CpG sites are 
described in Table S1. Converted DNA samples were submitted to multiplex 
PCR amplification in 20 µL assays containing 2 µL of converted DNA, 4 µL of 
5x primers mix (concentrations specified (Table S1), 11.6 µL of pure H2O, 2 
µL of 10X Gold ST*R Buffer (Promega Corporation, Madison, WI, U.S.A), and 
0.4 µL of AmpliTaq Gold® polymerase (Applied Biosystems, Foster City, CA, 
USA). The PCR amplification program began with an initial denaturation at 95 
℃ for 11 min, followed by 34 cycles encompassing denaturation at 94 ℃ for 20 
s, annealing at 56 ℃ for 1 min, and extension at 72 ℃ for 30 s. Subsequently, 
the PCR amplification included a final extension step at 72 ℃ for 7 min. 

Next, 2 µL of ExoSAP-ITTM (Applied Biosystems, Foster City, CA, USA) 
were added to 10 µL of each PCR-amplified products, and the digestion was 
conducted 45 min at 37 ℃ followed by 15 min at 80 ℃. 

The Single Base Extension (SBE) step was performed using the 
SNaPshot™ multiplex kit (Applied Biosystems, Foster City, CA, USA). 10 µL 
SBE reactions containing 2 µL of ExoSAP™-treated amplified DNA, 1 µL of a 
10X primers mix (concentrations specified in Table S1), 2 µL of 5X Sequencing 
Buffer BigDye™ termination (Applied Biosystems, Foster City, CA, USA), 1 µL 
of SNaPshot reaction mix (Applied Biosystems, Foster City, CA, USA), and 4 
µL of water were amplified by a PCR sequencing program consisting in 10 s at 
96 ℃, 5 s at 50 ℃ and 30 s at 60 ℃ for 25 cycles.

A final treatment was conducted by adding 1 µL of Shrimp Alkaline 
Phosphatase (Applied Biosystems, Foster City, CA, USA) to each sample, and 
incubating the resulting mixes for 45 min at 37 ℃ followed by 15 min at 8 ℃.

The resulting digested SBE products were analyzed using the 3500 xL 
Genetic Analyzer (Applied Biosystems, Foster City, CA, USA). The methylation 
rates (0 to 1) at individual CpG sites were determined using the GeneMapper™ 
Software (version 5) (Applied Biosystems, Foster City, CA, USA). Briefly, we 
quantified the nucleotide intensities defined by the peak height of the converted 
and unconverted nucleotides (C or G) and we calculated a ratio of methylated 
intensities over total peak intensities, as described by Jung SE, et al. [24].

DNA methylation linearity assay
To assess the linearity of DNA methylation detection by the SNaPshot 

assay for 20 ng of DNA input, completely methylated or completely 
unmethylated bisulfite converted control DNA samples (EpiTect PCR 
Control DNA, Qiagen, Hilden, Germany) were mixed to create nine samples 
with increasing methylation percentages: 0%, 5%, 10%, 25%, 50%, 75%, 
90%, 95%, and 100%. These samples were then analyzed in triplicates as 
previously described, and the measured methylation levels were compared to 
the expected ratios for each mix.

Data analysis and age prediction models
Independent analyses were conducted for both the training and validation 

blood sample sets. Data processing was performed using LibreOffice Calc. 
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Figure 1. Individual and gender distribution of 144 blood donors across 6 age-classes 
(n=144). Females, males and undefined genders are indicated in yellow, blue and grey, 
respectively.
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(version 7.5.7.1.M1). Statistical analyses were carried out using R (version 
4.2.1) and RStudio (version 2023.03.0+386). To predict the biological age 
of each individual based on the DNA methylation levels of CpG sites, simple 
and multiple linear regression models were created and the Mean Absolute 
Error (MAE), the Root Mean Square Error (RMSE), and the Akaike Information 
Criterion (AIC) were calculated. The coefficient of determination (R²) were 
calculated to define the correlation between the chronological and predicted 
ages. For the training sample set, prediction errors were analyzed in 15-years 
age classes.

