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Abstract

Most published attempts to quantify equine hoof form are based on lineal and angular measurements. Here we applied geometric morphometric methods to study shape
variation of hoof outlines in a sample of 25 distal forelimbs (13 right and 12 left). Limbs belonged to sound “Cavall Pirinenc Català” horse, an equine meat local breed
from Pyrenees, slaughtered in an abattoir. The outline of each hoof was represented by a set of two landmarks and 86 semi-landmarks. Results reflected directional
asymmetric, e.g. consistent differences between medial and lateral contours for all four limbs. Right limbs tended to supinate (rotation of medial wall towards out), while
left limbs tended to pronate (rotation of lateral wall towards in). Such morphological adjustments may be an important consideration for hoof practitioners and may imply
an important reconsideration of “normal” feet evaluation.
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Introduction
Bilateral symmetry among animals is rarely perfect, i.e., when

measurements of left and right structural parts do not always are perfectly
equal [1,2]. In a population, bilateral asymmetry can be observed to occur in
three general patterns, viz: fluctuating asymmetry (FA), directional
asymmetry (DA) and anti-symmetry (AS). FA represents a random variation
on the right and left side; DA involves left and right sides differences but in
the same direction; in AS can be considered a macroscopic form of FA [3-6].

Geometric morphometrics (GM) is based on the Cartesian coordinates of
landmarks (measurement points) that are homologous across all measured
individuals [7]. The set of all landmarks preserves the geometry of the
studied configurations, so GM is of superior statistical power than most
traditional morphometric approaches and is particularly effective for
exploratory studies [7].

Landmark configurations need to be registered (superimposed) prior to
any statistical analysis because the coordinates not only contain information
on the shape of the measured objects, but also on their position, scale, and
orientation [8]. The most common superimposition technique in GM is
Generalized Procrustes Analysis, consisting of three steps: (i) translation to
have the same centroid (average landmark position), (ii) scaling to have the
same size, and (iii) iteratively rotation to minimize the summed squared
distances between the landmarks and the corresponding sample average [7].
Overall size is measured as centroid size, the square root of the summed
squared distances between the landmarks and their centroid [8]. The
coordinates of the superimposed landmark configurations are called
Procrustes shape coordinates as they contain information about the shape of
the landmark configurations only [8].

Curvatures express the rate of change of the angle between the tangent
to the curve and the x-axis [9]. Curvatures cannot be well described using
visual or traditional metric methods [9]. Semi-landmarks are points along

curvatures. They are initially placed at approximately corresponding positions
and their exact locations are ulteriorly estimated statistically in order to create
geometrically homologous points that can be used in the subsequent
analysis as if they were anatomical landmarks [9].

Many biological structures, such as hoof outlines, consist of relatively
smooth curves and lack homologous landmark points that can be identified in
all individuals. Object symmetry for hooves can be considered if the axis of
symmetry is included within the structure itself as the axial plan and
separates lateral and medial sides as “halves ”  [10,11]. The convenient
statistical properties of GM together with its effective visualization allow for a
potentially very powerful exploratory of the hoof solar structure [12].
Separation of DA and FA is of great importance to the shape analysis of
symmetric structures, as it is a key step that allows for distinction between
systematic asymmetry, which is genetically fixed and heritable for DA, and a
sign of developmental instability for DA [6].

Handedness (or laterality, as it is referred to when applied to horses)
means they prefer either the right or left side. Recent researchers have found
that horses have a preferred side of the body, just like humans [13,14]. In the
present paper we apply GM methods to study object shape asymmetry of the
entire equine hoof outline. We extracted the hoof shape from surface scans
of the sole (see the methods section below) using landmarks and semi-
landmarks. To the best of our knowledge, symmetries of equine hoof outline
shapes using GM have scarcely been studied [15].

Materials and Methods

Studied population

The Catalan Pyrenean horse (“Cavall Pirinenc Català”) is a compact,
broad-built horse with a small population (<4,600) which is located in the NE
part of the Pyrenees, along the Catalan-French border [16]. Mainly bred for
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meat production, it is reared outdoors throughout the year, normally not
receiving additional food beside some low-quality straw in winter except
when foals are selected for slaughter [17]. Then, they are gathered in
paddocks and receive additional feeding with hay and concentrates during
the last months before slaughter, at about 10-12 months of age (“poltres”,
body mass about 350 kg) [17]. Animals of this breed do not receive any hoof
care, trimming, or shoeing; therefore, their hooves must be considered
naturally shaped. Anyway, hoof problems are rather rarely encountered,
being the forelimb “splay foot”  -the hoof wall flaring outwards- the most
frequently found non-functional abnormality (pers. obs.).

Sampled limbs

At a commercial abattoir, 25 distal forelimbs (13 right and 12 left) were
obtained from Catalan Pyrenean yearlings (<12 months) after slaughter. Sex
and exact age were not registered. Animals were apparently healthy and
sound. At the abattoir, limbs were disarticulated at the level of the carpus and
were rinsed with water to clarify hoof outline. Ground surface was taken
outlining the round edges with a pen on a paper. The original drawings were
subsequently photocopied.

Extraction of shape

The outline of the hoof was digitized by 86 semi-landmarks and two true
landmarks at the two axial-most positions (Figure 1). We used the sliding
landmark algorithm to estimate the position of the semi-landmarks in all
individuals, enabling the joint analysis of anatomical landmarks and curves
(represented by semi-landmarks) [18]. All landmark configurations were
superimposed by a Generalized Procrustes Analysis, standardizing for
position, size, and orientation of the configurations. The resulting Procrustes
shape coordinates were used for further statistical analysis [7]. The most
common algorithm for this purpose is the sliding landmark algorithm, which
iteratively slides the semi-landmarks along their curves in order to minimize
local shape differences (the bending energy of the thin-plate spline
interpolation) between each individual and the sample average [9].

