
Volume 9 • Issue 1 • 1000223Global J Technol Optim, an open access journal
ISSN: 2229-8711

Research Article Open Access

Qadir and Smith., Global J Technol Optim 2018, 9:1
DOI: 10.4172/2229-8711.1000223

Research Article Open Access

Global Journal of
Technology & OptimizationGlo

ba
l J

ou
rn

al
of Technology and Optim

ization

ISSN: 2229-8711

Direct Differentiation Based Hessian Formulation for Training Multilayer
Feed forward Neural Networks using the LM Algorithm-Performance
Comparison with Conventional Jacobian-Based Learning
Najam ul Qadir1* and Stephen Montgomery Smith2

1Department of Mechanical Engineering, King Fahd University of Petroleum and Minerals, Dhahran, 31261, KSA, Saudi Arabia
2Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

*Corresponding author: Najam ul Qadir, Department of Mechanical Engineering,
King Fahd University of Petroleum and Minerals, Dhahran, 31261, KSA, Saudi
Arabia, Tel: 966-13-860-2540; E-mail: najam_980110@yahoo.com

Received April 28, 2018; Accepted March 19, 2018; Published March 23, 2018

Citation: Qadir Nu, Smith SM (2018) Direct Differentiation Based Hessian
Formulation for Training Multilayer Feed forward Neural Networks using the LM
Algorithm-Performance Comparison with Conventional Jacobian-Based Learning.
Global J Technol Optim 9: 223. doi: 10.4172/2229-8711.1000223

Copyright: © 2018 Qadir Nu, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Abstract
The Levenberg-Marquardt (LM) algorithm is the most commonly used training algorithm for moderate-sized

feed forward artificial neural networks (ANNs) due to its high convergence rate and reasonably good accuracy. It
conventionally employs a Jacobian-based approximation to the Hessian matrix, since exact evaluation of the Hessian
matrix is generally considered computationally prohibitive. However, the storage of Jacobian matrix in computer
memory is itself prone towards memory constraints, especially if the number of patterns in the training data exceeds
a critical threshold. This paper presents a first attempt of evaluating the exact Hessian matrix using the direct
differentiation approach for training a multilayer feed forward neural network using the LM algorithm. The weights
employed for network training are initialized using a random number generator in MATLAB (R2010a). The efficiency
of the proposed algorithm has been demonstrated using the well-known 2-spiral and the parity-N datasets, and the
training performance has been compared with the Neural Network Toolbox in MATLAB (R2010a) which employs the
conventional Jacobian-based learning methodology.

Keywords: Jacobian-based approximation; Feed forward; Hessian

Introduction

The LM algorithm is used to solve non-linear least squares
optimization problems. It operates by interpolating between the Gauss-
Newton (GN) algorithm and the gradient descent method, due to which
it is capable of searching the desired optimum even if the initial guess is
located far from it. The most well-known application of LM algorithm
is the solution of a generalized least-squares curve-fitting problem,
involving m empirical datum pairs of independent and dependent
variables, to optimize the parameters of the model curve such that the
sum of squares represented by equation (1) becomes minimal.

() () 2

1
,

=

= −  ∑
m

i i
i

S y f xβ β 		 (1)

The training procedure of an ANN can also be viewed as a least-
squares curve-fitting problem, since the objective function to be
minimized is the mean squared error (MSE) between the network-
computed matrix at the current training iteration and the target matrix,
expressed as where W collectively represents the weights assigned
to the connections between the network layers, T represents the
target matrix assigned to the output layer, P represents the network-
computed matrix at the output layer at the current training iteration,

ptsN denotes the total number of patterns in the training dataset, and
M represents the size of each pattern in T. A comparison of equations
(1) and (2) suggests that the LM algorithm can also be utilized as an
efficient training algorithm for ANNs.

() () 2

1 1

1MSE W P W T
= =

= −  ∑∑
ptsN M

mn mn
m nptsMN

 (2)

In mathematics, the gradient is a generalization of the useful concept
of the derivative to functions of several variables. If ()nxxf ,,1  is a
differentiable, scalar-valued function of several variables, its gradient
is defined as a vector whose components are the n partial derivatives

of f. The gradient of a scalar-valued function is thus a vector-valued
function. In vector calculus, the Jacobian matrix or simply the
Jacobian is the matrix of all first-order partial derivatives of a vector-
valued function. For instance, if ()1, , nf x x is a function which
takes real n-tuples as input and produces real m-tuples as output, it
can be considered to be a combination of m real-valued component
functions, () ()1 1 1, , , , , ,n m nF x x F x x   . The partial derivatives of all
these functions with respect to the variables 1, , nx x (if they exist) can
be organized in an m-by-n matrix as of in equation (3).

()

1 1

1

1

J

∂ ∂ 
 ∂ ∂ 

=  
 ∂ ∂ 
 ∂ ∂ 

n

m m

n

F F
x x

F
F F
x x



  



			 (3)

where, J represents the Jacobian of F. The Hessian matrix, or simply
the Hessian, is a square matrix of all second-order partial derivatives of
a function. For a given function, ()nxxxf ,,, 21  , if all second-order
partial derivatives of f exist and are observed to be continuous over its
domain, then the Hessian of f can be expressed as of in equation(4).

http://www.google.com.sa/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCoQFjAA&url=http%3A%2F%2Fwww.ccse.kfupm.edu.sa%2Fics%2F&ei=boIhU5T3PMWW0AXN5IGgBQ&usg=AFQjCNFUsz7EqU07BY_QxOdHWdnhVT-VhQ
mailto:najam_980110@yahoo.com

Page 2 of 7

Citation: Qadir Nu, Smith SM (2018) Direct Differentiation Based Hessian Formulation for Training Multilayer Feed forward Neural Networks using the
LM Algorithm-Performance Comparison with Conventional Jacobian-Based Learning. Global J Technol Optim 9: 223. doi: 10.4172/2229-
8711.1000223

Volume 9 • Issue 1 • 1000223Global J Technol Optim, an open access journal
ISSN: 2229-8711

()

2 2 2

2
1 1 2 1
2 2 2

2
2 1 2 2

2 2 2

2
1 2

H

 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂
 

= ∂ ∂ ∂ ∂ ∂ 
 
 
 ∂ ∂ ∂
 ∂ ∂ ∂ ∂ ∂ 

n

n

n n n

f f f
x x x x x

f f f
f x x x x x

f f f
x x x x x





   



