

Dielectrophoresis: Advancing Diagnostics, Research, Environment

Ayaka Tanaka*

Department of Bioengineering and Nanomedicine, Kyoto Advanced Science University, Kyoto, Japan

Introduction

Dielectrophoresis (DEP), a phenomenon where particles experience a force when subjected to a non-uniform electric field, has emerged as a fundamental tool in various biomedical, environmental, and engineering applications. Its label-free nature and ability to precisely manipulate and separate a wide array of particles, from nanoparticles to cells and viruses, make it highly attractive for developing advanced diagnostic and analytical systems. The technology's evolution continues to open new avenues in clinical diagnostics, environmental monitoring, and drug discovery, reflecting a significant impact across multiple disciplines.

One compelling application lies in cancer diagnostics, particularly with the advent of advanced microfluidic chips. For example, 3D printed dielectrophoretic microfluidic chips enable label-free, continuous-flow separation of prostate cancer cells directly from blood. This technology, by optimizing electrode design and flow parameters, achieves high separation efficiency and cell viability, offering a promising approach for early cancer detection and real-time monitoring of therapeutic responses [1].

The broader scope of DEP in disease diagnostics is extensively reviewed, highlighting its role in biosensors. These DEP-based biosensors facilitate the manipulation of diverse biological entities, from individual molecules to complex cellular structures, enhancing the sensitivity and speed of diagnostic assays. This capability indicates substantial potential for point-of-care applications, where rapid and accurate results are paramount for timely clinical interventions [2].

Beyond living cells, DEP is equally effective in manipulating and characterizing nanoparticles. It offers precise control over nanoparticle position, assembly, and separation. This level of control is crucial for advancing fields like nanodevice fabrication, targeted drug delivery systems, and sophisticated environmental sensing technologies, showcasing the technique's versatility at the nanoscale [3].

Innovations in DEP often involve integrating it with other forces to maximize efficiency. A notable development is an integrated dielectrophoretic and magnetic cell sorting system. This combined approach is specifically designed to enhance the label-free isolation of circulating tumor cells (CTCs). The synergy of these forces leads to improved specificity and recovery rates, which is a critical advancement for sophisticated cancer research and various clinical applications [4].

A comprehensive review of DEP applications in clinical diagnostics underscores its broad utility. This review discusses the technique's versatility in handling various bio-particles, including different cell types, bacteria, and viruses. This enables rapid and accurate detection of numerous diseases, from infectious agents

to a wide range of cancer biomarkers, demonstrating DEP's central role in modern diagnostic tools [5].

Focusing on specific pathogens, microfluidic dielectrophoresis has proven effective for rapid pathogen detection. This method allows for quick concentration, separation, and identification of bacteria and viruses within complex biological samples. Such rapid analytical capabilities significantly reduce diagnostic times, contributing positively to public health surveillance and swift response to outbreaks [6].

The technique also makes strides in isolating and analyzing exosomes using DEP-based microfluidic systems. Exosomes, tiny vesicles crucial for intercellular communication, are challenging to separate from complex biological fluids. DEP provides a vital step in isolating these vesicles, which is essential for developing novel diagnostic tools and therapeutic strategies based on exosomal biomarkers [7].

The applications of dielectrophoresis extend into drug discovery and development. Here, DEP can be utilized for high-throughput cell screening, evaluating drug toxicity, and meticulously studying cell-drug interactions. By accelerating the identification of new therapeutic compounds, DEP plays a pivotal role in streamlining the pharmaceutical research pipeline and bringing new treatments to fruition faster [8].

Moreover, DEP has significant environmental applications, including wastewater treatment and the detection of various environmental contaminants. The technique demonstrates potential for the efficient removal of pollutants and harmful microorganisms from water sources, offering sustainable and effective solutions for environmental management and ensuring public safety [9].

Lastly, microfluidic dielectrophoresis is particularly valuable for the detection and separation of viruses. It details how DEP can selectively manipulate viral particles, effectively distinguishing them from other biological components. This selectivity is crucial for rapid viral diagnostics, effective outbreak control, and the accelerated development of new vaccines, solidifying its place as a critical technology in virology [10].

Collectively, these advancements illustrate that dielectrophoresis is not just a laboratory curiosity but a dynamic and indispensable technology, continuously evolving to address complex challenges in health, environment, and fundamental science. Its ability to offer label-free, precise manipulation continues to drive innovation and holds immense promise for future technological breakthroughs.

