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Abstract
The Levenberg-Marquardt (LM) algorithm is the most commonly used training algorithm for moderate-sized 

feed forward artificial neural networks (ANNs) due to its high convergence rate and reasonably good accuracy. It 
conventionally employs a Jacobian-based approximation to the Hessian matrix, since exact evaluation of the Hessian 
matrix is generally considered computationally prohibitive. However, the storage of Jacobian matrix in computer 
memory is itself prone towards memory constraints, especially if the number of patterns in the training data exceeds 
a critical threshold. This paper presents a first attempt of evaluating the exact Hessian matrix using the direct 
differentiation approach for training a multilayer feed forward neural network using the LM algorithm. The weights 
employed for network training are initialized using a random number generator in MATLAB (R2010a). The efficiency 
of the proposed algorithm has been demonstrated using the well-known 2-spiral and the parity-N datasets, and the 
training performance has been compared with the Neural Network Toolbox in MATLAB (R2010a) which employs the 
conventional Jacobian-based learning methodology.
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Introduction

The LM algorithm is used to solve non-linear least squares 
optimization problems. It operates by interpolating between the Gauss-
Newton (GN) algorithm and the gradient descent method, due to which 
it is capable of searching the desired optimum even if the initial guess is 
located far from it. The most well-known application of LM algorithm 
is the solution of a generalized least-squares curve-fitting problem, 
involving m empirical datum pairs of independent and dependent 
variables, to optimize the parameters of the model curve such that the 
sum of squares represented by equation (1) becomes minimal.
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The training procedure of an ANN can also be viewed as a least-
squares curve-fitting problem, since the objective function to be 
minimized is the mean squared error (MSE) between the network-
computed matrix at the current training iteration and the target matrix, 
expressed as where W collectively represents the weights assigned 
to the connections between the network layers, T represents the 
target matrix assigned to the output layer, P represents the network-
computed matrix at the output layer at the current training iteration, 

ptsN denotes the total number of patterns in the training dataset, and 
M represents the size of each pattern in T. A comparison of equations 
(1) and (2) suggests that the LM algorithm can also be utilized as an 
efficient training algorithm for ANNs.
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In mathematics, the gradient is a generalization of the useful concept 
of the derivative to functions of several variables. If ( )nxxf ,,1   is a 
differentiable, scalar-valued function of several variables, its gradient 
is defined as a vector whose components are the n partial derivatives 

of f. The gradient of a scalar-valued function is thus a vector-valued 
function. In vector calculus, the Jacobian matrix or simply the 
Jacobian is the matrix of all first-order partial derivatives of a vector-
valued function. For instance, if ( )1, , nf x x is a function which 
takes real n-tuples as input and produces real m-tuples as output, it 
can be considered to be a combination of m real-valued component 
functions, ( ) ( )1 1 1, , , , , ,n m nF x x F x x   . The partial derivatives of all 
these functions with respect to the variables 1, , nx x  (if they exist) can 
be organized in an m-by-n matrix as of in equation (3). 
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where, J represents the Jacobian of F. The Hessian matrix, or simply 
the Hessian, is a square matrix of all second-order partial derivatives of 
a function. For a given function, ( )nxxxf ,,, 21  , if all second-order 
partial derivatives of f exist and are observed to be continuous over its 
domain, then the Hessian of f can be expressed as of in equation(4).
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The LM algorithm conventionally employs a Jacobian-based 
approximation to the Hessian matrix, since evaluation of its exact form 
has not only found to be intensely laborious but also computationally 
prohibitive [1-8]. However, in certain practical scenarios where training 
accuracy is prioritized over computational expense or the training data 
comprises an unusually large number of patterns, one might have to 
resort to the use of exact Hessian, since construction of the Jacobian 
itself incorporates the total number of patterns in the training data. 
It is due to this reason that the formulation of exact Hessian has still 
been the focus of a large number of research groups dedicated towards 
developing increasingly accurate training algorithms for considerably 
large-sized networks [9-14]. Bishop [9] reported an extended back-
propagation algorithm, which allows all components of the Hessian 
matrix to be evaluated exactly for a feed forward network of an 
arbitrary topology. It was shown that the components of the Hessian 
matrix can be evaluated exactly using multiple forward propagation 
through the network, followed by multiple backward propagation. 
Piche [10] developed equations for the exact calculation of the second 
derivative of an error function with respect to (w.r.t) the weights of a 
back-propagation neural network. It was shown that for a recurrent 
network with a sufficiently small number of free parameters, it might be 
reasonable to explicitly compute the second derivative. Pearlmutter [11] 
proposed a numerically accurate, time-efficient, and flexible technique 
to directly compute the product of Hessian with a vector. However, 
practical usefulness of the technique for updating the weights during 
network training was observed to depend on reasonably unbiased 
estimates of the gradient vector. Rossi [12] proposed three different 
methods for evaluating the components of the exact Hessian matrix 
for an arbitrary feed forward neural network – the direct method, the 
mixed method, and the back-propagation method. However, none 
of the proposed methods is found to yield complete mathematical 
expressions of all the second-order components of the Hessian matrix 
for training arbitrary feed forward neural networks using a given 
training algorithm. In contrast, Toh et al. [13] presented explicit 
vector and matrix canonical forms for the Jacobian and Hessian and 
an iterative training algorithm for a feed forward neural network with 
a single hidden layer and a single output unit. Hence, the algorithm 
could not be utilized for solving problems involving more than one 
unit in the output layer. Guimarães and Ramírez [14] proposed the use 
of sub-matrices for exact computation and assemblage of the Hessian 
matrix for training a multilayer perceptron (MLP). However, the total 
number of function evaluations required for a single estimation of the 
Hessian matrix was expected to result in critically lower computational 
speed during the actual training procedure. Wilamowski and Yu [15] 
addressed the problem of Jacobian matrix storage and multiplication 
via direct computation of a symmetric quasi-Hessian matrix and 
a gradient vector. The training speed was observed to improve 
significantly; however, the level of achievable network precision 
was still compromised owing to the differences existing between the 
components of the quasi-Hessian and the corresponding exact Hessian 
matrix.