			 (4)

The LM algorithm conventionally employs a Jacobian-based
approximation to the Hessian matrix, since evaluation of its exact form
has not only found to be intensely laborious but also computationally
prohibitive [1-8]. However, in certain practical scenarios where training
accuracy is prioritized over computational expense or the training data
comprises an unusually large number of patterns, one might have to
resort to the use of exact Hessian, since construction of the Jacobian
itself incorporates the total number of patterns in the training data.
It is due to this reason that the formulation of exact Hessian has still
been the focus of a large number of research groups dedicated towards
developing increasingly accurate training algorithms for considerably
large-sized networks [9-14]. Bishop [9] reported an extended back-
propagation algorithm, which allows all components of the Hessian
matrix to be evaluated exactly for a feed forward network of an
arbitrary topology. It was shown that the components of the Hessian
matrix can be evaluated exactly using multiple forward propagation
through the network, followed by multiple backward propagation.
Piche [10] developed equations for the exact calculation of the second
derivative of an error function with respect to (w.r.t) the weights of a
back-propagation neural network. It was shown that for a recurrent
network with a sufficiently small number of free parameters, it might be
reasonable to explicitly compute the second derivative. Pearlmutter [11]
proposed a numerically accurate, time-efficient, and flexible technique
to directly compute the product of Hessian with a vector. However,
practical usefulness of the technique for updating the weights during
network training was observed to depend on reasonably unbiased
estimates of the gradient vector. Rossi [12] proposed three different
methods for evaluating the components of the exact Hessian matrix
for an arbitrary feed forward neural network – the direct method, the
mixed method, and the back-propagation method. However, none
of the proposed methods is found to yield complete mathematical
expressions of all the second-order components of the Hessian matrix
for training arbitrary feed forward neural networks using a given
training algorithm. In contrast, Toh et al. [13] presented explicit
vector and matrix canonical forms for the Jacobian and Hessian and
an iterative training algorithm for a feed forward neural network with
a single hidden layer and a single output unit. Hence, the algorithm
could not be utilized for solving problems involving more than one
unit in the output layer. Guimarães and Ramírez [14] proposed the use
of sub-matrices for exact computation and assemblage of the Hessian
matrix for training a multilayer perceptron (MLP). However, the total
number of function evaluations required for a single estimation of the
Hessian matrix was expected to result in critically lower computational
speed during the actual training procedure. Wilamowski and Yu [15]
addressed the problem of Jacobian matrix storage and multiplication
via direct computation of a symmetric quasi-Hessian matrix and
a gradient vector. The training speed was observed to improve
significantly; however, the level of achievable network precision
was still compromised owing to the differences existing between the
components of the quasi-Hessian and the corresponding exact Hessian
matrix.

The research studies conducted so far as mentioned above are
generally based on exact Hessian evaluation using the indirect

differentiation approach for small and moderate-sized networks with
reasonably good accuracy. To the best knowledge of the authors, this
study presents the first attempt of utilizing the direct differentiation
approach for evaluating the components of the exact Hessian matrix for
training a multilayer feed forward neural network with a single hidden
layer using the LM algorithm. The initial weights for network training
are obtained using a random number generator in MATLAB (R2010a).
The paper is organized as follows. The following section presents the
formulation of the exact gradient vector and the exact Hessian matrix
for network training using the LM algorithm. The subsequent section
will then demonstrate the training efficiency of the proposed LM
algorithm for the solution of the well-known 2-spiral problem and
the parity-N problems. The training performance of the proposed
algorithm has been compared with the Neural Network Toolbox in
MATLAB (R2010a) which is based on the conventional Jacobian-
based learning approach discussed above. The objective of the study is
to present the proposed form of the LM algorithm as a novel means to
train feed forward neural networks on unusually large-sized data sets
with sufficiently high training speed and desirable level of accuracy for
which the conventionally employed Jacobian-based approximations
cannot be considered reliable owing to memory constraints and lack
of network precision.

Mathematical Formulation
The Levenberg-marquardt algorithm

The weight update during the training process using the LM
algorithm can be expressed as equation (5).

1+ = +W W Sopt
i i i iα 				 (5)

where thi represents the vector containing all the weights and
biases used for the network at the thi training iteration, while iS and

iS represent the optimal step-size and the search direction at the iS
training iteration respectively. For the exact form of LM algorithm
presented in this paper, iS can be expressed as equation (6).

() 1δ −= +S H Gi i i iµ 		 	 (6)

where iH and thi represent the exact Hessian matrix and the exact

gradient vector at the thi training iteration, opt
iα is the identity tensor,

and optα is the learning rate. For a general minimization scheme of a

function f (X), the optimal step-size optα can be expressed as equation (7).

()ArgMin= +  X Sopt f
α

α α 			 (7)

In an actual training procedure of a MLP, the function f in equation
(7) will represent the MSE at the iW training iteration, while X will
be replaced by

iW . A typical entry of the network-computed matrix
for a feed forward neural network with a single hidden layer can be
expressed as equation (8)

2 2, 1 1, 1, 2,
1 1

1, , , 1, ,
= =

    = + +   
    

= =

∑ ∑P W W I b b
HN N

mn nj jk mk j n
j k

pts

f f

n M m N 

		 (8)

where 1f is the activation function applied on input to each neuron
in the hidden layer, 2f is the activation function applied on input to
each neuron in the output layer, P represents the ()×ptsN M network-
computed matrix at each training iteration (M being the size of each
pattern in P), I represents the ()×ptsN N input matrix (N being the size
of each pattern in I), ptsN denotes the total number of patterns in each

Page 3 of 7

Citation: Qadir Nu, Smith SM (2018) Direct Differentiation Based Hessian Formulation for Training Multilayer Feed forward Neural Networks using the
LM Algorithm-Performance Comparison with Conventional Jacobian-Based Learning. Global J Technol Optim 9: 223. doi: 10.4172/2229-
8711.1000223

Volume 9 • Issue 1 • 1000223Global J Technol Optim, an open access journal
ISSN: 2229-8711

of P and I, 1W is the number of neurons included in the hidden layer
(hidden neurons), 1W represents the ()×HN N matrix consisting of
weights connecting the input layer to the hidden layer, 1b represents
the ()1×HN vector consisting of biases applied to each of the hidden
neurons, ()HNM × represents the ()HNM × matrix consisting of weights
connecting the hidden layer to the output layer, and ()1×M represents
the ()1×M vector consisting of biases applied to each of the neurons
in the output layer. For this study, we have selected 1f and 2f to be
the hyperbolic tangent and the pure linear functions respectively, i.e.,
() ()xxf tanh1 = and () xxf =2 in equation (9).

