Discovery of Autophagy-Inducing Chloroquine Analogs with Potent Anticancer Activity in Breast Cancer Cells

Yasser Heakal*, Dhvani Patel1,2, Peter Cao1, Catherine C. Lincourt1, Ashley O’Leary1 and Dominic L. Ventura2

1Department of Pharmaceutical, Social and Administrative Sciences, School of Pharmacy, D’Youville College, 320 Porter Ave., Buffalo, NY 14201, USA
2Department of Chemistry, School of Arts, Science and Education, D’Youville College, 320 Porter Ave., Buffalo, NY 14201, USA

Abstract
Targeting autophagy in cancer has emerged as a promising strategy for drug discovery. Autophagy is a conserved process required for the degradation and recycling of damaged organelles and proteins. Dysregulation of autophagy has been implicated in many diseases including cancer. In breast cancer, studies have demonstrated that activated autophagy promotes cell survival and therapeutic resistance. Chloroquine (CQ), an antimalarial and anti-inflammatory agent, has emerged as a potential anticancer agent due to its ability to inhibit autophagy. Several ongoing clinical trials are currently evaluating CQ analogs which have shown efficacy in cancer treatment [1,2]. However, accumulating body of literature implicates autophagy activation in cancer resistance to various therapeutic modalities [2]. Autophagy inhibition in breast cancer has been shown to enhance the efficacy of chemotherapy [6], HER2 receptor inhibitors [7], CDK4 inhibitors [8], estrogen receptor antagonists [9] and radiation therapy [10]. Additionally, studies have demonstrated that autophagy is involved in the maintenance of breast cancer stem cells [11]. Under nutrient rich conditions, constitutively active autophagy has been shown to activate STAT3 pathway in triple-negative breast cancer (TNBC) cells which results in inhibition of the apoptotic machinery [12]. Inhibition of autophagy in TNBC cells resulted in selective induction of apoptotic cell death [12]. The discovery of potent autophagy modulators could lead to the development of effective therapeutic modalities for the treatment of breast cancer. Conversely, studies suggest that autophagy inhibition could play a role in cell survival [13]. A study by Luna-Dulcey et al. [14] demonstrated that autophagy induction in TNBC cells could induce apoptotic cell death. Additionally, accumulating evidence suggests that autophagy induction could induce apoptosis-independent cell death modalities such as autosis [15,16].

Chloroquine (CQ), a Food and Drug Administration (FDA)-approved drug for the treatment of malaria, rheumatoid arthritis and lupus erythematosus has emerged as a potential anticancer agent due to its ability to inhibit autophagy [17]. The mechanism of autophagy inhibition by CQ involves inhibiting lysosomal acidification, which disrupts autophagy by preventing autophagosome fusion and degradation. A recent study by Mauhe et al. suggests the CQ inhibits autophagy by decreasing autophagosome-lysosome fusion [17]. Several ongoing clinical trials are currently evaluating CQ and/or hydroxychloroquine as potential anticancer agents in combination with other therapeutic modalities [18]. However, several hurdles may prevent successful translation of CQ into the clinic. The CQ dose needed to inhibit autophagy in vitro is relatively high and may not be achieved clinically. Therefore, the observed clinical effects of CQ could be mediated by autophagy-independent mechanisms. Additionally, the use of high doses of CQ may cause severe toxicity, especially when combined with other chemotherapeutic agents due to its nephrotoxicity [19,20]. Recent attempts have focused on the discovery of more potent CQ analogs that could inhibit autophagy at lower concentrations [21,22]. Biaminoquinoline analogs were reported to be superior to CQ in inhibiting autophagy through enhanced lysosomotropic effects [23]. In this study, we initially hypothesized that the design of bivalent CQ analogs that utilized a piperazinyl-based polyamine-like linker could enhance CQ potency due to enhanced lysosomal accumulation through the polyamine transporter. Interestingly, the most potent compounds identified in this series (Figure 1) were found to act as autophagy inducers rather than inhibitors [7].