The research studies conducted so far as mentioned above are 
generally based on exact Hessian evaluation using the indirect 

differentiation approach for small and moderate-sized networks with 
reasonably good accuracy. To the best knowledge of the authors, this 
study presents the first attempt of utilizing the direct differentiation 
approach for evaluating the components of the exact Hessian matrix for 
training a multilayer feed forward neural network with a single hidden 
layer using the LM algorithm. The initial weights for network training 
are obtained using a random number generator in MATLAB (R2010a). 
The paper is organized as follows. The following section presents the 
formulation of the exact gradient vector and the exact Hessian matrix 
for network training using the LM algorithm. The subsequent section 
will then demonstrate the training efficiency of the proposed LM 
algorithm for the solution of the well-known 2-spiral problem and 
the parity-N problems. The training performance of the proposed 
algorithm has been compared with the Neural Network Toolbox in 
MATLAB (R2010a) which is based on the conventional Jacobian-
based learning approach discussed above. The objective of the study is 
to present the proposed form of the LM algorithm as a novel means to 
train feed forward neural networks on unusually large-sized data sets 
with sufficiently high training speed and desirable level of accuracy for 
which the conventionally employed Jacobian-based approximations 
cannot be considered reliable owing to memory constraints and lack 
of network precision.

Mathematical Formulation
The Levenberg-marquardt algorithm

The weight update during the training process using the LM 
algorithm can be expressed as equation (5).

1+ = +W W Sopt
i i i iα 				                     (5)

where thi  represents the vector containing all the weights and 
biases used for the network at the thi  training iteration, while iS  and 

iS  represent the optimal step-size and the search direction at the iS
training iteration respectively. For the exact form of LM algorithm 
presented in this paper, iS  can be expressed as equation (6).

( ) 1δ −= +S H Gi i i iµ               		   	                 (6)

where iH  and thi  represent the exact Hessian matrix and the exact 

gradient vector at the thi training iteration, opt
iα  is the identity tensor, 

and optα  is the learning rate. For a general minimization scheme of a 

function f (X), the optimal step-size optα can be expressed as equation (7).
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α

α α 			                   (7)

In an actual training procedure of a MLP, the function f in equation 
(7) will represent the MSE at the iW training iteration, while X will 
be replaced by 

iW . A typical entry of the network-computed matrix 
for a feed forward neural network with a single hidden layer can be 
expressed as equation (8)
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where 1f  is the activation function applied on input to each neuron 
in the hidden layer, 2f  is the activation function applied on input to 
each neuron in the output layer, P represents the ( )×ptsN M  network-
computed matrix at each training iteration (M being the size of each 
pattern in P), I represents the ( )×ptsN N  input matrix (N being the size 
of each pattern in I), ptsN denotes the total number of patterns in each 
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of P and I, 1W is the number of neurons included in the hidden layer 
(hidden neurons), 1W  represents the ( )×HN N  matrix consisting of 
weights connecting the input layer to the hidden layer, 1b  represents 
the ( )1×HN  vector consisting of biases applied to each of the hidden 
neurons, ( )HNM ×  represents the ( )HNM ×  matrix consisting of weights 
connecting the hidden layer to the output layer, and ( )1×M  represents 
the ( )1×M  vector consisting of biases applied to each of the neurons 
in the output layer. For this study, we have selected 1f  and 2f  to be 
the hyperbolic tangent and the pure linear functions respectively, i.e., 
( ) ( )xxf tanh1 =  and ( ) xxf =2 in equation (9).