The rth row of the Jacobian matrix, at a given training iteration, can be
expressed as

1 2 1 2

 ∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ 

e e e eJ
W W b b

r r r r
r (9)

where 1, ,= ptsr MN and J is a () × + + + pts H H HMN MN N N M N matrix.
Each of the derivatives included in equation (9) can be expressed in
indicial notation as equation (10) to equation (13).

() ()
2

2, 1, 1,
11, 1,

 t h 1 an
=

∂ −  ∂  = = − +∑  ∂ ∂   

P Te W I W I b
W W

Nmn mnr r
nj mk jl ml j

ljk jk
 (10)

() ()1, 1,
12, 2,

tanh
=

∂ −∂
= = +∑

∂ ∂

P Te W I b
W W

Nmn mnr r
jk mk j

knj nj
 (11)

() ()
2

2, 1, 1,
11, 1,

1 tanh
=

∂ −  ∂  = = − +∑  ∂ ∂   

P Te W W I b
b b

Nmn mnr r
nj jl ml j

lj j

	 (12)

()
2, 2,

1
∂ −∂

= =
∂ ∂

P Te
b b

mn mnr r

n n
		 (13)

where, T represents the ()MN pts × target matrix. In equations (10)-

(13), 1, ,= Hj N , Nk ,,1= , 1, ,=n M , and ptsNm ,,1= .

The exact gradient vector, at a given training iteration, can be
expressed in equation (14).

1 2 1 2

MSE MSE MSE MSE ∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ 

G
W W b b

T 	 (14)	

where, G is a () 1+ + + ×  H H HMN N N M N vector, and TG
represents the transpose of G. Following substitution of equation (8) in
(2), each of the derivatives included in equation (14) can be expressed
in indicial notation as

() ()
2

2, 1, 1,
11 11,

MSE 2 1 tanh
== =

 ∂  = − − +∑  ∂   
∑∑W I P T W I b

W

ptsN M N

nj mk mn mn jl ml j
lm njk ptsMN (15)

() ()1, 1,
112,

MSE 2 tanh
==

∂
= − +∑

∂ ∑ P T W I b
W

ptsN N

mn mn jk mk j
kmnj ptsMN

 (16)		
		

() ()
2

2, 1, 1,
11 11,

MSE 2 1 tanh
== =

 ∂  = − − +∑  ∂   
∑∑W P T W I b

b

ptsN M N

nj mn mn jl ml j
lm nj ptsMN (17)

and

()
12,

MSE 2
=

∂
= −

∂ ∑ P T
b

ptsN

mn mn
mn ptsMN

 (18)

In equations (15)–(18), HNj ,,1= , Mn ,,1= , and Mn ,,1= .

The exact Hessian matrix, at a given training iteration, can be

expressed as
2 2 2 2

1 1 1 2 1 1 1 2
2 2 2 2

2 1 2 2 2 1 2 2
2 2 2 2

1 1 1 2 1 1 1 2
2 2 2 2

2 1 2 2 2 1 2 2

MSE MSE MSE MSE

MSE MSE MSE MSE

MSE MSE MSE MSE

MSE MSE MSE MSE

 ∂ ∂ ∂ ∂
 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂
 
∂ ∂ ∂ ∂ =  ∂ ∂ ∂ ∂ 
∂ ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂ 
 ∂ ∂ ∂ ∂ 

W W W W W b W b

W W W W W b W b
H

b W b W b b b b

b W b W b b b b

 (19)	

where, H is a square matrix with the total number of rows/columns
equal to ()+ + +H H HMN N N M N . Following substitution of
equation (8) in (2), each of the derivatives included in equation (19)
can be expressed in indicial notation as

() ()
()

2 2

2, 2, 1, 1, 1, 1,
1 11 1

22

2, 1, 1, 1,
11, 1,

2,

2 1 tanh 1 tanh ,

MSE 1 tanh 1 tanh
2

= == =

=

     − + − + ≠∑ ∑          

 ∂  = − + −∑  ∂   

∑∑W W I I W I b W I b

W W I b W
W W

W I I

ptsN M N N

nj na mk mb jl ml j al ml a
l lm npts

N

na jl ml j
lab jk

nj mk mb
pts

if j a
MN

MN

()
() () ()

2

1,
1

3
1 1

1, 1, 1, 1,
1 1

,

2 tanh tanh

=

= =

= =




     +∑        =      + − + − +∑ ∑       

∑∑
I b

P T W I b W I b

pts

N

al ml aN M l

N Nm n

mn mn jl ml j jl ml j
l l

if j a
 (20)

() ()
() ()

()

2

2, 1, 1, 1, 1,
1 11

22

2, 1, 1, 1, 1,
1 11, 2,

1,

2 tanh 1 tanh ,

MSE tanh 1 tanh
2

1 tanh

= ==

= =

  + − + ≠∑ ∑    

 ∂  = + − +∑ ∑  ∂   

+ − − +

∑W I W I b W I b

W W I b W I b
W W

I

P T W I

ptsN N N

na mb jl ml j al ml a
l lmpts

N N

na jl ml j al ml a
l lab nj

mb
pts

mn mn jl ml

if j a
MN

MN ()
2

1

1,
1

,
=

=




  

 
  =      ∑       

∑
b

ptsN

Nm

j
l

if j a
 (21)	

() ()
() () ()

2

2, 1, 1, 1, 1,2 1 11

2
2, 1,

2, 1, 1, 1, 1,
1 11

2 tanh 1 tanh ,
MSE

2 tanh 1 tanh ,

= ==

= ==

  + − + ≠∑ ∑   ∂  =
∂     + + − − +∑ ∑        

∑

∑

W I W I b W I b

W W
I W W I b P T W I b

pts

pts

N N N

na mk jl ml j al ml a
l lmpts

N N Nnj ak
mk na jl ml j mn mn al ml a

l lmpts

if j a
MN

MN





 =


if j a
 (22)