Materials and Methods

Protocols for Biological Assays

The cell line, MDA-MB-231 (Cat. #: CRM-HTB-26) was purchased from ATCC (Manassas, VA, USA). The cells were grown using RPMI 160 media (Gibco, Cat. #: 11875093) supplemented with 10% FBS and 1% penicillin/streptomycin (Thermo-Fisher, Grand Island, NY, USA). The antibodies LC3B-II (Cat. #: 2775) and p62 (Cat. #: 2276) were obtained from Cell Signaling. The CQ dose needed to inhibit autophagy in vitro is relatively high and may not be achieved clinically. Therefore, the observed clinical effects of CQ could be mediated by autophagy-independent mechanisms. Additionally, the use of high doses of CQ may cause severe toxicity, especially when combined with other chemotherapeutic agents due to its nephrotoxicity [19,20]. Recent attempts have focused on the discovery of more potent CQ analogs that could inhibit autophagy at lower concentrations [21,22]. Biaminoquinoline analogs were reported to be superior to CQ in inhibiting autophagy through enhanced lysosomotropic effects [23]. In this study, we initially hypothesized that the design of bivalent CQ analogs that utilized a piperazinyl-based polyamine-like linker could enhance CQ potency due to enhanced lysosomal accumulation through the polyamine transporter. Interestingly, the most potent compounds identified in this series (Figure 1) were found to act as autophagy inducers rather than inhibitors [7].

Cell Viability Assays

MDA-MB-231 cells were plated in 96-well plates at a density of 4000 cells/well. The cells were treated with the indicated compound concentrations for 48 hours followed by assessment of cell viability using MTT assay.
Caspase 3/7 Activity Assays

MDA-MB-231 cells were plated in 96-well plates at a density of 4000 cells/ well. The cells were treated with the indicated compound concentrations for 24 hours followed by assessment of caspase 3/7 activity using homogenous apo caspase 3/7 activity assay.

Western Blot Analysis of LC3B-II and p62 Proteins

MDA-MB-231 cells were plated in 6-well plates and were treated with the indicated compound concentration at confluence of 80%. Following 24 hours, total protein was harvested using CellLytic M buffer (Cat.# C2978) obtained from MilliporeSigma (Burlington, MA) supplemented with protease inhibitor cocktail. Total protein was analyzed using western blotting and the images were produced using FluorChem M imager (Cell Biosciences, Inc., San Jose, CA, USA). Densitometry was performed using ImageJ software (NIH, Bethesda, MD, USA).

Statistical Analysis

Data were analyzed using GraphPad Prism software (GraphPad Prism Inc., La Jolla, CA, USA). Statistical significance of the data was determined using Students’ t-test, one-way, or two-way ANOVA analysis, as appropriate.

Chemistry

The compounds were synthesized following literature methods as shown in Schemes 1 and 2 [24-29]. All reagents were used as received from commercial suppliers unless otherwise stated. Flash chromatography was performed on silica gel (32-63 μm, 60 Å) according to the method of Still [30]. Thin layer chromatography (TLC) was performed on aluminum backed plates precoated with silica (0.25 mm, 60F-254) which were developed using standard visualizing agents: UV fluorescence (254 and 366 nm). 1H NMR spectra were recorded on a Bruker Avance III HD 400 FT Nuclear Magnetic Resonance spectrometer. The following abbreviations apply: (b) broad, (s) singlet, (d) doublet, (t) triplet, (q) quartet, (m) multiplet, (dd) doublet doublet, etc. Chemical shifts are given in ppm. J values are recorded in Hz and are rounded to the nearest tenth.