The rth row of the Jacobian matrix, at a given training iteration, can be 
expressed as

1 2 1 2
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where 1, ,= ptsr MN  and J is a ( ) × + + + pts H H HMN MN N N M N  matrix. 
Each of the derivatives included in equation (9) can be expressed in 
indicial notation as equation (10) to equation (13).
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where, T represents the ( )MN pts ×  target matrix. In equations (10)-

(13), 1, ,= Hj N , Nk ,,1= , 1, ,=n M , and ptsNm ,,1= . 

The exact gradient vector, at a given training iteration, can be 
expressed in equation (14).

1 2 1 2

MSE MSE MSE MSE ∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ 

G
W W b b

T 	           (14)	

where, G is a ( ) 1+ + + ×  H H HMN N N M N  vector, and TG
represents the transpose of G. Following substitution of equation (8) in 
(2), each of the derivatives included in equation (14) can be expressed 
in indicial notation as
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In equations (15)–(18), HNj ,,1= , Mn ,,1= , and Mn ,,1= . 

The exact Hessian matrix, at a given training iteration, can be 

expressed as
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where, H is a square matrix with the total number of rows/columns 
equal to ( )+ + +H H HMN N N M N . Following substitution of 
equation (8) in (2), each of the derivatives included in equation (19) 
can be expressed in indicial notation as
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Figure 1: Flowchart of the training process using the proposed LM 
algorithm.
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In equations (20)-(35), , 1, ,= Ha j N , , 1, ,=b k N , and 
, 1, ,=n r M . For ANN training using the Jacobian-based learning 

approach, the gradient and Hessian at the thi  training iteration can be 
expressed as

≈G J eT
i i i 		                                                                   (36)

and

≈H J JT
i i i 				                               (37)	

where, ie represents the vector containing the network errors at the 
thi  training iteration. 

If we assume that each component of the Jacobian or the exact 
Hessian matrix consumes R units of available computer memory, the 
total amount of memory consumed by the Jacobian matrix will be 

( )+ + +pts H H HMN MN N N M N R  units, while the total memory consumed 
by the exact Hessian matrix will be ( )2+ + +H H HMN N N M N R  units. 
However as →∞ptsN , a critical number of patterns will be reached 
at which the total number of memory units required for Jacobian 
matrix storage will exceed the total computer memory available, 
while the exact Hessian matrix will always be occupying the same 
( )2+ + +H H HMN N N M N R  units for all ptsN . Hence, we can conclude 
that the storage of Jacobian matrix in computer memory is constrained 
by the total number of patterns included in the training dataset, while 
the storage of the exact Hessian matrix is not bounded by any such 
constraint. However, a careful inspection of equations (9)-(13) and 
(14)-(37) clearly suggests that the proposed algorithm incorporates a 
significantly larger number of floating point operations required for 
the computation of the exact Hessian and is thus expected to result 
in substantially lower training speed than the conventional Jacobian-
based approximations thus necessitating the use of high-speed 
computational resources. A flowchart illustrating the training process 
using the proposed LM algorithm is shown in Figure 1. 

Training Results
The training process using the proposed LM algorithm was 

conducted on an Intel Core i5-2520M 2.5GHz processor with 4 GB 
RAM. The initial learning rate was set to be equal to 0.1, and was 
updated according to equation (38).

1
1
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10 , if MSE MSE
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− <
=  + ≥

i i i i
i

i i i i

µ µ
µ

µ µ
	                                  (38)

where MSEi  denotes the value of MSE observed at the thi  training 
iteration. The following sections present a performance comparison 
of the training results obtained using the proposed algorithm for the 
solution of the 2-spiral and the parity-N problems with the Neural 
Network Toolbox in MATLAB (R2010a) which is based on the 
Jacobian-based learning methodology.