Results

SNaPshot method validation for low input DNA samples
In the recent years, several studies have described the development, for 

forensic applications, of DNA methylation-based age prediction models from 
blood samples using the SNaPshot assay (Suppl. Figure 1). Our goal was 
to propose a methodology to predict the age of unidentified individuals from 
blood traces discovered at crime scenes, and that was directly compatible with 
the routine analyses performed in the French police forensic laboratories. To 
this end, we first re-evaluated the multiplex methylation assay developed by 
Jung SE, et al. [24] using multi-tissue age methylation CpG sites identified 
in the vicinity of the ELOVL2, FHL2, KLF14, C1orf132 and TRIM59 genes 
(Suppl. Table 1). We verified the linearity of detection of DNA methylation 
levels, individually for each CpG site, from already purified and bisulfite 
converted control unmethylated or methylated genomic DNA samples (Suppl. 
Figure 2A). Accordingly, performing the SNaPshot assay with DNA sample 
mixes containing increasing proportions of methylated DNA, ranging from 0 
to 100%, revealed a high degree of correlation between the measured and 
expected methylation levels for the ELOVL2 (R2=0.95), FHL2 (R2=0.98), 
KLF14 (R2=0.97), C1orf132 (R2=0.99) and TRIM59 (R2=0.96) CpG sites 
(Suppl. Figure 2A).

Since DNA samples collected from crime scenes are often available in 
limiting amounts, we next assessed the reliability of the bisulfite conversion 
coupled to the SNaPshot assay for low input genomic DNA samples. Genomic 
DNA was extracted from a peripherical blood sample and the initial bisulfite 
conversion was performed on increasing amounts of DNA ranging from 1 

ng to 100 ng to detect KFL14, C1orf132, ELOVL2, FHL2 and TRIM59 CpGs 
simultaneously in a multiplex approach (Suppl. Figure 2B). DNA methylation 
levels measured were consistent with previous studies [20,24,29]. While the 
KFL14 and C1orf132 CpGs displayed low (<10%) and high (>70%) methylation 
levels, respectively, the ELOVL2, FHL2 and TRIM59 CpGs were associated 
to intermediate (35-40%) methylation levels for the blood sample analyzed. 
This analysis revealed a significantly high variability of the measured DNA 
methylation levels for the lowest DNA input samples (1 ng, 5 ng and 10 ng) 
(Suppl. Figure 2B), consistent with previous observations [35]. Interestingly, 
the methylation values for the 5 CpG sites were however highly consistent 
when using 20 ng, 50 ng and 100 ng of input DNA for the bisulfite conversion 
step, with standard deviations ranging from 1% to 2.4%. Therefore, in order 
to cope with the limiting availability of DNA traces collected in forensic cases 
while ensuring a highly reproducible detection of DNA methylation for multiple 
CpG sites, 20 ng of genomic DNA was defined as standard input to perform the 
bisulfite conversion and multiplex SNaPshot methylation assays in this study.

Establishing a training set of blood samples
The methylation levels of the CpGs in the genes ELOVL2, FHL2, KLF14, 

C1orf132 and TRIM59 were analyzed in 144 out of the 170 peripheral 
blood samples collected from French individuals between 0 and 101 years 
old (Figure 1). The blood donors included 4 undeclared genders, 70 female 
and 70 male participants evenly distributed across 6 age classes (Figure 1). 
Following genomic DNA extraction and bisulfite conversion of each sample, 
the methylation levels of the 5 CpGs were simultaneously measured using 
the SNaPshot assay, as previously described [24]. As expected, all 5 CpG 
sites showed age-dependant changes in peak distribution for methylated and 
non-methylated nucleotides on the electrophoregrams (Suppl. Figure 3). The 
DNA methylation rates of individual CpGs were inferred from the average 
peak intensity measured in duplicates for each sample. The distribution of 
methylation values for each CpG site was then analyzed and 8 outlier samples 
were excluded based on Bonferroni corrected p-values exceeding 0.05. For 
the remaining 136 samples, changes in DNA methylation rates for the 5 CpG 
sites were highly correlated with the chronological age of the donors (Figure 
2A). The strongest correlations were observed for the CpG sites in ELOVL2 
(R2 = 0.92), FHL2 (R2 = 0.87), C1orf132 (R2 = 0.84), TRIM59 (R2 = 0.84), while 
the lowest correlation was observed for the KLF14 CpG site (R2 = 0.66). These 
results are consistent with previous studies of age determination based on 