Figure 1: Position of landmarks to describe the outline of the hoof. Two landmarks
were in fixed positions (filled dots: axial-most positions), with the remaining 86
landmarks allowed to slide along the outline between the fixed landmarks (empty dots).

The software TpsUtil v. 1.50 [19] was used to prepare and organize the
images. Landmarks were digitized twice, using TpsDig v. 1.40 [19], by one of
the authors (Noelia) in two different sessions. In order to compare Procrustes
to tangent space distances between individuals, the procedure performed
using TpsSmall v. 1.33 [19] reflected a high degree of approximation of

shapes in the sample (i.e., shape space) in relation to the reference shape
(i.e., tangent space) (r=0.999), which allows accurate capture of the nature
and extent of skull shape deformations in subsequent statistical analyses.

A regression of centroid size versus shape (regression scores) was done
to verify if allometry existed. Size was computed as centroid size (or, the
square root of the sum of squared distances from the landmarks to their
centroid) [7]. In the absence of allometry, it is the only size measure
uncorrelated with all the shape variables [7].

For shape, a Procrustes ANOVA indicated the degrees of freedom, means
of squares, F and P values for the effects from individuals, sides, Individual ×
sides effect and measurement error. The individual ’s effect denoted the
individual variations of shape and size of hooves individual animals. The
main effect of sides indicated the variation between sides and considered as
the measure of DA. The Individual × sides is the mixed effect, which
indicates there is failure of hoof shape differences to be on the same side in
every case and therefore indicates there FA in the data. Lastly, measurement
error is a gauge of the possible effect of measurement error on the estimates
of FA [20].

Data analysis

All morphometric analysis were analysed in MorphoJ v. 1.06c [21] and
PAST v. 2.17c softwares [22]. Confidence level was stablished at 95%.

Results

Allometry

No significate regression of centroid size versus shape appeared, with
only a 1.32% of shape variation explained by size variation (p=0.200).

Hoof shape symmetries

For hoof shape, Procrustes ANOVA highly significant variations in
symmetry within individuals and sides (DA), but not for side*individual
interaction (FA) (Table 1). FA presented mean squares about 1.6 to 7.2 times
lower than for DA, which accounted for around a 25% of total asymmetric
variation. FA was significative for left forelimb. Right limbs tended to supinate
(rotation of medial wall towards out), while left limbs tended to pronate
(rotation of lateral wall towards in).

Table 1: Procrustes ANOVA of hooves shape in object symmetry for 25 distal
forelimbs (13 right and 12 left) belonging to sound “Cavall Pirinenc Català” horse.
Mean squares (MS) are the amount of variation from the one higher level in the
hierarchy. The F value represents the comparison of each MS to the one lower

level of MS which could be the source of error. Shape differences among
individual hooves (“Individual” effect) were strongly significant (p<.0001) and were

approximately about 0.4 to 1.2 times larger than the asymmetry between both
sides of the hooves. DA (“Sides” effect) proved to be highly significant and

considerably larger than the FA (“Individual × sides” interaction effect), which was
very subtle for left forelimb. Error is a gauge of the possible effect of

measurement error on the estimates of FA.

1/ Right forelimb (n=13)

Effect SS MS df F P

Individual 0.09501 0.0000920673 1032 3.41 <.0001

Sides 0.00428 0.0000497111 86 1.84 <.0001

Individual × sides 0.02787 0.0000270028 1032 1.19 0.0006

Error 0.05093 0.0000227758 2236
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2/ Left forelimb (n=12)

Effect SS MS Df F P

Individual 0.08183 0.0000865028 946 3.19 <.0001

Sides 0.00387 0.0000449869 86 1.66 0.0003

Individual × sides 0.02563 0.0000270950 946 1.07 0.0998

Error 0.05212 0.0000252497 2064

Discussion
This study aim was to assess hoof asymmetries on solar surface in a local

equine breed maintained under extensive management and consequently,
which has no care of feet, so conclusions may express horse natural
wearing. We applied geometric morphometric methods to study shape
asymmetries for each forelimb separately with an outline represented by a
set of landmarks and semi-landmarks.

Hooves are not pieces of rigid tissue that forever hold the shape. They are
malleable enough to change shape when put under pressure, and such
forces would not act uniformly [23]. The medial side of the hoof bears most of
the descending weight of the horse [24]. In response to this, the ‘plastic’ hoof
develops a medial side that is steeper and a lateral side that is more oblique,
so it changes shape. Hoof DA in the studied sample is largely present, and
attributable to differential mechanical loading, e.g. laterality. Laterality
represents a dominance. Limb dominance is a common occurrence in many
species [25], including horse [14,26]. Like humans [27] most horses are right
forelimb dominant [14,28,29] and this would explain the detected subtle FA
only in left forelimb, which would represents a very low disturbing effect. As
asymmetric shape variation of hoof surface was not determined by allometric
changes relating to size, we suppose that FA is due to a function process
rather than to a developmental (e.g. wall growth) effect.

Conclusion
“Normal hooves” in horses are therefore directionally asymmetrical but,

notably, with a clear right supination and a left pronation. These results would
be considered by both farriers and veterinarians as an important feature of
hoof conformation. Now it would be interesting to study if this unevenness
coincides with both kinetic and kinematic asymmetrical pressure differences.
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