

Diverse Morphofunctional Changes in Health and Disease

Ahmed M. Al-Hassan*

Department of Anatomy, King Abdulaziz University, Saudi Arabia

Introduction

This article explores the intricate morphofunctional brain changes in older adults, examining the continuum from age-related decline to successful aging. It highlights how maintaining cognitive function and overall brain health relies on adaptive structural and functional alterations, emphasizing that lifestyle factors and interventions play a crucial role in promoting resilience against neurodegeneration. [1]

This research details the morphofunctional characteristics of the liver following partial hepatectomy in male rats, specifically under conditions of obesity. The findings shed light on how obesity impacts the regenerative capacity and structural recovery of liver tissue, suggesting a need for targeted approaches in patients with metabolic disorders undergoing liver surgery. [2]

This study investigates the morphofunctional changes occurring in the skeletal muscles of middle-aged individuals who engage in weight training. It illustrates how resistance exercise promotes beneficial adaptations in muscle architecture and functional strength, countering age-related muscle decline and improving overall physical performance in this demographic. [3]

This research details morphofunctional changes in the kidneys of male rats experiencing experimental hyperandrogenism, and assesses the corrective effects of L-arginine. It highlights how hormonal imbalances can severely impact renal structure and function, and points to L-arginine as a potential therapeutic agent for mitigating these detrimental effects. [4]

This article examines the morphofunctional features of the myocardium in patients with heart failure with preserved ejection fraction (HFpEF) and co-occurring metabolic syndrome. It reveals specific structural and functional alterations in the heart muscle that contribute to HFpEF pathology, underscoring the complex interplay between metabolic health and cardiovascular function. [5]

This systematic review explores the link between maternal vascular malperfusion and the morphofunctional alterations observed in the placenta during pregnancies complicated by preeclampsia. It highlights how impaired maternal blood flow to the placenta leads to structural and functional changes that contribute to the pathogenesis of preeclampsia, affecting both maternal and fetal outcomes. [6]

This research investigates age-related morphofunctional changes in the small intestine following the administration of a prebiotic and probiotic complex in an experimental model of type 2 diabetes mellitus. It demonstrates how probiotic interventions can modulate intestinal structure and function, potentially mitigating the adverse effects of aging and diabetes on gut health. [7]

This study delves into the morphofunctional properties of retinal ganglion cells af-

ter optic nerve damage. It elucidates how structural damage to the optic nerve impacts the functional integrity of these critical neurons, providing insights into the mechanisms of vision loss and potential targets for neuroprotective or regenerative therapies in ocular pathologies. [8]

This article explores age-related morphofunctional changes in the thymus and assesses the impact of bioregulatory peptides in rats from different lines. It highlights how the thymus, a central immune organ, undergoes significant structural and functional decline with age, and suggests that specific peptide interventions could potentially modulate these changes to support immune health. [9]

This research investigates the morphofunctional changes in bone tissue of female rats experiencing experimental hyperthyroidism and evaluates the effectiveness of L-arginine as a corrective agent. The study demonstrates how excessive thyroid hormone levels lead to detrimental alterations in bone structure and function, and indicates that L-arginine offers a promising approach to mitigate these effects. [10]

Description

This article explores the intricate morphofunctional brain changes in older adults, examining the continuum from age-related decline to successful aging. It highlights how maintaining cognitive function and overall brain health relies on adaptive structural and functional alterations, emphasizing that lifestyle factors and interventions play a crucial role in promoting resilience against neurodegeneration. [1].

This article explores age-related morphofunctional changes in the thymus and assesses the impact of bioregulatory peptides in rats from different lines. It highlights how the thymus, a central immune organ, undergoes significant structural and functional decline with age, and suggests that specific peptide interventions could potentially modulate these changes to support immune health. [9]. This study delves into the morphofunctional properties of retinal ganglion cells after optic nerve damage. It elucidates how structural damage to the optic nerve impacts the functional integrity of these critical neurons, providing insights into the mechanisms of vision loss and potential targets for neuroprotective or regenerative therapies in ocular pathologies. [8].