Description

Dielectrophoresis, commonly known as DEP, is a robust method for manipulating and separating particles using non-uniform electric fields. This versatile technique proves invaluable across a spectrum of applications, particularly in biomedical diagnostics, environmental monitoring, and material science. One significant area of impact is in the realm of cancer detection and isolation. For instance, innovative 3D printed dielectrophoretic microfluidic chips have been developed to perform label-free, continuous-flow separation of prostate cancer cells from blood [1]. These systems are carefully optimized for electrode design and flow parameters to ensure high separation efficiency and maintain cell viability, which is essential for subsequent analyses and holds great promise for early cancer diagnosis and monitoring therapy effectiveness.

The utility of DEP extends to enhancing biosensor capabilities for disease diagnostics. Reviews highlight how DEP can precisely manipulate various biological entities, from individual molecules to entire cells, significantly boosting the sensitivity and speed of diagnostic assays [2]. This capability makes DEP a strong contender for point-of-care diagnostic devices, where rapid and accurate results are critical. Furthermore, the integration of DEP with other separation techniques can lead to even more powerful systems. An example of this is an integrated dielectrophoretic and magnetic cell sorting system designed for the enhanced label-free isolation of circulating tumor cells (CTCs) [4]. This combination of forces offers improved specificity and recovery rates, a crucial development for advanced cancer research and clinical applications that demand high purity and yield.

Beyond cellular applications, DEP is instrumental in the manipulation and characterization of nanoparticles. This allows for precise control over their position, assembly, and separation [3]. Such fine-tuned control is opening new doors for advancements in nanodevice fabrication, enabling the creation of intricate structures. It also benefits drug delivery systems by allowing for targeted placement of nanoparticles, and it contributes to environmental sensing by improving the efficiency of detectors. The technique's adaptability allows it to handle a wide range of bio-particles, including different types of cells, bacteria, and viruses, which is highly beneficial for rapid and accurate detection across numerous diseases, from infectious agents to various cancer biomarkers [5]. This broad applicability cements DEP's role as a cornerstone technology in clinical laboratories.

The applications continue to expand into specific areas like pathogen and virus detection. Microfluidic dielectrophoresis, in particular, has emerged as a key technology for the rapid detection of pathogens [6]. It facilitates the quick concentration, separation, and identification of bacteria and viruses within complex samples, drastically cutting down diagnostic times and improving public health surveillance efforts. Similarly, for viral diagnostics, microfluidic DEP can selectively manipulate viral particles, distinguishing them from other biological components [10]. This ability is critical for rapid viral diagnostics, effective outbreak control strategies, and accelerating the development of new vaccines. The focus on microfluidic platforms capitalizes on the benefits of miniaturization, reducing sample volumes and analysis times.

DEP-based microfluidic systems are also proving vital for isolating and analyzing exosomes [7]. These tiny vesicles carry crucial biomarkers and play a significant role in intercellular communication. Their separation from complex biological fluids is a challenging task, and DEP provides an effective means to achieve this, which is a vital step for developing novel diagnostic and therapeutic strategies based on exosomal content. In the pharmaceutical sector, dielectrophoretic applications are accelerating drug discovery and development [8]. The technique can be used for high-throughput cell screening, drug toxicity testing, and detailed studies of cell-drug interactions, potentially identifying new therapeutic compounds much faster.

Finally, DEP offers considerable environmental benefits, particularly in wastewater treatment and the detection of environmental contaminants [9]. It showcases potential for the efficient removal of pollutants and harmful microorganisms, providing

sustainable solutions for environmental management and public safety. What this all means is that DEP is not just an academic curiosity but a practical, evolving technology with profound implications for improving human health, protecting the environment, and advancing fundamental science through precise particle manipulation.

Conclusion

Dielectrophoresis (DEP) is a powerful, label-free technique gaining significant traction across various scientific and clinical fields. Researchers are leveraging DEP to achieve precise manipulation and separation of biological entities, ranging from molecules to cells and even nanoparticles. For instance, recent work demonstrates 3D printed dielectrophoretic microfluidic chips effectively separating prostate cancer cells from blood, offering a promising avenue for early cancer diagnosis and monitoring treatment efficacy.

The versatility of DEP extends to biosensors, where its ability to manipulate diverse biological components significantly improves the sensitivity and speed of diagnostic assays. This makes it particularly valuable for point-of-care applications, where rapid and accurate results are crucial. Beyond cellular separation, DEP plays a key role in nanoparticle manipulation, controlling their position, assembly, and separation, which can advance nanodevice fabrication and drug delivery systems.

