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Introduction
A finite graph G is called divisor graph if there is a finite set of 

positive integers {x1,x2,...,xn} such that V (G)={x1,x2,...,xn} and {xi,xj}∈ 
E(G) if xi/xj or xj/xi.

It is known that bipartite graphs are divisor graphs but what 
about their complements? Are they all divisor graphs? The answer is 
no. we will study some special cases of bipartite graphs that have their 
complements divisor graphs like paths and caterpillars, while other 
types like some trees are not.

We know that every tree is a divisor graph [1]. The question that 
arises here, is the complement of a tree is also a divisor graph?

Characterization of block graphs that are divisor graphs are given [1].

Definitions in terms of transmitter, receiver and transitive vertices 
of a divisor orientation of a graph G are given [2].

The characterization of powers of paths and powers of cycles 
which are divisor graphs was given [2-4]. While, a characterization of 
nontrivial connected divisor graphs in terms of the upper orientable 
hull number was obtained [5].

It was shown that no divisor graph contains an induced odd cycle of 
length greater than 3. Also, it was proved that every induced subgraph 
of a divisor graph is a divisor graph [6-8].

Complete graphs, bipartite graphs, complete multipartite graphs, 
and joins of divisor graphs are divisor graphs.

The length of a longest path [9-15]. While divisor graphs with 
triangles [16], where a forbidden subgraph characterization for all 
divisor graphs containing at most 3 triangles was obtained.

Lemma

The complement of a path is a divisor graph (Figure 1).

Proof

Consider the path Pn={v1,v2,...,vn} with {vk,vk+1} ∈ E(Pn) for 
k=1,2,...,n−1.Let

{p1,p2,...,pn} be a set of distinct prime numbers. Label v1 by p1, 

v2 by p2 and 

vk by p1 p2 p3 p4... pk−2 pk, k=1,2,...,n.

This recurrence relation gives an orientation for nP , the 
complement of Pn (Figure 2).

Example

Cn: For odd n ≥ 5 is not a divisor graph.

Example

Kn: is a divisor graph (any complete graph is a divisor graph).

Example

Every bipartite graph is a divisor graph.

Lemma   

The complement of a caterpillar is a divisor graph.

Proof

Pn={v1,v2,...,vn} with {vk,vk+1}∈ E(Pn) for k=1,2,...,n−1.

Assume that the vertex vk is adjacent to the vertices {vk1,vk2,...,vkj} 
that are not adjacent to any other vertex in Pn. Then the new graph G is 
a caterpillar with n + j vertices.

Label v1 by p1, v2 byp2 and vk by p1 p2 p3 ... pk−2 pk, k=1,2,...,n.

Label vk1 by p1 p2 p3 ... pk−2 pk−1, vk2 by vk2 by p1 p2 p3 p4 pk−2 pk−1 pk, vk3 
by p1 p2 p3 ... pk−2 pk−1 pk pk+1,

... and vkj by p1 p2 p3 ... pk−2 pk−1 pk pk+1 ... pk+j−2.

And label the rest as follows: 

vk+1 by p1 p2 p3 ... pk−2 pk−1 pk+1 ...pk+j−1

vk+2 by p1 p2 p3 ... pk−1 pk pk+2 ... pk+j−1 pk+j

And so on till
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Abstract
In this paper, we will study some bipartite graphs whose complements are divisor graphs like paths and 

caterpillars, counterexample for a tree whose complement is not divisor will be presented and powers of some types 
of trees that have their complements divisor graphs will be classified.

Figure 1: A complement divisor graph.
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vn by p1 p2 p3 ... pk−1 pk pk+1 ... pk+j−1pk+j pn−2 pn.

This recurrence relation gives an orientation for G , the complement 
of G (Figure 3).

Example  

Not all the trees are divisor graphs, for this purpose, consider the 
following tree:

This is not a divisor graph (Figure 4).

Theorem  

The complement of a tree is a divisor graph only if the tree is a 
caterpillar.

Proof

Obvious from the above results.

The question that arises now is, are the complements of the powers 
of the graphs studied above also divisor graphs?

The answer is yes, which we will prove it using the following 
Lemma.

Lemma 

The complement of the power graph of a path is a divisor graph. 
(For any power less than the degree of a path).

Proof

Consider the path Pn={v1,v2,...,vn} with {vk,vk+1}∈ E(Pn) for 
k=1,2,...,n−1. Label v1 by

p1,

v2 by p1, ... and

vj by pj. Then label vj+k by p1 p2 ... pk pj+k, Finally, label vn by p1 p2 ... pn−j.

This recurrence relation gives an orientation for ( ) j
nP , the 

complement of (Pn)
j.

Lemma

The complement of the power graph of a caterpillar is a divisor 
graph.

Theorem 

The complement of the power graph of a tree is a divisor graph only 
if the tree is a caterpillar.

Proof

Obvious from the above results. 

Figure 2: Recurrence Relation orientation for nP .

Figure 3: Recurrence orientation for G .

Figure 4: Trees are not divisor graphs.
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