This research details the morphofunctional characteristics of the liver following partial hepatectomy in male rats, specifically under conditions of obesity. The findings shed light on how obesity impacts the regenerative capacity and structural recovery of liver tissue, suggesting a need for targeted approaches in patients with metabolic disorders undergoing liver surgery. [2]. This article examines the morphofunctional features of the myocardium in patients with heart failure with preserved ejection fraction (HFpEF) and co-occurring metabolic syndrome. It reveals specific structural and functional alterations in the heart muscle that contribute to HFpEF pathology, underscoring the complex interplay between metabolic health and cardiovascular function. [5].

HFpEF pathology, underscoring the complex interplay between metabolic health and cardiovascular function. [5]. This research investigates age-related morphofunctional changes in the small intestine following the administration of a prebiotic and probiotic complex in an experimental model of type 2 diabetes mellitus. It demonstrates how probiotic interventions can modulate intestinal structure and function, potentially mitigating the adverse effects of aging and diabetes on gut health. [7]. This research investigates the morphofunctional changes in bone tissue of female rats experiencing experimental hyperthyroidism and evaluates the effectiveness of L-arginine as a corrective agent. The study demonstrates how excessive thyroid hormone levels lead to detrimental alterations in bone structure and function, and indicates that L-arginine offers a promising approach to mitigate these effects. [10].

This study investigates the morphofunctional changes occurring in the skeletal muscles of middle-aged individuals who engage in weight training. It illustrates how resistance exercise promotes beneficial adaptations in muscle architecture and functional strength, countering age-related muscle decline and improving overall physical performance in this demographic. [3]. This research details morphofunctional changes in the kidneys of male rats experiencing experimental hyperandrogenism, and assesses the corrective effects of L-arginine. It highlights how hormonal imbalances can severely impact renal structure and function, and points to L-arginine as a potential therapeutic agent for mitigating these detrimental effects. [4].

This systematic review explores the link between maternal vascular malperfusion and the morphofunctional alterations observed in the placenta during pregnancies complicated by preeclampsia. It highlights how impaired maternal blood flow to the placenta leads to structural and functional changes that contribute to the pathogenesis of preeclampsia, affecting both maternal and fetal outcomes. [6].

These investigations, taken together, highlight the expansive impact of morphofunctional alterations across an array of biological systems and disease states. They span from systemic conditions such as aging and metabolic syndrome to specific organ responses and the effects of therapeutic interventions. The consistent focus on structural and functional adaptations or deteriorations across such varied contexts underscores a fundamental principle in biology and medicine: an integrated view of form and function is essential for addressing complex health challenges and developing effective strategies for prevention and treatment. This body of work collectively emphasizes the importance of detailed morphofunctional analysis in advancing our understanding of health and disease.

Conclusion

Diverse research highlights the critical role of morphofunctional changes across various physiological systems and pathological conditions. Studies examine age-related morphofunctional brain changes in older adults, emphasizing how lifestyle and interventions promote resilience against neurodegeneration. In metabolic contexts, obesity impacts liver regeneration post-hepatectomy in rats, while specific myocardial alterations are observed in heart failure patients with preserved ejection fraction and metabolic syndrome, underscoring the cardiovascular-metabolic link. Hormonal imbalances also drive significant morphofunctional shifts. Experimental hyperandrogenism causes kidney changes in rats, with L-arginine showing corrective potential, mirroring its role in mitigating bone tissue alterations during hyperthyroidism. Age profoundly affects immune organs like the thymus, where bioregulatory peptides offer a strategy to counter age-related decline. Similarly, the small intestine experiences age-related morphofunctional changes in type 2 diabetes models, which prebiotics and probiotics may modulate. Beyond aging and metabolism, other critical areas explored include the beneficial adaptations in skeletal muscles of middle-aged individuals engaging

