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The importance of short protein-coding genes (usually defined 
as no longer than 100 codons) and corresponding small proteins 
and peptides, in prokaryotic and eukaryotic organisms is becoming 
increasingly obvious as the pervasive role of small proteins as signaling 
molecules, and as regulators of protein expression and functionality is 
being uncovered (e.g., [1,2]).

In E. coli, the smallest known functional gene-product is a 29-amino 
acid peptide involved in K+ transport (KdpF) [3]. ORFs with as few as 14 
amino acids have been predicted to encode functional genes in E. coli, 
and with as few as 28 amino acids in Saccharomyces cerevisiae [4], while 
many short peptides have been identified, including a 13 aa peptide 
encoded within the E. coli Shiga-like toxin operon. Moreover, artificial 
constructs encoding just six amino acids were able to transcribe and 
result in functional gene-products involved in intracellular signaling 
in B. subtilis [5]. In eukaryotes, many important signaling molecules 
are short peptides, including various peptide hormones, cytokines 
and co-repressors or co-activators [6,7]. In eukaryotes, evidence is 
accumulating on the existence of widespread very short ORFs, called 
uORFs, located 5’ of a reference gene, which post-transcriptionally 
regulate translation of the gene [8-10]. 

Computational Identification of Small Genes in 
Bacterial Genomes

 In spite of the high sensitivity of computational prokaryotic-gene 
predictor methods, it is recognized that short genes are still often 
overlooked by published annotations. Computational prediction of 
short genes is risky. Short sequences contain less information that 
can signal their coding capacity, and small genes may not follow the 
same codon-composition properties of the average gene, and may 
encode for peptides with unique amino acid composition. Among the 
most common predictors, issues of specificity limit the ability of gene 
predictors to identify small genes with high sensitivity. For example, 
among popular predictors, Glimmer tends to predict many more short 
genes than others, but among the many predicted short genes the rate 
of false positives appears to be so high that a cut-off on the minimal 
length of predicted ORFs has been included in more recent versions of 
Glimmer [11], preventing prediction of very short genes. 

In an attempt to identify coding regions missed by published 
annotations, we developed procedures to identify genomic regions 
with significant 3-base sequence periodicity, which when associated 
with ORF structures could signal the presence of a coding sequence 
[12]. These procedures were implemented in the N-Profile Analysis 
Computational Tool (NPACT), a web-based bioinformatics tool 
available at http://genome.ufl.edu/npact. We collected with NPACT 
all genes predicted by the annotations of 1000 prokaryotic genomes, 
by four other popular prediction methods, and ORFs identified by 
sequence 3-base periodicity, recording conservation of all genes across 
different phyla. We identified a total of 4,421,545 predicted genes, 
among which 889,837 ORFs were not included in the published genome 
annotations. Most of these excluded genes (83%) corresponded to 
ORFs no longer than 100 codons (Table 1). This collection of short 
ORFs would represent almost three-times as many short genes than 
currently annotated in prokaryotic genomes. How many of these 
ORFs are functional genes and not just false predictions, remains to 
be determined. Evolutionary conservation in sequence and in length 
provided evidence of persistence across genera and phyla for more than 

13% of these putative small genes, a percentage that certainly suggests 
high levels of false positives, but also indicates that at least 97,836 small 
genes are currently missed from the 1000 genome annotations (Table 
1). 

Experimental Data on Expression of Small Genes
Small proteins are technically difficult to study because of their 

poor resolvability and high diffusibility during electrophoresis and/
or column chromatography, low intracellular concentrations of many 
small proteins, possession of reduced number of amino groups and dye/
isotope accepting elements per molecule, and interference by protein 
degradation products. However, global information on gene expression 
can in principle be obtained by genome-wide transcriptomics, 
whereas expression of predicted proteins can be recognized by mass 
spectrometry-based proteomics. While highly informative, these 
approaches are however not devoid of limitations in both eukaryotic 
and prokaryotic species, which are aggravated in the case of small 
genes. In bacteria in particular, quantification of protein expression 
through transcriptome analysis is limited by the polycistronic nature 
of the bacterial mRNA and by difficulties in defining the boundaries 
of operon structures (where are the coding regions in a polycistronic 
mRNA?), and are confused by the large amount of 

anti-sense and non-sense transcription in bacteria [13]. 
Furthermore, predicting protein expression by mRNA abundance 
depends on the assumption that the amount of expression of a 
protein is proportional to the level of transcription of its gene. In fact, 
comparisons between RNA-seq and mass spectrometry measurements 
recently quantified a significant discrepancy between mRNA expression 
and steady-state protein levels [14], suggesting that post-transcription 
control of translation plays a significant role in determining steady-
state levels of proteins in the cell. 