Ropert et al. Figure 2 
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Figure 2. A. Scatter plots representing the correlation between the chronological age and DNA methylation levels at each of the 5 CpG sites analyzed in the ELOVL2, FHL2, KLF14, 
C1orf132 and TRIM59 genes, for a training set composed of 136 blood samples from individuals aged from 0 to 101 years. The lines defining the trend curves and the coefficient of 
determination (R2) values are indicated in each graph. B. Box plot representing the distribution of DNA methylation levels for each CpG site in males (blue) and females (yellow) from 
the training set. The edges of boxes represent the first and the third quartiles respectively, the line within each box represents the median, and the whisker extends represent maximum 
and minimum values. For each CpG site, the exact p-values of student’s t-tests are indicated.
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epigenetic DNA modifications in human blood samples [20,24,29,30]. Since 
the gender distribution is relatively homogeneous across the different age-
classes of our sample set (Figure 1), we next confirmed that the distribution of 
the DNA methylation levels measured was not significantly different between 
females and males for each of the 5 CpG sites (p-values between 0.62 and 
0.86, Figure 2B). In conclusion, we established a training set of 136 blood 
samples, obtained from 66 females, 66 males and 4 donors of undetermined 
gender, that can be used to model the French population to assess age-
predictive statistical methods (Figure 2).

Development of an age prediction model for blood samples 
of the French population

Next, we analyzed the predictive potential of each CpG site based on 
simple linear regression and polynomial regression models (Table 1). Although, 
a strong correlation was observed between DNA methylation-based predicted 
ages and chronological ages for all of these models (with R2: 0.81-0.91), their 
predictive capacities proved to be rather limited with MAE values comprised 
between 6.18 and 9.05 years, and high AIC values indicative of high prediction 
error rates (Table 1). To improve the age-predictive capacities for forensic 
applications, multiple linear regression models including simultaneously the 
5 CpG sites as well as several data transformation methods were considered. 
After comparing multiple modelling methods, an optimized Age Prediction 
Model (APM) was defined with the following formula:

Predicted age (years) = 55.2403 + 66.0422 × (% ELOVL2 CpG 
methylation) + 29.1731 × (% FHL2 CpG methylation) + 16.4241 × log(% KLF14 
CpG methylation) + 1.6526 × log2(% KLF14 CpG methylation) - 25.8812 × (% 
C1orf132 methylation) + 18.9406 × (% TRIM59 CpG methylation) (Table 1).

Using this optimized APM, the biological age of the 136 donors was 
predicted and compared to their declared chronological age (Figure 3). This 
APM based on 5 CpGs explained 97% of the total variance observed in the 
training set (R2=0.97), and its performances were defined with the following 
metrics: a MAE: ± 3.45 years, a RMSE: ± 4.79 and an AIC of 828. To evaluate 
the accuracy of the APM predictions, 1000 partial subsets of 43 individuals 
were randomly generated from the training set. This approach revealed that 
the model could predict the age of an individual ± 5 years with an accuracy 
of 75% (Table 2), strictly based on the DNA methylation levels of 5 CpG sites 
(Table 2 and Figure 3).

Validation of the age prediction model for blood samples
To validate the established APM, an independent validation set composed 

of the remaining 26 blood samples was analyzed with the SNaPshot approach, 
similarly to the training sample set. Strong correlations were once again 
observed between the DNA methylation levels for each of the 5 CpG sites and 
the chronological age of donors (Figure 4A). Moreover, when applied to the 
validation set, the APM confirmed a highly significant correlation between the 
predicted biological and chronological ages with a coefficient of determination 
of 0.88 (Figure 4B), a MAE of ± 4.49 years and an RMSE of ± 7.17 (Table 2). 
When combining the training and validation dataset, the APM demonstrated 

improved accuracy of age prediction (R2: 0.96, MAE: ± 3.64 and RMSE: ± 
5.26) compared to the validation dataset alone (Table 2 and Figure 4).

When analyzing the distribution of the model prediction errors between the 
chronological and predicted biological ages for the entire 136 individuals of the 
training set, we noticed that the error range increased along with the age of the 
donors (Figure 5A). Similar conclusions were described in previously reported 
studies on blood samples [29,30,35]. Indeed, the median age prediction error 
was particularly increased for individuals older than 60 years old (Figure 5B). 
While the APM predictions were quite accurate for the youngest individuals of 
the training set (0 to 29 years old), we observed a significantly higher dispersion 
of predicted age error values for volunteers older than 40 years old (Figure 5).