() ()2
1, 1, 1, 1,

1 11
2, 2,

2 tanh tanh ,MSE

0, otherwise

= ==


+ + =∑ ∑∂ = ∂ 



∑ W I b W I b
W W

ptsN N N

al ml a jl ml j
l lmpts

nj ra

if r n
MN (23)

() ()
()

2 2

2, 2, 1, 1, 1, 1,
1 11 1

22

2, 1, 1, 1,
11, 1,

2,

2 1 tanh 1 tanh ,

MSE 1 tanh 1 tanh
2

= == =

=

     − + − + ≠∑ ∑          

 ∂  = − + − +∑  ∂   

∑∑W W I W I b W I b

W W I b W I b
W b

W I

ptsN M N N

nj na mb jl ml j al ml a
l lm npts

N

na jl ml j al ml
lab j

nj mb
pts

if j a
MN

MN

()
() () ()

2

1,
1

3
1 1

1, 1, 1, 1,
1 1

,

2 tanh tanh

=

= =

= =




     ∑        =      + − + − +∑ ∑       

∑∑
P T W I b W I b

pts

N

aN M l

N Nm n

mn mn jl ml j jl ml j
l l

if j a

 (24)

()
22

2, 1, 1,
111, 2,

MSE 2 1 tanh
==

 ∂  = − +∑  ∂   
∑W I W I b

W b

ptsN N

na mb al ml a
lmab n ptsMN

	 (25)

() ()
() () ()

2

2, 1, 1, 1, 1,2 1 11

2
2, 1,

2, 1, 1, 1, 1,
1 11

2 tanh 1 tanh ,
MSE

2 tanh 1 tanh ,

= ==

= ==

   + − + ≠∑ ∑   ∂  = ∂     + + − − + =∑ ∑        

∑

∑

W W I b W I b

W b
W W I b P T W I b

pts

pts

N N N

nj al ml a jl ml j
l lmpts

N N Nna j
nj al ml a mn mn jl ml j

l lmpts

if j a
MN

if j a
MN








 (26)

()2
1, 1,

11
2, 2,

2 tanh ,MSE

0, otherwise

==


+ =∑∂ = ∂ 



∑ W I b
W b

ptsN N

al ml a
lmpts

na r

if r n
MN (27)

() ()
()

2 2

2, 2, 1, 1, 1, 1,
1 11 1

22

2, 1, 1, 1,
11, 1,

2,

2 1 tanh 1 tanh ,

MSE 1 tanh 1 tanh
2

= == =

=

     − + − + ≠∑ ∑          

 ∂  = − + − +∑  ∂   

∑∑W W I W I b W I b

W W I b W I b
b W

W I

ptsN M N N

nj na mk jl ml j al ml a
l lm npts

N

na jl ml j al ml
la jk

nj mk
pts

if j a
MN

MN

()
() () ()

2

1,
1

3
1 1

1, 1, 1, 1,
1 1

,

2 tanh tanh

=

= =

= =




     ∑        =      + − + − +∑ ∑       

∑∑
P T W I b W I b

pts

N

aN M l

N Nm n

mn mn jl ml j jl ml j
l l

if j a
 (28)

() ()
() ()

()

2

2, 1, 1, 1, 1,
1 11

22

2, 1, 1, 1, 1,
1 11, 2,

1, 1,
1

2 tanh 1 tanh ,

MSE tanh 1 tanh
2

1 tanh

= ==

= =

=

  + − + ≠∑ ∑    

 ∂  = + − +∑ ∑  ∂   

+ − − +

∑W W I b W I b

W W I b W I b
b W

P T W I b

ptsN N N

na jl ml j al ml a
l lmpts

N N

na jl ml j al ml a
l la nj

pts
mn mn jl ml j

l

if j a
MN

MN ()
2

1
,

=




  

 
  =      ∑       

∑
ptsN

Nm
if j a

 (29)

()
22

2, 1, 1,
112, 1,

MSE 2 1 tanh
==

 ∂  = − +∑  ∂   
∑W I W I b

b W

ptsN N

nj mk jl ml j
lmn jk ptsMN

	 (30)

Page 4 of 7

Citation: Qadir Nu, Smith SM (2018) Direct Differentiation Based Hessian Formulation for Training Multilayer Feed forward Neural Networks using the
LM Algorithm-Performance Comparison with Conventional Jacobian-Based Learning. Global J Technol Optim 9: 223. doi: 10.4172/2229-
8711.1000223

Volume 9 • Issue 1 • 1000223Global J Technol Optim, an open access journal
ISSN: 2229-8711

Figure 1: Flowchart of the training process using the proposed LM
algorithm.

()2
1, 1,

11
2, 2,

2 tanh ,MSE

0, otherwise

==


+ =∑∂ = ∂ 



∑ W I b
b W

ptsN N

jl ml j
lmpts

n rj

if r n
MN 	 (31)

() ()
()

2 2

2, 2, 1, 1, 1, 1,
1 11 1

22

2, 1, 1, 1, 1,
1 11, 1,

2,

2 1 tanh 1 tanh ,

MSE 1 tanh 1 tanh
2

= == =

= =

     − + − + ≠∑ ∑          

 ∂  = − + − +∑  ∂   

∑∑W W W I b W I b

W W I b W I b
b b

W

ptsN M N N

nj na jl ml j al ml a
l lm npts

N N

na jl ml j al ml a
l la j

nj
pts

if j a
MN

MN

()
() () ()

2

3
1 1

1, 1, 1, 1,
1 1

,

2 tanh tanh
= =

= =




     ∑        =      + − + − +∑ ∑       

∑∑
P T W I b W I b

ptsN M

N Nm n

mn mn jl ml j jl ml j
l l

if j a
 (32)

()
22

2, 1, 1,
111, 2,

MSE 2 1 tanh
==

 ∂  = − +∑  ∂   
∑W W I b

b b

ptsN N

na al ml a
lma n ptsMN (33)

()
22

2, 1, 1,
112, 1,

MSE 2 1 tanh
==

 ∂  = − +∑  ∂   
∑W W I b

b b

ptsN N

nj jl ml j
lmn j ptsMN

	 (34)

and

2

2, 2,

2 , ifMSE

0,otherwise

 =∂ = ∂ 
b bn r

r n
M

						
		 (35)

In equations (20)-(35), , 1, ,= Ha j N , , 1, ,=b k N , and
, 1, ,=n r M . For ANN training using the Jacobian-based learning

approach, the gradient and Hessian at the thi training iteration can be
expressed as

≈G J eT
i i i 		 (36)

and

≈H J JT
i i i 				 (37)	

where, ie represents the vector containing the network errors at the
thi training iteration.