7-Chloro-N-(2-propylamino)ethyl)quinoline-4-amine HCl (2)

Synthesized following the literature method [24-26]. 4,7-dichloroquinoline (1.02 g, 5.0 mmol, 1.0 equiv) and N-propylethylendiamine (1.58 g, 15.44 mmol, 3.0 equiv) were added to a 100 mL flask and heated to 120 °C for four hours under argon. After cooling to room temperature, added about 10 mL of 1.0 M NaOH solution in water and extracted with dichloromethane (DCM) (5 × 15 mL). Filtered off the insoluble solid and dried the organic phase with Na2SO4. Concentrated in vacuo to a yellow oil. The crude product was purified via column chromatography using 90:9:1 DCM/MeOH/NH4OH to give a pale yellow solid. Rf=0.21 (MeOH/DCM/NH4OH) Yield: 1.04 g (77%). The product was dissolved in 5 mL of ethanol and added 6 mL of 6.0 M HCl in ethanol. Stirred overnight and filtered off the product as a white solid.

Figure 1. The chloroquine analog, compound 5, with improved cytotoxicity in MDA-MB-231 cells.
Scheme 1. Structure of CQ analogs.

Scheme 2. Synthesis of CQ analogs.
7-chloro-N-(3-((7-chloroquinolin-4-ylamino)propyl)piperazin-1-yl)quinoline-4-amine HCl (8)

4,7-dichloroquinoline (1.98 g, 10 mmol, 2.0 equiv) and butane diamine (0.4408 g, 5 mmol, 1.0 equiv) and triethylamine (1.4 mol, 10 mmol, 2.0 equiv) were added to 10 mL of N-methylpyrrolidinone and heated to reflux for 16 hours. Filtered off the brown solid product. Yield: 1.76 g (82%). Dissolved the product in 10 mL of 6.0 M HCl in water and 10 mL of ethanol. Stirred overnight and filtered off the solid to give a tan solid. m.p. 195-200°C (decomp).

IR (neat) \(3238, 3104, 3020, 2852, 2821, 1611, 1563, 1458, 1419, 1397, 1298, 1284, 1251, 1236, 1138, 1007, 925, 868, 838, 824, 775, 654 \text{ cm}^{-1}\). HRMS (ESI) Calcd. For \(C_{22}H_{11}ClN_4\): 411.05139. Found: 411.05137.

Results and Discussion

Anticancer activity in breast cancer cells

The cytotoxic activity of the synthesized compounds was assessed in MDA-MB-231 breast cancer cell line using 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay (Figure 2). The IC\(_50\) of CQ (1) was found to be 85.22 µM. Modifying the side chain on position 4 of the quinoline ring as shown in compound 2 resulted in slight enhancement of the anticancer activity with IC\(_50\) of 66.53 µM. We then decided to explore the effect of incorporating a piperazinyl group, which would enhance aqueous solubility. The addition of piperazinyl group as shown in compound 3 resulted in significant enhancement of the cytotoxic activity with an IC\(_50\) of 22.14 µM. However, direct attachment of the piperazinyl group as shown in compound 4 resulted in the loss of the anticancer activity which may suggest that the presence of the amine-based linker is required for the compound activity. Several groups have reported the design of bivalent chloroquine analogs with enhanced cytotoxicity and improved autophagy inhibitory activity [23]. Therefore, we decided to use the piperazinyl group as a building block as it offers the advantage of easy access to the chloroquine bivalent analogs. We decided to explore this strategy by synthesizing compound 5. Interestingly, the IC\(_50\) of compound 5 was found to be 2.84 µM. To further characterize the structure activity relationship of compound 5, we synthesized compound 6 that lacks Cl groups on position 7 of the quinoline ring. Interestingly this modification resulted in slight increase in the IC\(_50\) of 5.98 µM. However, changing the location of the linker from position 4 to position 2 as shown in compound (7) resulted in significant increase in the IC\(_50\) to 14.04 µM. This suggest that compound 5 activity could be mediated through specific protein interaction event that requires specific unique structural features that are present in compound 5 and are lost upon changing the location of the linker on the quinoline ring. The importance of the piperazinyl group was further established by making the bivalent compound 8 which lacks the piperazinyl group. This modification resulted in loss of potency as evident by the IC\(_50\) of about 52 µM additionally; compound 8 had limited aqueous solubility. This could be due to the ability of the piperazinyl group to facilitate binding to a specific target, or it could be also due to the length of the linker that connects the two quinoline groups and facilitate specific interaction with protein target (s). Additionally, it could be possible that the activity is in part dependent upon utilizing the polyamine transporter that might enhance compounds cellular accumulation in cancer cells.