Discussion
The SNaPshot approach has already been described in the past 

decade to study the relationship between DNA epigenetic modifications 
(5mC methylation) and chronological ages in blood samples of Korean [24], 
Portuguese [30], Polish [20], and Italian [29] and Turkish [31] populations, 
and to propose age-prediction models. Differences of DNA methylation 
profiles have been reported for specific CpG sites based on the ancestry 
or biogeographic origin of individuals between Japanese and Germans 
populations [36] and between Middle East and Central European populations 
[37]. Consistently, several studies have investigated the potential impact of 
biogeographic ancestry on DNA methylation based age predictions [36-39]. 
Altogether, these studies advocate for the development of age-prediction 
models adapted to the population of interest and to the methodology used. 
Therefore, in this study, we applied for the first time the SNaPshot approach 
to study the relationship between DNA methylation and chronological ages in 
the French population, in the context of a forensic laboratory. Previous studies 
investigating the importance of DNA methylation changes for age prediction 
from blood samples relied on 100 ng [31], 40-200 ng [24], 200-400 ng [30], 400 
ng [29] and 2 μg [20] of input DNA for bisulfite conversion. However, forensic 
investigations often depend on limited or even rare biological material collected 
from crime scenes, therefore impacting the number and type of molecular and 
genetic analyses that can be performed in comparisons with studies conducted 
in the frame of fundamental research laboratories. Along this line, our objective 
was to perform bisulfite conversion coupled to SNaPshot assays from scarce 
DNA input samples. Our results demonstrate that this methodology can be 
applied with high reproductibility for as little as 20 ng of genomic DNA, a 
quantity we decided to use as a standard input for this study to cope with 
limitations of forensic studies. Interestingly, the results obtained for DNA 
methylation detection and age prediction accuracy are quite comparable 
with previous studies performed from significantly larger DNA input samples, 
therefore suggesting that this limit may actually be surpassed in the future. 
Accordingly, our data also strongly suggest these levels could be lowered 
to 5 ng of input DNA (Suppl. Figure 2B). Additional experiments should be 
performed on a wider sample cohort and by increasing the number of technical 
replicates per sample to confirm this hypothesis and therefore increase the 

Table 1. Correlation analysis between predicted and chronological ages by single linear regression models for the training set (n=136). R2: Coefficient of Determination, MAE: Mean 
Absolute Prediction Error, RMSE: Root-Mean-Square Error, AIC: Akaike Information Criteria (estimator of prediction error).

CpG associated genes R2 MAE (years) RMSE AIC Correct predictions ± 5 years Age predictive models
ELOVL2 0,91 6,18 8,24 1008 54 % Simple linear regression

FHL2 0,85 7,73 10,57 1083 46 % 3d order polynomial regression
KLF14 0,81 9,05 12,01 1127 36 % 3d order polynomial regression

C1orf132 0,87 8,15 10,06 1082 40 % 2d order polynomial regression
TRIM59 0,86 7,71 10,36 1082 43 % 2d order polynomial regression

Table 2. Correlation analysis between predicted and chronological ages by the multiple regression model (APM) for the different blood sample sets. R2: coefficient of determination, 
MAE: mean absolute prediction error, RMSE: root-mean-square error, AIC: Akaike information criteria (estimator of prediction error), n.a.: not applicable.

R2 MAE (years) RMSE AIC Correct predictions ± 5 years
Training set 0,97 3,45 4,79 828 75 %

Validation set 0,88 4,49 7,17 n.a. 62 %
Combined 0,96 3,64 5,26 n.a. 73%
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Figure 3. Scatter plot representing the correlation between the chronological age and the age predicted by a multiple regression model (APM) trained on the methylation levels 
detected at ELOVL2, FHL2, KLF14, C1orf132, and TRIM59 CpG sites for blood samples from new born to 101 years old individuals (n=136). Females, males and undefined individuals 
are represented by yellow, blue and grey squares, respectively. The line and R2 value indicate the trend curve and the coefficient of determination, respectively.
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Figure 4. A. Scatter plots representing the correlation between the chronological age and DNA methylation levels at each of the 5 CpG sites analyzed in the ELOVL2, FHL2, KLF14, 
C1orf132 and TRIM59 genes, for a validation set composed of blood samples from individuals aged from 2 to 88 years (n=26). The lines defining the trend curves and the coefficient of 
determination (R2) values are indicated in each graph. B. Scatter plot representing the correlation between chronological and predicted biological ages inferred from the age prediction 
model (APM) for the validation set of blood samples from French individuals (n=26). The line indicates the expected theoretical age for each chronological age.

scope of criminal investigations that could benefit from DNA methylation based 
age-prediction analyses in the future in France.

