

Digital and Molecular Frontiers in Pathology

Michael Grant *

Department of Surgical Diagnostics, Pacific Coast School of Medicine, San Francisco, USA

Introduction

Artificial intelligence is fundamentally reshaping how surgical biopsies are analyzed. It is not just about speed; AI algorithms can detect subtle, complex patterns within tissue that are often invisible to the human eye, leading to more accurate cancer grading and better predictions of patient outcomes [1].

Analyzing surgical biopsies today goes far beyond just looking at cell structures under a microscope because molecular diagnostics are now central to the process. This involves digging into the DNA, RNA, and proteins within the tissue to build a detailed molecular profile of a disease, which is the cornerstone of personalized medicine [2].

Switching from traditional glass slides to a fully digital workflow for biopsy analysis is a massive operational shift for pathology labs. The real work is not just buying scanners; it is about completely redesigning workflows, training pathologists for on-screen diagnosis, and ensuring the massive amounts of digital data are securely managed and integrated [3].

The intraoperative frozen section, which involves analyzing a biopsy while the patient is still in surgery, is a high-stakes, high-pressure situation. A key challenge is that the flash-freezing process itself can create tissue artifacts that mimic disease. Pathologists must be experts at distinguishing these artifacts from true pathology to give surgeons accurate, real-time guidance [4].

What this really means is that the quality of a biopsy diagnosis is determined long before the sample even reaches the pathologist. Factors like how quickly the tissue is preserved after removal, known as ischemia time, and the type of fixative used can significantly alter cellular and molecular structures, which impacts the final analysis [5].

Traditional pathology looks at flat, 2D slices of tissue, which can easily miss crucial information about a tumor's structure. New 3D histology techniques are changing the game by digitally reconstructing the entire biopsy sample. This provides an unprecedented view of the tumor's architecture and its interaction with surrounding tissues [6].

Mass spectrometry imaging offers a chemical map of a surgical biopsy, going beyond what morphology alone can show. By visualizing the exact location of thousands of molecules like proteins and metabolites, this technique can help define tumor margins with high precision and identify molecular subtypes of cancer directly from the tissue slide [7].

For molecular testing on biopsies to be reliable and reproducible across hospitals, standardization is essential. How a tissue sample is fixed in formalin and embedded in paraffin has a profound effect on the quality of its DNA and RNA.

Establishing and enforcing international standards for these pre-analytical steps is critical for the future of precision oncology [8].

Deep learning models are becoming incredibly adept at analyzing digital biopsy images. These AI systems can automate routine tasks like cell counting, highlight suspicious areas for pathologists, and even predict prognosis based on tissue features. The goal here is not to replace pathologists, but to provide them with a powerful quantitative tool to augment their expertise [9].

Surgical biopsy remains the definitive diagnostic standard, but liquid biopsy offers a crucial, complementary view. Let's break it down: a tissue biopsy provides a detailed snapshot of the tumor's architecture and cellular makeup at a single point in time. A liquid biopsy, on the other hand, is less invasive and ideal for tracking tumor evolution and treatment response over time [10].

Description

The landscape of surgical pathology is being fundamentally redrawn by a dual revolution in digital and computational technologies. At the forefront is Artificial Intelligence (AI), which is moving beyond simple automation to become a powerful diagnostic partner. AI algorithms can scrutinize digital images of tissue to identify complex, subtle patterns that are often invisible to the human eye, which leads to more precise cancer grading and improved predictions of patient outcomes [1]. This is not about replacing human expertise, but augmenting it. Deep learning models, for instance, can handle routine tasks like cell counting, flag suspicious areas for a pathologist's review, and even predict prognosis based on learned tissue features, acting as a sophisticated quantitative tool [9]. The foundation for this AI-driven future is the lab-wide transition to a fully digital workflow. This is a monumental operational challenge that extends far beyond just purchasing scanners. It requires a complete overhaul of established procedures, extensive training for pathologists to diagnose from screens instead of microscopes, and the development of secure, integrated systems to manage the enormous volumes of digital data being generated [3]. This shift creates a data-rich environment where computational tools can thrive, ultimately leading to more objective and reproducible diagnostic decisions.

The focus of biopsy analysis has also pivoted from purely morphological assessment to a deep dive into the molecular underpinnings of disease. Today, looking at cell structures is only part of the story; molecular diagnostics are now a central component of the process [2]. This involves interrogating the DNA, RNA, and proteins within the tissue sample to construct a detailed molecular profile of a patient's cancer. This profile is the very cornerstone of personalized medicine, allowing clinicians to select targeted therapies that are most likely to be effective. This molecular exploration is being enhanced by novel imaging technologies that bridge

the gap between structure and chemistry. Mass spectrometry imaging, for example, goes far beyond what a microscope can reveal by creating a detailed chemical map of the biopsy. By visualizing the precise location of thousands of molecules like proteins and metabolites directly on the tissue slide, this technique can help delineate tumor margins with incredible precision and identify distinct molecular subtypes of cancer that might otherwise be indistinguishable [7]. This fusion of molecular data with spatial information provides a much richer, more actionable understanding of the disease.

For all these advanced analytical techniques to be meaningful, the quality of the initial tissue sample is paramount. The diagnostic journey does not begin when the slide reaches the pathologist; it begins in the operating room. Pre-analytical variables, such as the time between tissue removal and preservation (ischemia time) and the specific type of fixative used, can profoundly alter both cellular structures and molecular integrity [5]. A poorly handled specimen can render even the most sophisticated downstream analysis useless. This makes standardization absolutely critical, especially for ensuring that molecular testing is reliable and reproducible across different hospitals and labs. International standards for processes like formalin fixation and paraffin embedding are essential to preserve the quality of DNA and RNA, which are the fragile building blocks for precision oncology [8]. Even in established procedures, significant challenges remain. The intraoperative frozen section, a high-stakes process for providing real-time guidance to surgeons, is a prime example. The flash-freezing technique can introduce artifacts into the tissue that mimic pathological changes, demanding immense skill from the pathologist to distinguish these false signals from true disease under extreme time pressure [4].