2-Spiral problem

The governing equations used for generating the 2-spiral dataset 
can be expressed in equation (39) [16]:
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where ( ) ( )[ ]nns 21 xxI =  represents a typical pattern of the input 
matrix P. The targeted output sT  equals 1 if the two inputs in a given 
pattern correspond to a point on one spiral, and -1 if they correspond 
to a point on the other spiral (or vice versa). Hence the total number of 
patterns, s , contained in the dataset equals 2n. As demonstrated by Wan 
et al., a standard MLP architecture with a single hidden layer requires 
at least 34 hidden neurons to solve the 2-spiral problem [17]. More 
recently, it has been shown experimentally by Hunter et al. that the 
Neuron-by-Neuron (NBN) training algorithm with Fully Connected 
Cascade (FCC) architecture is the best combination requiring only 7 
hidden neurons to solve the 2-spiral problem [18]. For this study, the 
value of n is chosen to be equal to 500, which corresponds to 1000=s . 
Figure 2 shows a graphical illustration of the 2-spiral dataset based on 
the selected value of n (Figure 2).

Table 1 presents the training results obtained using the proposed 
algorithm obtained for the 2-spiral dataset for a range of 2-10 neurons 
in the hidden layer. For comparison, the results achieved using the NN 
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Toolbox to reach the same performance goal for a given value of HN  
are also reported in Table 1. It can be clearly seen that the NN Toolbox 
shows a significantly superior performance than the proposed algorithm 
in solving the 2-spiral problem. More specifically, it was observed that 
the NN Toolbox required 136% lesser number of iterations on average 
to reach the same performance goal for 2–10 neurons in the hidden 
layer, and resulted in a 113% higher average convergence rate w.r.t the 
number of iterations as compared to the proposed algorithm.

The parity-mapping problem is recognized as one of the most 
popular benchmarks in assessing the capability of multilayer neural 
networks for solving complex real-world problems with an acceptable 
level of precision. The N-bit parity function is a mapping defined 
on 2N distinct binary vectors that indicate whether the sum of the N 
components of a binary vector is odd or even. Let [ ]TNββββ ,,, 21 =  be 

a vector in NB  where { }NkRB k
NN ,1,2,for1or0: ==∈∆ ββ . 

The mapping 1: BB N →ψ  is then defined as the N-bit parity function 

if denoted as equation (40).
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=

=
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∑

∑

N

k
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N

k
k

β
ψ β
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	                                                    (40)

The parity mapping thus considered noticeably difficult for ANN 
learning since changes in a single bit was observed to result in significant 
changes in the output (Table 1).

Table 2 presents a comparison of the training results obtained for 
the 6-bit parity dataset using the proposed algorithm along with the 
corresponding results achieved using the NN Toolbox. It have been 
observed that for 2-10 neurons in the hidden layer, the proposed 
algorithm required 12% lesser number of iterations on average and a 
173% higher average convergence rate w.r.t the number of iterations 
to reach the same performance goal as compared to the NN Toolbox 
in solving the parity-6 problem. Furthermore, it was observed that 
the proposed algorithm could reach a feasible solution to the parity-6 
problem with a minimum of six neurons in the hidden layer, while the 
NN Toolbox was observed to require at least 7 hidden neurons. 

Table 3 presents a comparison of the training results obtained for 
the 9-bit parity dataset using the proposed algorithm along with the 
corresponding results achieved using the NN Toolbox. In contrast to 
the parity-6 problem discussed above, the proposed algorithm was 
observed to require 122% greater number of iterations on average 
than the NN Toolbox to reach the same performance goal for 2-10 
neurons in the hidden layer. However, it was observed to result in a 
116% higher average convergence rate w.r.t the number of iterations 
than the NN Toolbox for solving the parity-9 problem for 2-10 neurons 
in the hidden layer. Furthermore, it was observed that the proposed 

Figure 2: Graphical illustration of the 2-spiral problem dataset 
(n=500).

HN Performance 
Goal

(MSE)

No. of iterations
Average convergence rate 

w.r.t no. of iterations
LM using 
exact G 
and H

Neural 
Network 
Toolbox

LM using 
exact G 
and H

Neural 
Network 
Toolbox

2 0.99400 196 66 0.0033 0.0190
3 0.99580 250 14 0.0127 0.2596
4 0.99402 239 17 0.0092 0.0074
5 0.99373 250 22 0.0193 0.0371
6 0.99409 247 39 0.0175 0.0714
7 0.98732 250 75 0.0230 0.0120
8 0.98834 250 32 0.0297 0.0448
9 0.98523 250 124 0.0348 0.0062

10 0.98949 249 30 0.0486 0.2570

Table 1: Training results obtained on the 2-spiral dataset for the proposed algorithm 
and the Neural Network Toolbox in MATLAB (R2010).

