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Introduction
The rapid growth of recent wireless communication systems led to 

an increasing demand for small-scale high-frequency resonators, filters 
and antennas capable of operating in the GHz range [1,2]. The unique 
electrical properties of ceramic dielectric resonators have revolutionized 
the microwave-based wireless communications industry by reducing 
the size and cost of filter and oscillator components in circuit systems 
[3-6]. At the same time, in order to work with high efficiency and 
stability, many researches have been focusing on developing new 
dielectric materials with a high quality factor (Q×f) and a near-zero 
temperature coefficient of resonant frequency (τf) for use as dielectric 
resonator and microwave device substrate [7-9]. 

Mg2TiO4-based ceramics have wide applications as dielectrics in 
resonators, filters and antennas for communication, radar and global 
positioning systems operating at microwave frequencies. Mg2TiO4 has 
a spinel-type structure and a space group of Fd-3m (227) [10]. 

Since the ionic radius of Mg 2+  ions (0.78 Å) is similar to that of 
Co2+ ions (0.82 Å), the Mg2+ ion can be replaced by the Co2+ ion to form  
(Mg1-xCox)2(Ti0.95Sn0.05)O4. In this investigation, (Mg1-xCox)2(Ti0.95Sn0.05)
O4 were synthesized and some of the Sn4+  ions were substituted with 
Ti4+  ions to improve their microwave dielectric properties.  More 
recently, many researchers, minor replaced similar ionic radius to 
boost of Q×f  [11-14].

The resultant microwave dielectric properties were analyzed 
based upon the densification, the X-ray diffraction (XRD) patterns 
and the microstructures of the ceramics. The correlation between 
the microstructure and the Qxf value were also investigated. As 
with conductivity, we will start with macroscopic property and 
connect to the microscopic • All aspects of free electrons have been 
covered: only bound electrons left • Capacitance, Optical properti 
es --> ε,n --> molecules and atoms. A few simplified definitions of 
dielectric properties are necessary for meaningful discussion of their 
measurement and applications. They have been defined previously in 
terms of electrical circuit concepts and electromagnetic field concepts.

Experimental Procedures 
The (Mg1-xCox)2(Ti0.95Sn0.05)O4 (x=0.01~0.09) were prepared by the 

solid-state mixed oxides route with starting materials of high-purity 
oxide powders (>99.9%): MgO, CoO SnO2 and TiO2. Because MgO is 
hygroscopic, it was first fired at 600°C to avoid moisture contain. The 
weighed raw materials were mixed by ball milling with agate media in 
distilled water for 24 h, and the mixtures were dried and calcined at 
1100°C for 4 h. Prepared powders were dried, ball-milled for 24 h with 
5 wt % of a 10% solution of PVA as a binder, granulated by sieving 
through 100 mesh, and pressed into pellets with 11 mm in diameter 
and 5 mm in thickness. All samples were prepared using an automatic 
uniaxial hydraulic press at 2000 kg/cm2. These pellets were sintered at 
1275-1425°C for 4 h in air.

The powder and bulk X-ray diffraction (XRD, Rigaku D/Max 
III.V) spectra were collected using Cu Kα radiation (at 30 KV and
20 mA) and a graphite monochrometer in the 2θ range of 10 to 80°.
The crystalline phases of the sintered ceramics were identified by
XRD using Cu Kα (λ=0.15406 nm) radiation with a Siemens D5000
diffractometer (Munich, Germany) operated at 40 kV and 40 mA. The
latttice constant calculation was accomplished using GSAS software
with Rietveld method to fit the XRD patterns [15].  The microstructural 
observations and analysis of the sintered surface were performed using 
a scanning electron microscope (SEM, Philips XL−40FEG).

The bulk densities of the sintered pellets were measured by the 
Archimedes method. Microwave dielectric properties, such as the 
dielectric constant and unloaded Q, were measured at 6–12 GHz 
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that the densities apparently increased with increasing sintering 
temperature to a maximum at 1350oC and slightly decreased thereafter. 
Based on EDS as shown in Table 2, large grains (Figure 4, spot A) were 
identified as (Mg1-xCox)2(Ti0.95Sn0.05)O4 (x=0.05), small grains 
(Mg1-xCox)2(Ti0.95Sn0.05)O4 (Figure 4, spot B). 