Similarly to published studies [20,24,29-31,40], we observed consistent 
modifications of DNA methylation levels of 5 previously described CpG sites 
in blood samples depending on the chronological ages of donors. Indeed, 
ELOVL2, FHL2, KFL14 and TRIM59 CpG sites tend to become more 
methylated as age increases while the methylation levels of the C1orf132 site 
were inversely correlated to age [20,24,29,30,40]. In addition, as previously 
described in blood samples obtained from different Asian or European 
populations, predicted biological age based on DNA methylation levels 
and chronological age tend to display higher correlations for the youngest 
individuals and increased error rates for individuals older than 45 [20,30,35].

When applied to the validation sample set, the APM displayed significant 
yet lower is correlations (R2 = 0.88 vs. 0.97) between the biological and 
predicted ages, increased MAE (4.49 vs. 3.45 years) and RMSE (7.17 vs. 

5.26) values and reduced 5-years prediction accuracy compared to the training 
set (62% vs. 75%) (Table 2). This observation is in line with the conclusions 
related by numerous studies using different APM and sample sets [20,24,29-
31,40]. Yet, it likely also results from a more restricted number of samples in 
the validation set (n= 26) compared to the training set (n= 136). Increasing 
the number of blood samples analyzed to validate APM should therefore be 
considered in future studies.

A current limitation to age prediction from DNA methylation analysis 
remains the representativeness of the training populations for mathematical 
models, including the age and gender distributions, the total number of samples 
analyzed, as well as anonymized information relative to the health status of 
each person implicated in these studies. With these parameters taken into 
consideration, we established a training cohort that included 136 participants 
and covering a large age-distribution from new born to 101 years old, with a 
rather similar representativeness of the different age classes. In comparison, 
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except for the Dias HC, et al. report (59 individuals aged 1-94) [30], previous 
studies focused on more limited age distributions, including 18-65 years [29], 
18-74 years [24], 20-83 [31] or 2-75 years [20]. While our study covers a broad 
age distribution with equal gender representation, one limitation remains the 
total number of individuals analyzed to train and validate the age prediction 
model (APM). Increased numbers of DNA methylation measurements should 
be considered in future studies to support more robust biological age prediction 
models, both by increasing the number of participants and by increasing the 
number of CpG sites analyzed [2,22]. Additional studies are also needed to 
establish whether a single panel of age-related CpG sites should be considered 
for these models, or whether two or more panels should be used to predict 
the biological age from different age classes. Different CpG loci in the vicinity 
of genes of interest can undergo multiple epigenetic modifications: e.g. 7, 10 
and 4 distinct cytosines have been shown to be methylated in the vicinity of 
ELOVL2, FHL2 and KLF14 genes, respectively. Taking this complexity and 
heterogeneity into consideration should also help building more reliable age-
predictive models [2,22,28,41]. In addition, different types of models such as 
quantile regression or constitutional neural networks should be considered in 
the future to analyze the relationship between DNA methylation and age, as a 
non-linear relationship [35,40-42].

Conclusion
In conclusion, we established a methodology to predict the biological age 

of individuals from the French population based on a DNA methylation analysis 
method compatible with forensic laboratory routines (MAE= 3.64 years with a 
5-years prediction rate of 73%). Although criminal investigations by the French 
police services could already benefit from this biological age prediction model, 
we anticipate that this reliable methodology should be further improved in a 
near future prior to adapting it to the French police forensic laboratories. Indeed, 
defining additional phenotypic features describing unidentified individuals, 
such as age prediction, remains an interesting perspective and should rely 
on additional valuable age-associated CpG sites, on more robust statistical 
models coping for the intrinsic variability of DNA methylation measurements 
within a complex biological population, or on age-category specific APM to 
provide the most accurate predictions to support strong investigation leads and 
help reveal the truth in a near future.
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