Translatome Analysis by Ribosome Profiling
Significant improvements in uncovering expression of proteins of 

any length and on a genomic scale, can be achieved using the technique 
of “ribosome profiling” [15]. This technique overcomes limitations of 
transcriptomics analysis by providing genome-wide quantification at 
codon resolution of protein-translation activity. Ribosome profiling 
(or RIBO-seq) is based on deep sequencing mRNA segments engaged 
in translation that are protected by the ribosome from degradation (the 
ribosome “footprints”). By this technique, only regions of the mRNA 
that are actively translated are represented in sequencing libraries, 
allowing comprehensive quantitative determination of in vivo synthesis 
of translation products, i.e., definition of the “translatome”. Thus, 
in contrast to RNA-seq, RIBO-seq reads identify the exact position 
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of each expressed protein-coding sequence. The ribosome-profiling 
sequencing technology can provide deeper measurements and more 
accurate quantification than mass spectrometry proteomics, and can 
provide information not only on the amount of protein produced in 
given conditions but also on the dynamics of protein expression [15]. 

In contrast to computational gene prediction and to other 
experimental approaches, the identification power of ribosome 
profiling is independent on gene length, allowing detection of very 
short expressed genes and regulatory peptides (Figure 1). Furthermore, 
translation initiation sites (TIS) can be identified exploiting the activity 
of inhibitors stalling ribosomes at or proximal to TISs [16-18], a 
strategy also referred to as global translation initiation sequencing or 
GTI-seq [18]. Ribosome profiling provides the opportunity not only 
to identify precisely coding region, but also to uncover events and 
mechanisms of post-transcriptional control of protein expression 
in response to environmental stimuli. By genome-wide profiling, 
previously unrecognized widespread post-transcriptional regulation of 
gene translation and translational response to stress have been newly 
identified providing ample evidence of post-transcriptional regulation 
in eukaryotes (e.g., [10,14]). New fundamental biological processes 
have been discovered [19,20] and opportunities for biotechnological 
innovation have been identified [21]. It was demonstrated that in 
vertebrates the majority of expressed genes are associated with the 
translation of peptides encoded by uORFs in the 5’UTR or by internal 
out-of-frame ORFs (AltORFs) [10]. By bridging the gap between 
global measurements of mRNA and protein levels, ribosome profiling 
provides the most advanced tool for accurately and directly measuring 
levels of protein expression, and can provide the necessary information 
for building an optimal protein sequence search database for MS-based 
proteomics [22].

Although identification of small proteins by experimental data 
on expression and functionality is facilitated by the ever-growing 
availability of these high throughput genomic methods, it is unlikely 
that computational gene predictions will be soon superseded by 
experimental methods, whose sensitivity is limited by the necessity 
to identify the conditions required for expression of many genes. 
Integration of information from sequence features, conservation, and 

transcriptomic, translatomic, and proteomic analyses, will most likely 
provide the best strategy for obtaining the most complete picture of the 
coding potential of prokaryotic and eukaryotic organisms [23].
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Figure 1: RIBO-seq evidence of expression of the newly identified gene R49, 
encoding a 17aa-long peptide 5' of annotated gene PA4163. Three rows of 
symbols represent potential start codons (circlets) and stop codons (vertical 
red bar) in the three reading frames of the strand encoding the represented 
gene, with the top row representing the frame of the gene. Bigger circlets 
indicate the position of canonical start codons ATG or GTG, and smaller 
circlets indicate alternative start codons TTG, CTG, or ATT.

Gene set Total Conserved

Annotated 3,531,708 3,239,662

Annotated ≤300 nt 390,233 235,413

New 889,837 182,294

New ≤300 nt 740,695 97,836

Table 1: Total number and conserved genes identified among annotated or newly-
predicted genes in 1000 bacterial genomes [12]. 
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