HN Performance 
Goal

(MSE)

No. of iterations
Average convergence 

rate w.r.t no. of iterations
LM using 
exact G 
and H

Neural 
Network 
Toolbox

LM using 
exact G 
and H

Neural 
Network 
Toolbox

2 0.1547600 177 15 0.0047 0.0490
3 0.1103000 35 100 0.0664 0.0032
4 0.0539710 120 100 0.0042 0.0024
5 0.0626970 78 100 0.0401 0.0090
6 0.0530120 17 100 0.4838 0.0090
7 0.0935120 21 10 0.6251 0.0345
8 0.0682810 31 100 0.4775 0.0071
9 0.0078080 25 100 0.8986 0.0071

10 0.0098395 57 10 0.2085 0.0809

Table 2: Training results obtained on the parity-6 dataset for the proposed algorithm 
and the Neural Network Toolbox in MATLAB (R2010).

HN Performance 
Goal

(MSE)

No. of iterations
Average convergence 

rate w.r.t no. of iterations
LM using 
exact G 
and H

Neural 
Network 
Toolbox

LM using 
exact G 
and H

Neural 
Network 
Toolbox

2 0.2267200 174 19 0.0244 0.0183
3 0.1825400 200 9 0.0055 0.0331
4 0.0518150 200 37 0.0193 0.0108
5 0.0514260 200 18 0.0231 0.0229
6 0.0050782 161 100 0.0325 0.0074
7 0.0156440 200 33 0.0797 0.0264
8 0.0144570 200 26 0.0604 0.0315
9 0.0215280 81 100 0.3452 0.0068

10 0.0023482 200 112 0.1549 0.0058

Table 3: Training results obtained on the parity-9 dataset for the proposed algorithm 
and the Neural Network Toolbox in MATLAB (R2010).
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algorithm could reach a feasible solution to the parity-9 problem with a 
minimum of 9 neurons in the hidden layer, while the Neural Network 
Toolbox was observed to require at least 10 hidden neurons.

Since the proposed algorithm utilizes a completely random initial 
guess for the network weights, the simplest performance metric, which 
combines the training accuracy, the convergence rate and the required 
minimum number of iterations, could be expressed in equation (41) as:

( ) 2
1 31= − + +M I

ww G w R
I 		                             (41)	

where, G is the desired performance goal in terms of MSE with 
a user-defined weightage 1w , I is the least number of iterations 
required to reach G with a weightage 2w , and 3w  denotes the average 
convergence rate w.r.t the number of iterations with a weightage 3w .

Figure 3 displays a graphical comparison of the training 
performances observed for the proposed algorithm and the NN 
Toolbox for the 2-spiral dataset based on scaled values of M for equal 
weightages assigned to each of the three aforementioned performance 
parameters ( )3/1321 === www . As already observed earlier in Table 
1, the NN Toolbox shows a significantly better overall performance 
in solving the 2-spiral problem as the proposed algorithm for 2–10 
neurons used in the hidden layer. The only exceptions lie in the case 
of 7 and 9 hidden neurons for which the proposed algorithm performs 
equally good and marginally better than the NN Toolbox, respectively. 
On average, the NN Toolbox was observed to result in a 111% better 
training performance than the proposed algorithm in solving the 
2-spiral problem (Table 3).  

Figure 4 displays a graphical comparison of the training 
performances observed for the proposed algorithm and the NN 
Toolbox for the parity-6 dataset based on the values of M obtained for 
equal weightages assigned to each of the three performance parameters. 
As observed in Figure 4, the NN Toolbox performs equally well as 
the proposed algorithm for 4 neurons in the hidden layer and shows 
better performance only for the case of 2 hidden neurons. For 6-9 
neurons in the hidden layer, the proposed algorithm can be observed 
to perform substantially better than the NN Toolbox does. On average, 
the proposed algorithm was observed to show 25% better training 
performance then the NN Toolbox in solving the parity-6 problem.