in weight training, counteracting age-related decline. Research also delves into the impact of maternal vascular malperfusion on placental morphofunctional alterations in preeclampsia, affecting pregnancy outcomes. Furthermore, the optic nerve's integrity is vital, as damage leads to altered morphofunctional properties in retinal ganglion cells, providing insight into vision loss. Together, these studies collectively advance our understanding of structural-functional relationships in health and disease, offering pathways for targeted therapeutic and preventative strategies.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Ana E. R. M. Teixeira, Ana B. M. D. C. Martins, Patrícia T. F. Simões, Luís M. S. de Oliveira, Miguel A. B. C. de Castro, Mónica P. P. da Silva. "Morphofunctional brain changes in older adults: From age-related decline to successful aging." *Front Aging Neurosci* 15 (2023):1113063.
2. S. V. Knyazeva, E. S. Zhanaeva, E. V. Lyakhovich, N. A. Cheido, A. S. Ryazanov, K. S. Demina. "Morphofunctional features of the liver after partial hepatectomy in male rats in conditions of obesity." *Bull Exp Biol Med* 169 (2020):531-536.
3. Aleksey V. Khodirev, Gennadiy P. Stoyanovsky, Andrey S. Fokin, Nadezhda A. Khodireva, Natalia G. Stoyanovskaya. "Morphofunctional Changes in the Skeletal Muscles of Middle-Aged Individuals during Weight Training." *Biomed Pharmacol J* 14 (2021):161-166.
4. S. V. Knyazeva, E. S. Zhanaeva, O. A. Pikus, K. S. Demina, E. V. Lyakhovich, N. A. Cheido. "Morphofunctional changes in the kidneys of male rats under conditions of experimental hyperandrogenism and in correction by L-arginine." *Bull Exp Biol Med* 171 (2021):742-747.
5. Inna Aleksandrovna Kovaleva, Vladimir Ivanovich Maslov, Yuliya Valerienva Maslova, Anna Yurevna Skrypnikova, Elena Aleksandrovna Vorobyova, Olga Viktorovna Zaitseva. "Morphofunctional features of the myocardium in patients with heart failure with preserved ejection fraction and metabolic syndrome." *Russ J Cardiol* 26 (2021):4492.
6. Thainá V. P. Fernandes, Rafaella A. Pereira, Gabriela L. de Souza, Amanda P. O. S. Santos, André R. Pereira, Cristiana D. A. T. do Nascimento, Cláudia A. S. Magalhães, Valeriana L. D. F. A. D. A. Lima, Cláudio R. F. D. S. Magalhães. "Maternal vascular malperfusion and morphofunctional alterations of the placenta in pregnancies complicated by preeclampsia: a systematic review." *BMC Pregnancy Childbirth* 23 (2023):746.
7. E. V. Lyakhovich, O. A. Pikus, S. V. Knyazeva, E. S. Zhanaeva, N. A. Cheido, K. S. Demina, V. V. Ivanov, A. S. Ryazanov. "Age-related morphofunctional changes in the small intestine after administration of a complex of prebiotics and probiotic *Bifidobacterium adolescentis* in an experimental model of type 2 diabetes mellitus." *Bull Exp Biol Med* 173 (2022):116-121.
8. Anton Yu. Smirnov, Denis L. Kropochev, Vadim P. Kosenok, Alexey A. Zharikov, Anastasia O. Kosenok, Elizaveta D. Petrova, Ekaterina S. Kropocheva. "Morphofunctional properties of retinal ganglion cells with optic nerve damage." *Exp Eye Res* 239 (2024):109789.

9. V. M. Konusova, K. S. Konusova, E. S. Gurevich, V. V. Yatsun, N. I. Kosenok, E. I. Knyazeva, E. M. Knyazev. "Age-related morphofunctional changes of thymus and their correction by bioregulatory peptides in rats of different lines." *Bull Exp Biol Med* 169 (2020):537-542.
10. O. A. Pikus, S. V. Knyazeva, E. S. Zhanaeva, N. A. Cheido, K. S. Demina, E. V. Lyakhovich, A. S. Ryazanov. "Morphofunctional changes in bone tissue in female rats during experimental hyperthyroidism and its correction by L-arginine." *Bull Exp Biol Med* 169 (2020):785-789.

How to cite this article: Al-Hassan, Ahmed M.. "Diverse Morphofunctional Changes in Health and Disease." *J Morphol Anat* 09 (2025):364.

***Address for Correspondence:** Ahmed, M. Al-Hassan, Department of Anatomy, King Abdulaziz University, Saudi Arabia, E-mail: a.alhassan@kau.edu.sa

Copyright: © 2025 Al-Hassan M. Ahmed *This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.*

Received: 01-Jan-2025, Manuscript No. jma-25-172665; **Editor assigned:** 03-Jan-2025, PreQC No. P-172665; **Reviewed:** 17-Jan-2025, QC No. Q-172665; **Revised:** 22-Jan-2025, Manuscript No. R-172665; **Published:** 29-Jan-2025, DOI: 10.37421/2684-4265.2025.09.364