If we assume that each component of the Jacobian or the exact
Hessian matrix consumes R units of available computer memory, the
total amount of memory consumed by the Jacobian matrix will be

()+ + +pts H H HMN MN N N M N R units, while the total memory consumed
by the exact Hessian matrix will be ()2+ + +H H HMN N N M N R units.
However as →∞ptsN , a critical number of patterns will be reached
at which the total number of memory units required for Jacobian
matrix storage will exceed the total computer memory available,
while the exact Hessian matrix will always be occupying the same
()2+ + +H H HMN N N M N R units for all ptsN . Hence, we can conclude
that the storage of Jacobian matrix in computer memory is constrained
by the total number of patterns included in the training dataset, while
the storage of the exact Hessian matrix is not bounded by any such
constraint. However, a careful inspection of equations (9)-(13) and
(14)-(37) clearly suggests that the proposed algorithm incorporates a
significantly larger number of floating point operations required for
the computation of the exact Hessian and is thus expected to result
in substantially lower training speed than the conventional Jacobian-
based approximations thus necessitating the use of high-speed
computational resources. A flowchart illustrating the training process
using the proposed LM algorithm is shown in Figure 1.

Training Results
The training process using the proposed LM algorithm was

conducted on an Intel Core i5-2520M 2.5GHz processor with 4 GB
RAM. The initial learning rate was set to be equal to 0.1, and was
updated according to equation (38).

1
1

1

0.1 , if MSE MSE
10 , if MSE MSE

+
+

+

− <
=  + ≥

i i i i
i

i i i i

µ µ
µ

µ µ
	 (38)

where MSEi denotes the value of MSE observed at the thi training
iteration. The following sections present a performance comparison
of the training results obtained using the proposed algorithm for the
solution of the 2-spiral and the parity-N problems with the Neural
Network Toolbox in MATLAB (R2010a) which is based on the
Jacobian-based learning methodology.

2-Spiral problem

The governing equations used for generating the 2-spiral dataset
can be expressed in equation (39) [16]:

() ()
() ()

()

()

()

1

2

sin 0.5

cos 0.5

where

0.4 105
, for one spiral

104
0.4 105

, for the other spiral
104

1
16

1, 2,3,

= ⋅ +


= ⋅ +

−
= 

−


−
=

=

x

x
n n

n n

n

n

n r

n r

n

r
n

n

n

α

α

π
α



		 (39)

where () ()[]nns 21 xxI = represents a typical pattern of the input
matrix P. The targeted output sT equals 1 if the two inputs in a given
pattern correspond to a point on one spiral, and -1 if they correspond
to a point on the other spiral (or vice versa). Hence the total number of
patterns, s , contained in the dataset equals 2n. As demonstrated by Wan
et al., a standard MLP architecture with a single hidden layer requires
at least 34 hidden neurons to solve the 2-spiral problem [17]. More
recently, it has been shown experimentally by Hunter et al. that the
Neuron-by-Neuron (NBN) training algorithm with Fully Connected
Cascade (FCC) architecture is the best combination requiring only 7
hidden neurons to solve the 2-spiral problem [18]. For this study, the
value of n is chosen to be equal to 500, which corresponds to 1000=s .
Figure 2 shows a graphical illustration of the 2-spiral dataset based on
the selected value of n (Figure 2).

Table 1 presents the training results obtained using the proposed
algorithm obtained for the 2-spiral dataset for a range of 2-10 neurons
in the hidden layer. For comparison, the results achieved using the NN

Page 5 of 7

Citation: Qadir Nu, Smith SM (2018) Direct Differentiation Based Hessian Formulation for Training Multilayer Feed forward Neural Networks using the
LM Algorithm-Performance Comparison with Conventional Jacobian-Based Learning. Global J Technol Optim 9: 223. doi: 10.4172/2229-
8711.1000223

Volume 9 • Issue 1 • 1000223Global J Technol Optim, an open access journal
ISSN: 2229-8711

Toolbox to reach the same performance goal for a given value of HN
are also reported in Table 1. It can be clearly seen that the NN Toolbox
shows a significantly superior performance than the proposed algorithm
in solving the 2-spiral problem. More specifically, it was observed that
the NN Toolbox required 136% lesser number of iterations on average
to reach the same performance goal for 2–10 neurons in the hidden
layer, and resulted in a 113% higher average convergence rate w.r.t the
number of iterations as compared to the proposed algorithm.

The parity-mapping problem is recognized as one of the most
popular benchmarks in assessing the capability of multilayer neural
networks for solving complex real-world problems with an acceptable
level of precision. The N-bit parity function is a mapping defined
on 2N distinct binary vectors that indicate whether the sum of the N
components of a binary vector is odd or even. Let []TNββββ ,,, 21 = be

a vector in NB where { }NkRB k
NN ,1,2,for1or0: ==∈∆ ββ .

The mapping 1: BB N →ψ is then defined as the N-bit parity function

if denoted as equation (40).

() 1

1

1 if is odd

0 if is even

=

=


= 



∑

∑

N

k
k
N

k
k

β
ψ β

β

	 (40)

The parity mapping thus considered noticeably difficult for ANN
learning since changes in a single bit was observed to result in significant
changes in the output (Table 1).

Table 2 presents a comparison of the training results obtained for
the 6-bit parity dataset using the proposed algorithm along with the
corresponding results achieved using the NN Toolbox. It have been
observed that for 2-10 neurons in the hidden layer, the proposed
algorithm required 12% lesser number of iterations on average and a
173% higher average convergence rate w.r.t the number of iterations
to reach the same performance goal as compared to the NN Toolbox
in solving the parity-6 problem. Furthermore, it was observed that
the proposed algorithm could reach a feasible solution to the parity-6
problem with a minimum of six neurons in the hidden layer, while the
NN Toolbox was observed to require at least 7 hidden neurons.