The compound effects on autophagy and apoptosis:

To determine the effect of the CQ analogs on autophagic flux, the levels of LC3B-II, a protein that lacks Cl groups on position 7 of the quinoline ring. Interestingly this modification resulted in slight increase in the IC\(_50\) of 5.98 µM. However, changing the location of the linker from position 4 to position 2 as shown in compound (7) resulted in significant increase in the IC\(_50\) to 14.04 µM. This suggest that compound 5 activity could be mediated through specific protein interaction event that requires specific unique structural features that are present in compound 5 and are lost upon changing the location of the linker on the quinoline ring. The importance of the piperazinyl group was further established by making the bivalent compound 8 which lacks the piperazinyl group. This modification resulted in loss of potency as evident by the IC\(_50\) of about 52 µM additionally; compound 8 had limited aqueous solubility. This could be due to the ability of the piperazinyl group to facilitate binding to a specific target, or it could be also due to the length of the linker that connects the two quinoline groups and facilitate specific interaction with protein target (s). Additionally, it could be possible that the activity is in part dependent upon utilizing the polyamine transporter that might enhance compounds cellular accumulation in cancer cells.

The compound effects on autophagy and apoptosis:

To determine the effect of the CQ analogs on autophagic flux, the levels of LC3B-II, a protein marker for autophagy, and p62, another widely used protein marker that undergoes autophagy-dependent degradation, were analyzed using western blotting (Figure 3). Treatment of MDA-MB-231 cells with 5µM CQ, 3, 5, 6 or 7 resulted in increase in the level of LC3B-II. Notably, compounds 5 and 6 resulted in about 6 times increase in the level of LC3B-II and complete disappearance of LC3B-I which may suggest that these compounds are inducing rather than inhibition autophagic flux (Figure 3B). To confirm this hypothesis, we examined the level of p62 protein which undergoes autophagy-dependent degradation [31]. Interestingly, treatment with compounds 5 and 6 resulted in significant degradation of p62 (Figure 3C) which confirms that these...
Compounds induce, rather than inhibit autophagic flux. Compound 5 was more effective p62 degrader relative to compounds 6 and 7 which indicate that the chlorine atoms and the location of the piperazinyl linker on the quinoline ring play a key role in this molecular effect. Additionally, we analyzed the ratios of LC3B-II/LC3B-I (Figure 3D), which also suggest that compounds 5, 6 and 7 significantly reduce the level of LC3-I while enhance the expression of LC3B-II when compared with chloroquine, suggesting unique effects on the autophagic flux that involves induction.

To determine if the CQ analogs were inducing apoptotic cell death, we analyzed caspase 3/7 activity (Figure 4). MDA-MB-231 cells were treated with CQ, 3, 5, 6 and 7 at concentration of 5 and 10 µM. Interestingly, at 5 µM concentration, compound 5 was the only analog to robustly induced caspase 3/7 activity (about 2-fold increase). At 10 µM concentration, compound 5 was the only analog to robustly induced caspase 3/7 activity (about one-fold increase). To assess the role of autophagy induction in the observed apoptotic cell death, we treated MDA-MB-231 cells with compound 5 in the presence or absence of bafilomycin A1, known autophagy inhibitor that suppress autophagy through inhibition of V-ATPase. Interestingly, bafilomycin A1 treatment blocked compound 5 induced apoptosis (Figure 5A). Additionally, compound 5 was the only analog to robustly induced caspase 3/7 activity (about 2-fold increase). At 10 µM concentration, compound 5 was the only analog to robustly induced caspase 3/7 activity (about one-fold increase). To assess the role of autophagy induction in the observed apoptotic cell death, we treated MDA-MB-231 cells with compound 5 in the presence or absence of bafilomycin A1, known autophagy inhibitor that suppress autophagy through inhibition of V-ATPase. Interestingly, bafilomycin A1 treatment blocked compound 5 induced apoptosis (Figure 5A). Additionally,