Figure 5 displays a graphical comparison of the training 
performances observed for the proposed algorithm and the NN 
Toolbox for the parity-9 dataset based on the values of M obtained for 
equal weightages assigned to each of the three performance parameters. 
As illustrated in Figure 5, there is no significant difference between 

the training performances observed for the proposed algorithm and 
the NN Toolbox for the case of 2-8 hidden neurons for solving the 
parity-9 problem. However, for the case of 9 and 10 hidden neurons, 
the proposed algorithm can be observed to perform substantially 
better than the NN Toolbox as shown in Figure 5. For the case of 9 
neurons in the hidden layer, and considerably better for the case of 
10 neurons. On average, the proposed algorithm was observed to 
show 3% better training performance then the NN Toolbox in solving 
the parity-9 problem. Figure 6 shows a graphical comparison of the 
training performances for the proposed algorithm and the NN Toolbox 
based on the evolution of MSE for the parity-6 and the parity-9 datasets 
using 6 and 9 hidden neurons, respectively. As clearly seen, both types 
of training algorithms are observed to suffer from premature trapping 
at local minima during the course, which accounts for a significant 
proportion of the total training duration. More specifically, the NN 
Toolbox was observed to overcome the saturation barrier only after 
400 training iterations while the proposed algorithm was observed to 
be successful resume rapid convergence in less than 100 iterations for 
both types of datasets. It has been recently shown by Hunter et al. that 
the solution of a parity-N problem using a standard MLP architecture 
with one hidden layer typically requires a minimum of N+1 hidden 
neurons [18]. As clearly shown in Figure 6, the proposed form of LM 
algorithm is capable of solving a parity-N problem with a minimum 
of N hidden neurons in contrast to the NN Toolbox, which has been 
observed to achieve the solution with a minimum of N+1 hidden 
neurons in accordance with the findings reported by Hunter et al. [18].

Figure 3: Graphical comparison of the proposed algorithm with the 
MATLAB Neural Network Toolbox (R2010a) based on scaled values 
of M for the 2-spiral dataset.

Figure 4: Graphical comparison of the proposed algorithm with the 
MATLAB Neural Network Toolbox (R2010a) based on values of M 
for the parity-6 dataset. 

Figure 5: Graphical comparison of the proposed algorithm with the 
MATLAB Neural Network Toolbox (R2010a) based on scaled values 
of M for the parity-9 dataset. 
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Figure 6: Evolution of MSE with training iterations for (a) parity-6 dataset 
with 6 hidden neurons and (b) parity-9 dataset with 9 hidden neurons, for 
the proposed algorithm and the Neural Network Toolbox (MATLAB R2010a).

Conclusion
The storage of Jacobian matrix in computer memory is prone 

towards memory constraints, especially if the number of patterns in 
the training data exceeds a critical threshold. The datasets employed in 
commercial practices occasionally contain millions of patterns, which 
the conventional training algorithms might fail to accommodate if 
the resulting Jacobian matrix is too large to be stored in the available 
computer memory. Until the advent of online-learning which treats 
each pattern independently during the course of network training, the 
only option currently available to train unusually large-sized networks 
is the usage of exact Hessian for achieving the weights update during 
the course of network training. This paper presents the first attempt 
of evaluating the exact Hessian matrix using direct differentiation 
approach for training a multilayer feed forward network using the 
LM algorithm. The weights are initialized using a random number 
generator in MATLAB (R2010a), and are updated using the standard 
LM algorithm with the Jacobian-approximated gradient and Hessian 
replaced by their exact counterparts. The training performance of the 
proposed algorithm has been demonstrated for the well-known 2-spiral 
and the parity-N problems, and the results have been compared with 
those obtained using the Neural Network Toolbox in MATLAB 
(R2010a) which has been developed using the Jacobian-based learning 
methodology. A simple performance metric has been formulated 
which combines the training accuracy, the average convergence rate 
and the required minimum number of iterations to reach a pre-defined 
performance goal. It has been observed that the Neural Network 
Toolbox performs remarkably better than the proposed algorithm for 
the solution of the 2-spiral dataset, while the proposed algorithm results 
in a relatively better training performance than the Neural Network 
Toolbox for both the parity-6 and the parity-9 datasets. However, 
the Neural Network Toolbox has been observed to suffer from 
premature trapping at local minima for both types of parity datasets, 
which continues indefinitely till the end of network training, while 
the proposed algorithm has been observed to overcome the trapping 
barrier in less than a 100 iterations followed by very fast convergence. In 
contrast to the previously proposed training algorithms, which require 
at least N hidden neurons to solve the parity-N problems, the proposed 
training algorithm has been observed to require a minimum of N 
hidden neurons to reach a feasible solution. The outcome of the study 
can serve as a basis to design robust algorithms for training multilayer 
network architectures on highly complex real-world problems with 
sufficiently high degree of precision and a practically feasible level of 
training efficiency. 
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