Table 3 presents a comparison of the training results obtained for
the 9-bit parity dataset using the proposed algorithm along with the
corresponding results achieved using the NN Toolbox. In contrast to
the parity-6 problem discussed above, the proposed algorithm was
observed to require 122% greater number of iterations on average
than the NN Toolbox to reach the same performance goal for 2-10
neurons in the hidden layer. However, it was observed to result in a
116% higher average convergence rate w.r.t the number of iterations
than the NN Toolbox for solving the parity-9 problem for 2-10 neurons
in the hidden layer. Furthermore, it was observed that the proposed

Figure 2: Graphical illustration of the 2-spiral problem dataset
(n=500).

HN Performance
Goal

(MSE)

No. of iterations
Average convergence rate

w.r.t no. of iterations
LM using
exact G
and H

Neural
Network
Toolbox

LM using
exact G
and H

Neural
Network
Toolbox

2 0.99400 196 66 0.0033 0.0190
3 0.99580 250 14 0.0127 0.2596
4 0.99402 239 17 0.0092 0.0074
5 0.99373 250 22 0.0193 0.0371
6 0.99409 247 39 0.0175 0.0714
7 0.98732 250 75 0.0230 0.0120
8 0.98834 250 32 0.0297 0.0448
9 0.98523 250 124 0.0348 0.0062

10 0.98949 249 30 0.0486 0.2570

Table 1: Training results obtained on the 2-spiral dataset for the proposed algorithm
and the Neural Network Toolbox in MATLAB (R2010).

HN Performance
Goal

(MSE)

No. of iterations
Average convergence

rate w.r.t no. of iterations
LM using
exact G
and H

Neural
Network
Toolbox

LM using
exact G
and H

Neural
Network
Toolbox

2 0.1547600 177 15 0.0047 0.0490
3 0.1103000 35 100 0.0664 0.0032
4 0.0539710 120 100 0.0042 0.0024
5 0.0626970 78 100 0.0401 0.0090
6 0.0530120 17 100 0.4838 0.0090
7 0.0935120 21 10 0.6251 0.0345
8 0.0682810 31 100 0.4775 0.0071
9 0.0078080 25 100 0.8986 0.0071

10 0.0098395 57 10 0.2085 0.0809

Table 2: Training results obtained on the parity-6 dataset for the proposed algorithm
and the Neural Network Toolbox in MATLAB (R2010).

HN Performance
Goal

(MSE)

No. of iterations
Average convergence

rate w.r.t no. of iterations
LM using
exact G
and H

Neural
Network
Toolbox

LM using
exact G
and H

Neural
Network
Toolbox

2 0.2267200 174 19 0.0244 0.0183
3 0.1825400 200 9 0.0055 0.0331
4 0.0518150 200 37 0.0193 0.0108
5 0.0514260 200 18 0.0231 0.0229
6 0.0050782 161 100 0.0325 0.0074
7 0.0156440 200 33 0.0797 0.0264
8 0.0144570 200 26 0.0604 0.0315
9 0.0215280 81 100 0.3452 0.0068

10 0.0023482 200 112 0.1549 0.0058

Table 3: Training results obtained on the parity-9 dataset for the proposed algorithm
and the Neural Network Toolbox in MATLAB (R2010).

Page 6 of 7

Citation: Qadir Nu, Smith SM (2018) Direct Differentiation Based Hessian Formulation for Training Multilayer Feed forward Neural Networks using the
LM Algorithm-Performance Comparison with Conventional Jacobian-Based Learning. Global J Technol Optim 9: 223. doi: 10.4172/2229-
8711.1000223

Volume 9 • Issue 1 • 1000223Global J Technol Optim, an open access journal
ISSN: 2229-8711

algorithm could reach a feasible solution to the parity-9 problem with a
minimum of 9 neurons in the hidden layer, while the Neural Network
Toolbox was observed to require at least 10 hidden neurons.

Since the proposed algorithm utilizes a completely random initial
guess for the network weights, the simplest performance metric, which
combines the training accuracy, the convergence rate and the required
minimum number of iterations, could be expressed in equation (41) as:

() 2
1 31= − + +M I

ww G w R
I 		 (41)	

where, G is the desired performance goal in terms of MSE with
a user-defined weightage 1w , I is the least number of iterations
required to reach G with a weightage 2w , and 3w denotes the average
convergence rate w.r.t the number of iterations with a weightage 3w .

Figure 3 displays a graphical comparison of the training
performances observed for the proposed algorithm and the NN
Toolbox for the 2-spiral dataset based on scaled values of M for equal
weightages assigned to each of the three aforementioned performance
parameters ()3/1321 === www . As already observed earlier in Table
1, the NN Toolbox shows a significantly better overall performance
in solving the 2-spiral problem as the proposed algorithm for 2–10
neurons used in the hidden layer. The only exceptions lie in the case
of 7 and 9 hidden neurons for which the proposed algorithm performs
equally good and marginally better than the NN Toolbox, respectively.
On average, the NN Toolbox was observed to result in a 111% better
training performance than the proposed algorithm in solving the
2-spiral problem (Table 3).

Figure 4 displays a graphical comparison of the training
performances observed for the proposed algorithm and the NN
Toolbox for the parity-6 dataset based on the values of M obtained for
equal weightages assigned to each of the three performance parameters.
As observed in Figure 4, the NN Toolbox performs equally well as
the proposed algorithm for 4 neurons in the hidden layer and shows
better performance only for the case of 2 hidden neurons. For 6-9
neurons in the hidden layer, the proposed algorithm can be observed
to perform substantially better than the NN Toolbox does. On average,
the proposed algorithm was observed to show 25% better training
performance then the NN Toolbox in solving the parity-6 problem.