Figure 3. The effect of CQ analogs on autophagic flux. (A) MDA-MB-231 cells were treated with the indicated compounds at 5 µM concentrations for 24 hours, followed by protein analysis using western blotting. Quantification of the level of LC3B-II and p62 following compound treatment are presented. (B) Quantification of the expression level of LC3B-II. (C) Quantification of the expression level of p62. (D) Quantification of the ratios of LC3B-I/LC3B-II/GAPDH. Error bars represent SEM of at least 3 independent experiments. Representative blots of at least 3 independent experiments. Error bars represent ± SEM.

Figure 4. The effect of CQ analogs on caspase 3/7 activity. MDA-MB-231 cells were treated with the indicated compound concentration for 24 hours followed by assessment of caspase 3/7 activity. Error bars represent ± SEM of at least 2 independent experiments.

Figure 5. The effect of the autophagy inhibitor bafilomycin A1 on the activity of compound 4. (A) MDA-MB-21 cells were treated with compound 4 (5 µM) in the presence or absence of 10 nM bafilomycin A1 for 24 hours. Caspase 3/7 activity was assessed using Apo-One homogenous caspase 3/7 assay; error bars represent ± SEM. (B) MDA-MB-231 cells were treated with compound 3 in the presence or absence of bafilomycin A1 and cell viability was assessed 24 hours post treatment using MTT cell viability assay. Error bars represent ± SEM. (C) MDA-MB-231 cells were treated with compound 4 in the presence or absence of bafilomycin A1 and cell pictures were taken using 10X magnification; representative picture of N=3 experiments. The data represent at least N=3 experiments. The data represent at least N=3 experiments.

Conclusion

Collectively, the data presented demonstrate the development of more potent chloroquine analogues that could modulate autophagic flux at much lower concentrations. Interestingly, the most potent analogs identified in our series induced autophagic flux. Furthermore, translation of these analogs may yield compounds that could be administered at lower concentrations with reduced adverse events. Several structural features may contribute to the enhanced potency. The incorporation of the polyamine moiety may enhance the compound uptake by the cancer cells relative to normal cells.
[32,33]. Several studies indicated that cancer cells require higher polyamine levels for growth and survival. Another possible unique aspect is the ability of these compounds to accumulate into the lysosomes, which could result in more potent effects on autophagic flux. Future studies will focus on defining the mechanism of autophagy induction by these compounds and whether they induce canonical and/or non-canonical forms of autophagy.

Author Contributions

YH and DV wrote and edited the manuscript. YH designed and conducted the biological experiments, analyzed the data. DV designed synthesized and characterized compounds. DP synthesized and characterized compounds, conducted biological experiments, analyzed the data and synthesized and characterized compounds. PC and AO conducted biological experiments and analyzed the data. CL synthesized and characterized compounds. All authors have given approval to the final version of the manuscript.

Funding

This research was supported by funds from the School of Pharmacy and D’Youville College, American Society for Pharmacology, Experimental Therapeutics (ASPET), The Department of Chemistry and the research committee at D’Youville College.

Acknowledgments

The authors would like to acknowledge the American Association for Pharmacology and Experimental Therapeutics (ASPET) funding which supported a Summer Research Fellowship (SURF) award to Dhvani Patel to participate in the research project. We would also like to thank the Department of Chemistry and the Research Committee at D’Youville College for the funding of this project. We would also like to thank Buffalo State College for their generosity in the use of their NMR spectrometer.

Conflicts of Interest

The authors declare no conflict of interest.

References