Pathology is also breaking free from the constraints of two-dimensional analysis. For decades, pathologists have studied thin, flat slices of tissue, which can easily miss vital information about a tumor's complex three-dimensional structure and its relationship with the surrounding microenvironment. To address this, new 3D histology techniques are emerging that digitally reconstruct an entire biopsy sample, providing an unprecedented, holistic view of the tumor's architecture [6]. This more complete picture can reveal crucial insights into tumor invasion, vascularization, and heterogeneity. At the same time, the concept of the biopsy itself is expanding. While the surgical tissue biopsy remains the gold standard for a definitive, detailed diagnosis at a single moment, it is now complemented by the liquid biopsy. This less invasive approach, which analyzes tumor-derived material like circulating DNA in the blood, offers a dynamic view of the disease. Let's break it down: the tissue biopsy provides the detailed architectural blueprint, while the liquid biopsy is like a surveillance system, ideal for tracking how a tumor evolves and responds to treatment over time, without the need for repeated invasive procedures [10].

Conclusion

The analysis of surgical biopsies is undergoing a significant transformation, moving far beyond traditional microscopy. A major part of this shift is driven by Artificial Intelligence (AI), which uses algorithms to detect complex, subtle patterns in tissue that the human eye might miss, leading to more accurate cancer grading. This technological leap is accompanied by a massive operational change within pathology labs as they switch from glass slides to fully digital workflows. This is not just about new hardware; it involves redesigning processes, retraining specialists, and managing huge datasets securely.

At the same time, the focus has expanded from cellular structure to molecular detail. Molecular diagnostics now dig into the DNA, RNA, and proteins within a sample, forming the foundation of personalized medicine. Techniques like mass spectrometry imaging are pushing this further by creating detailed chemical maps

of biopsies. However, the reliability of these advanced methods hinges on what happens before the sample even reaches the lab. Pre-analytical factors like tissue preservation and fixation are critical, highlighting the need for strict international standards to ensure data quality. The field is also expanding spatially, with 3D histology techniques reconstructing entire tumors to overcome the limitations of 2D slices. Finally, while the tissue biopsy remains the diagnostic gold standard for a detailed snapshot, it is increasingly complemented by less invasive liquid biopsies, which are ideal for monitoring tumor evolution over time.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Hanna K. L. G. Glimmerveen, Gerda J. van der Veen, Anke B. Bodha, Jeroen A. W. M. van der Laak, Francesco Ciompi. "Artificial intelligence in histopathology: a narrative review." *Lab Invest* 104 (2024):100080.
2. John R. Goldblum, Thomas Plesec, Raul S. Gonzalez. "Molecular Diagnostics on Surgical Pathology Specimens." *Surg Pathol Clin* 12 (2019):247-271.
3. Bethany Williams, Joanna Treanor, David Brettle, Darren Treanor. "The implementation of a digital pathology workflow for routine practice in a UK-based pathology laboratory." *J Clin Pathol* 75 (2022):747-753.
4. Sara E. Wobker, Susan J. Maygarden, Lori R. Scanga. "Intraoperative frozen section analysis: a guide to pitfalls and challenges." *Mod Pathol* 33 (2020):137-155.
5. Rouzan G. Karabakhtsian, Michael S. Zulfiqar, Christopher N. Otis, Raouf E. Nakhleh. "Pre-analytical variables in surgical pathology: a College of American Pathologists survey of 771 laboratories." *Arch Pathol Lab Med* 143 (2019):874-880.
6. Anke B. Bodha, Niels M. S. van der Veen, Rob van der Laak, Jeroen A. W. M. van der Laak. "Three-dimensional histology: a new dimension in surgical pathology." *Lab Invest* 102 (2022):1105-1113.
7. Livia S. Eberlin, Peggy M. Angel, Richard R. Drake. "Clinical applications of mass spectrometry imaging in surgical pathology." *J Pathol* 254 (2021):11-23.
8. Anthony J. Gill, Stephen B. Fox, Anna M. van der Hiel, W. Glenn McCluggage, Blake Gilks. "An international study of the factors that affect the quality of formalin-fixed, paraffin-embedded tissue for molecular analysis." *Mod Pathol* 34 (2021):1139-1148.
9. Ziyuan Wang, Mengdan Yan, Yixin Li, Xuesong Li, Jingjing Wang, Yuxin Li, Wei Chen. "Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases." *J Pathol Inform* 12 (2021):30.
10. Elisa G. R. S. de Groot, Niven Mehra, Stefan M. Willems, Anthonie J. van der Wekken. "Liquid versus tissue biopsy for detecting targetable driver alterations: a systematic review and meta-analysis." *ESMO Open* 7 (2022):100435.

How to cite this article: , Michael Grant. "Digital and Molecular Frontiers in Pathology." *J Surg Path Diag* 07 (2025):2.

***Address for Correspondence:** Michael, Grant , Department of Surgical Diagnostics, Pacific Coast School of Medicine, San Francisco, USA , E-mail: m.grant@pcsmmed.edu

Copyright: © 2025 G. Michael This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 02-Feb-2025, Manuscript No. jspd-25-172566; **Editor assigned:** 04-Feb-2025, PreQC No. P-172566; **Reviewed:** 18-Feb-2025, QC No. Q-172566; **Revised:** 24-Feb-2025, Manuscript No. R-172566; **Published:** 28-Feb-2025, DOI: 10.37421/2684-4575.2025.7.002