Figure 5 displays a graphical comparison of the training
performances observed for the proposed algorithm and the NN
Toolbox for the parity-9 dataset based on the values of M obtained for
equal weightages assigned to each of the three performance parameters.
As illustrated in Figure 5, there is no significant difference between

the training performances observed for the proposed algorithm and
the NN Toolbox for the case of 2-8 hidden neurons for solving the
parity-9 problem. However, for the case of 9 and 10 hidden neurons,
the proposed algorithm can be observed to perform substantially
better than the NN Toolbox as shown in Figure 5. For the case of 9
neurons in the hidden layer, and considerably better for the case of
10 neurons. On average, the proposed algorithm was observed to
show 3% better training performance then the NN Toolbox in solving
the parity-9 problem. Figure 6 shows a graphical comparison of the
training performances for the proposed algorithm and the NN Toolbox
based on the evolution of MSE for the parity-6 and the parity-9 datasets
using 6 and 9 hidden neurons, respectively. As clearly seen, both types
of training algorithms are observed to suffer from premature trapping
at local minima during the course, which accounts for a significant
proportion of the total training duration. More specifically, the NN
Toolbox was observed to overcome the saturation barrier only after
400 training iterations while the proposed algorithm was observed to
be successful resume rapid convergence in less than 100 iterations for
both types of datasets. It has been recently shown by Hunter et al. that
the solution of a parity-N problem using a standard MLP architecture
with one hidden layer typically requires a minimum of N+1 hidden
neurons [18]. As clearly shown in Figure 6, the proposed form of LM
algorithm is capable of solving a parity-N problem with a minimum
of N hidden neurons in contrast to the NN Toolbox, which has been
observed to achieve the solution with a minimum of N+1 hidden
neurons in accordance with the findings reported by Hunter et al. [18].

Figure 3: Graphical comparison of the proposed algorithm with the
MATLAB Neural Network Toolbox (R2010a) based on scaled values
of M for the 2-spiral dataset.

Figure 4: Graphical comparison of the proposed algorithm with the
MATLAB Neural Network Toolbox (R2010a) based on values of M
for the parity-6 dataset.

Figure 5: Graphical comparison of the proposed algorithm with the
MATLAB Neural Network Toolbox (R2010a) based on scaled values
of M for the parity-9 dataset.

Page 7 of 7

Citation: Qadir Nu, Smith SM (2018) Direct Differentiation Based Hessian Formulation for Training Multilayer Feed forward Neural Networks using the
LM Algorithm-Performance Comparison with Conventional Jacobian-Based Learning. Global J Technol Optim 9: 223. doi: 10.4172/2229-
8711.1000223

Volume 9 • Issue 1 • 1000223Global J Technol Optim, an open access journal
ISSN: 2229-8711

Figure 6: Evolution of MSE with training iterations for (a) parity-6 dataset
with 6 hidden neurons and (b) parity-9 dataset with 9 hidden neurons, for
the proposed algorithm and the Neural Network Toolbox (MATLAB R2010a).

Conclusion
The storage of Jacobian matrix in computer memory is prone

towards memory constraints, especially if the number of patterns in
the training data exceeds a critical threshold. The datasets employed in
commercial practices occasionally contain millions of patterns, which
the conventional training algorithms might fail to accommodate if
the resulting Jacobian matrix is too large to be stored in the available
computer memory. Until the advent of online-learning which treats
each pattern independently during the course of network training, the
only option currently available to train unusually large-sized networks
is the usage of exact Hessian for achieving the weights update during
the course of network training. This paper presents the first attempt
of evaluating the exact Hessian matrix using direct differentiation
approach for training a multilayer feed forward network using the
LM algorithm. The weights are initialized using a random number
generator in MATLAB (R2010a), and are updated using the standard
LM algorithm with the Jacobian-approximated gradient and Hessian
replaced by their exact counterparts. The training performance of the
proposed algorithm has been demonstrated for the well-known 2-spiral
and the parity-N problems, and the results have been compared with
those obtained using the Neural Network Toolbox in MATLAB
(R2010a) which has been developed using the Jacobian-based learning
methodology. A simple performance metric has been formulated
which combines the training accuracy, the average convergence rate
and the required minimum number of iterations to reach a pre-defined
performance goal. It has been observed that the Neural Network
Toolbox performs remarkably better than the proposed algorithm for
the solution of the 2-spiral dataset, while the proposed algorithm results
in a relatively better training performance than the Neural Network
Toolbox for both the parity-6 and the parity-9 datasets. However,
the Neural Network Toolbox has been observed to suffer from
premature trapping at local minima for both types of parity datasets,
which continues indefinitely till the end of network training, while
the proposed algorithm has been observed to overcome the trapping
barrier in less than a 100 iterations followed by very fast convergence. In
contrast to the previously proposed training algorithms, which require
at least N hidden neurons to solve the parity-N problems, the proposed
training algorithm has been observed to require a minimum of N
hidden neurons to reach a feasible solution. The outcome of the study
can serve as a basis to design robust algorithms for training multilayer
network architectures on highly complex real-world problems with
sufficiently high degree of precision and a practically feasible level of
training efficiency.

Acknowledgement

The authors are highly thankful to Dr. David Jack (Baylor Univ., TX, U.S.A)

and Dr Douglas Smith (Univ. of Missouri, Columbia, MO, U.S.A) in the conceptual
phase, and Prof. Habib Abualhamayel (King Fahd Univ. of Petroleum and Minerals,
Dhahran, K.S.A) for his computational support during the preparation of the
manuscript.

Conflict of Interest

The authors declare that they do not have any mutual conflicts of interest
regarding the publication of this paper.

References

1.	 Hagan MT (1994) Training feedforward networks with the Marquardt Algorithm.
IEEE Transactions on Neural Networks 5: 989-993.

2.	 Suri NNRR, Deodhare D, Nagabhushan P (2002) Parallel Levenberg-
Marquardt-based neural network training on Linux clusters-a case study. In:
3rd Indian Conference on Computer Vision, Graphics and Image Processing,
Ahmadabad, India.

3.	 Kermani BG, Schiffman SS, Nagle HT (2005) Performance of the Levenberg-
Marquardt neural network training method in electronic nose applications.
Sensors and Actuators B Chemical 110: 13-22.

4.	 Mishra D, Yadav A, Ray S, Kalra PK (2005) Levenberg-Marquardt learning
algorithm for integrate-and-fire neuron model. Neural Information Processing -
Letters and Reviews 9: 41-51.