In clinical diagnostics, DEP is proving its worth in handling a wide array of bio-particles, including cells, bacteria, and viruses. This facilitates rapid and accurate detection for numerous diseases, encompassing infectious agents and various cancer biomarkers. Microfluidic dielectrophoresis specifically enhances the detection of pathogens and viruses, streamlining processes like concentrating, separating, and identifying these agents in complex samples, thereby reducing diagnostic times and bolstering public health surveillance.

Further applications include isolating and analyzing exosomes, crucial for uncovering novel diagnostic and therapeutic strategies, and accelerating drug discovery through high-throughput cell screening and toxicity testing. Environmentally, DEP offers sustainable solutions for wastewater treatment and contaminant detection by efficiently removing pollutants and microorganisms. Combining DEP with other forces, like magnetic sorting, creates integrated systems for enhanced, label-free isolation of circulating tumor cells, a critical step for advanced cancer research. What this means is DEP continues to evolve, providing crucial tools for diagnostics, therapy, environmental management, and fundamental research.

Acknowledgement

None.

Conflict of Interest

None.

References

1. Mengmeng Xu, Yi Zhang, Longhao Su, Tianjian Wang, Yuting He, Li Zhang. "Continuous-flow label-free separation of prostate cancer cells from peripheral blood using 3D printed dielectrophoretic microfluidic chips." *Lab Chip* 23 (2023):2548-2560.

2. Md Saifulah, Md. Nazrul Islam, Md. Monirul Islam, Md. Ahsanur Rahman, Shaikh Abdul Hameed, Md. Ashraful Islam. "Dielectrophoresis-based biosensors for disease diagnostics: Recent advances and future perspectives." *Biosens Bioelectron* 198 (2022):113642.
3. Pooyan Ghassemi, Ali Esmaeili, Ahmad Al-Jumaili, Ali Ahmadi, Mohammad Al-Jumaily, Amir Sanati-Nezhad. "Dielectrophoresis for nanoparticle manipulation and characterization: A review." *Lab Chip* 21 (2021):1873-1901.
4. Ji Hyun Kim, Sung Min Cho, Geunmin Lee, Ji Hwan Jung, Hyung-Ho Lee, Min Kyeong Lee. "Integrated Dielectrophoretic and Magnetic Cell Sorting for Enhanced Label-Free Circulating Tumor Cell Isolation." *Micromachines* 14 (2023):1541.
5. Hyeong-Mi Oh, Hyun-Seok Song, Young-Ho Cho. "Dielectrophoresis for Clinical Diagnostics: A Review." *Anal Chem* 92 (2020):5698-5712.
6. Yuqian Li, Shuai Zhang, Mengmeng Li, Bo Zhang, Yang Liu, Chunfeng Wu. "Microfluidic dielectrophoresis for rapid pathogen detection." *Biotechnol Adv* 56 (2022):107937.
7. Shuo-Wen Liu, Min Lin, Guo-Wei Wei, Yang-Yi Liu, Hui-Hui Li, Peng-Fei Tu. "Dielectrophoresis-based microfluidic systems for exosome isolation and analysis." *Electrophoresis* 42 (2021):169-183.
8. Hamed Abbasi, Javad Alinaghian, Hoda Alinaghian, Ali Mohammad Nazari, Mohammad Hossein Saeidi. "Dielectrophoretic applications in drug discovery and development." *Electrophoresis* 44 (2023):75-89.
9. Raghunath Ramshankar, Ankit Bansal, Suresh Kumar, V.K. Singh, P. K. Gupta. "Dielectrophoresis in environmental applications: Current status and future prospects." *Chemosphere* 300 (2022):133742.
10. Yuqi Tang, Yu Cao, Xizhe Sun, Kai Zhang, Lingbo Qu. "Microfluidic dielectrophoresis for virus detection and separation: A review." *Trends Anal Chem* 130 (2020):116035.

How to cite this article: Tanaka, Ayaka. "Dielectrophoresis: Advancing Diagnostics, Research, Environment." *J Bioengineer & Biomedical Sci* 15 (2025):489.

***Address for Correspondence:** Ayaka, Tanaka, Department of Bioengineering and Nanomedicine, Kyoto Advanced Science University, Kyoto, Japan, E-mail: ayaka.tanaka@kashu.jp

Copyright: © 2025 Tanaka A. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Received: 03-Aug-2025, Manuscript No. jbbs-25-174241; **Editor assigned:** 05-Aug-2025, PreQC No. P-174241; **Reviewed:** 19-Aug-2025, QC No. Q-174241; **Revised:** 25-Aug-2025, Manuscript No. R-174241; **Published:** 30-Aug-2025, DOI: 10.37421/2155-9538.2025.15.489