5.	 Suratgar AA, Tavakoli MB, Hoseinabadi A (2007) Modified Levenberg-
Marquardt method for neural networks training. World Academy of Science,
Engineering and Technology Int J Comp Inform Engineer6: 636-638.

6.	 Basterrech S, Mohammed S, Rubino G, Soliman M (2011) Levenberg-
Marquardt training algorithms for random neural networks. The Computer
Journal 54: 125-135.

7.	 Charles PK, Khan H, Kumar CR, Nikhita N, Roy S, et al. (2011) Artificial neural
network based image compression using Levenberg-Marquardt algorithm. Int J
Modern Engineer Res 1: 482-489.

8.	 Scanlan D, Mulvaney D (2013) Graphics processor unit hardware acceleration
of Levenberg-Marquardt artificial neural network training, Int J Engineer Sci 2:
1-7.

9.	 Bishop CM (1992) Exact calculation of the Hessian matrix for the multi-layer
perceptron. Neural Computation 4: 494-501.

10.	Piche SW (1994) The second derivative of a recurrent network. In: IEEE
International Conference on Computational Intelligence, Orlando, FL, USA 1:
250.

11.	Pearlmutter BA (1994) Fast exact multiplication by the Hessian. Neural
Computation 6: 147-160.

12.	Rossi F (1996) Second differentials in arbitrary feed-forward neural networks.
In: IEEE International Conference on Neural Networks, Washington DC, USA
1: 418-423.

13.	Toh KA, Lu J, Yau WY (2001) Global feed-forward neural network learning
for classification and regression. In: International Workshop on Energy
Minimization Methods in Computer Vision and Pattern Recognition, Sophia
Antipolis, France 2134: 407-422.

14.	Guimarães FG, Ramírez JA (2004) A pruning method for neural networks and
Its application for optimization in electromagnetics. In: IEEE Transactions on
Magnetics 40: 1160-1163.

15.	Wilamowski BM, Yu H (2010) Improved computation for Levenberg–Marquardt
training. In: IEEE Transactions on Neural Networks 21: 930-937.

16.	Dhar VK, Tickoo AK, Koul R, Dubey BP (2010) Comparative performance of
some popular artificial neural network algorithms on benchmark and function
approximation problems. Pramana 74: 307-324.

17.	Wan S, Banta LE (2006) Parameter incremental learning algorithm for neural
networks. In: IEEE Transactions on Neural Networks 17: 1424-1438.

18.	Hunter D, Yu H, Pukish MS, Kolbusz J, Wilamowski BM (2012) Selection of
proper neural network sizes and architectures – a comparative study. In: IEEE
Transactions on Industrial Informatics 8: 228-240.

https://doi.org/10.1109/72.329697
https://doi.org/10.1109/72.329697
https://www.ee.iitb.ac.in/~icvgip/PAPERS/248.pdf
https://www.ee.iitb.ac.in/~icvgip/PAPERS/248.pdf
https://www.ee.iitb.ac.in/~icvgip/PAPERS/248.pdf
https://www.ee.iitb.ac.in/~icvgip/PAPERS/248.pdf
https://doi.org/10.1016/j.snb.2005.01.008
https://doi.org/10.1016/j.snb.2005.01.008
https://doi.org/10.1016/j.snb.2005.01.008
https://pdfs.semanticscholar.org/3812/f1d8964325c8619f4733ec27b8bb33c32c54.pdf
https://pdfs.semanticscholar.org/3812/f1d8964325c8619f4733ec27b8bb33c32c54.pdf
https://pdfs.semanticscholar.org/3812/f1d8964325c8619f4733ec27b8bb33c32c54.pdf
http://waset.org/publications/7479/modified-levenberg-marquardt-method-for-neural-networks-training
http://waset.org/publications/7479/modified-levenberg-marquardt-method-for-neural-networks-training
http://waset.org/publications/7479/modified-levenberg-marquardt-method-for-neural-networks-training
https://doi.org/10.1093/comjnl/bxp101
https://doi.org/10.1093/comjnl/bxp101
https://doi.org/10.1093/comjnl/bxp101
https://pdfs.semanticscholar.org/a263/97e0725e78d47f7457ea45d2229f611d2e59.pdf
https://pdfs.semanticscholar.org/a263/97e0725e78d47f7457ea45d2229f611d2e59.pdf
https://pdfs.semanticscholar.org/a263/97e0725e78d47f7457ea45d2229f611d2e59.pdf
https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/13092/3/A0270107.pdf
https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/13092/3/A0270107.pdf
https://dspace.lboro.ac.uk/dspace-jspui/bitstream/2134/13092/3/A0270107.pdf
https://doi.org/10.1162/neco.1992.4.4.494
https://doi.org/10.1162/neco.1992.4.4.494
https://doi.org/10.1109/icnn.1994.374169
https://doi.org/10.1109/icnn.1994.374169
https://doi.org/10.1109/icnn.1994.374169
https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1162/neco.1994.6.1.147
https://doi.org/10.1109/icnn.1996.548929
https://doi.org/10.1109/icnn.1996.548929
https://doi.org/10.1109/icnn.1996.548929
https://link.springer.com/chapter/10.1007/3-540-44745-8_27
https://link.springer.com/chapter/10.1007/3-540-44745-8_27
https://link.springer.com/chapter/10.1007/3-540-44745-8_27
https://link.springer.com/chapter/10.1007/3-540-44745-8_27
https://doi.org/10.1109/tmag.2004.825329
https://doi.org/10.1109/tmag.2004.825329
https://doi.org/10.1109/tmag.2004.825329
https://doi.org/10.1109/tnn.2010.2045657
https://doi.org/10.1109/tnn.2010.2045657
https://doi.org/10.1007/s12043-010-0029-4
https://doi.org/10.1007/s12043-010-0029-4
https://doi.org/10.1007/s12043-010-0029-4
https://doi.org/10.1109/tnn.2006.880581
https://doi.org/10.1109/tnn.2006.880581
https://doi.org/10.1109/tii.2012.2187914
https://doi.org/10.1109/tii.2012.2187914
https://doi.org/10.1109/tii.2012.2187914

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Mathematical Formulation
	The Levenberg-marquardt algorithm

	Training Results
	2-Spiral problem

	Conclusion
	Acknowledgement
	Conflict of Interest
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Figure 6
	Table 1
	Table 2
	Table 3
	References