The bulk density and dielectric constant of the (Mg1-xCox)2(Ti0.95Sn0.05)
O4 ceramics as a function of its sintering temperature for 4 h are shown 
in Figure 5. Note that the densities initially increased with increasing 
sintering temperature, reaching their maximum at 1350oC with x 
form 0.01 to 0.09, and decreased sintering at higher temperature. The 
increase in density mainly resulted from the grain growth as shown in 
Figure 3. The reduction of the density of the specimen was due to the 
appearance of pores resulting from an abnormal grain growth. 

The dielectric properties of (Mg1-xCox)2(Ti0.95Sn0.05)O4 are illustrated 
in Figure 6.  (Mg1-xCox)2(Ti0.95Sn0.05)O4 ceramics sintered temperatures 
as a functions of the x value. The relationships between εr values and 
sintering temperatures revealed the same trend with those between bulk 
densities and sintering temperatures since higher density means lower 
porosity. The dielectric constant slightly increased with increasing 
sintering temperature. 

Figure 7 shows the Q×f values of (Mg1-xCox)2(Ti0.95Sn0.05)O4 
ceramics sintered at various temperatures as a functions of the x value. 

by the post-resonant method as suggested by Hakki and Coleman 
[16,17]. This method utilizes parallel conducting plates and coaxial 
probes in TE011 mode, TE means transverse electric waves, the first two 
subscript integers denote the wave guide mode, and the subscript third 
integer denotes the order of resonance in an increasing set of discrete 
resonant lengths. The temperature coefficient of resonant frequency 
was measured in the temperature range of 20 to 80oC. A HP8757D 
network analyzer and a HP8350B sweep oscillator were employed in 
the measurement. 

Results and Discussion
XRD patterns recorded from the (Mg1-xCox)2(Ti0.95Sn0.05)O4 

(x=0.01~0.09) ceramics sintered at different temperatures for 4 h 
are shown in Figure 1. The cubic-structured  (Mg1-xCox)2(Ti0.95Sn0.05)
O4 (which can be indexed as Mg2TiO4, ICDD-PDF#00-025-1157), 
belonging to the space group Fd- 3m(227), was identified as the 
main phase, implying the forming of a solid solution. In addition to 
(Mg1-xCox)2(Ti0.95Sn0.05)O4, without any second phase was observed. 
Moreover, significant variation was not detected from the XRD patterns 
of the specimens at different x values (x=0.01–0.09) in our experiment.

In order to confirm the formation of the solid solution, the lattice 
parameters of (Mg1-xCox)2(Ti0.95Sn0.05)O4 ceramics sintered at 1350oC 
were measured and are demonstrated in Table 1. An increase in the 
lattice parameters was found for (Mg1-xCox)2(Ti0.95Sn0.05)O4 ceramics in 
comparison with that of Mg2TiO4. The results indicated that with the 
partial replacement of Mg2+ by Co2+, Mg2TiO4–Co 2TiO4 ceramics would 
form solid solutions. Moreover, formation of (Mg1-xCox)2(Ti0.95Sn0.05)O4 
would lead to an increase in the lattice parameters from a=b=c=8.4415 
Å in Mg2TiO4 to a=b=c=8.4676 Å in (Mg1-xCox)2(Ti0.95Sn0.05)O4 
(x=0.09). This is because the ionic radii of Co2+ (0.82 Å ) are larger than 
that of Mg+2 (0.78 Å). The Co2TiO4 and Zn2TiO4 phase are formed at a 
significantly lower temperature 1225oC than that of the Mg2TiO4.

SEM micrographs of (Mg1-xCox)2(Ti0.95Sn0.05)O4 ceramics sintered 
at various temperatures for 4 h are shown in Figure 2. The grain size 
increased with increasing sintering temperatures. However, rapid grain 
growth was observed at 1375oC and the pores were almost eliminated 
for the specimen sintered at 1350oC. The relative density and dielectric 
constant of the (Mg1-xCox)2(Ti0.95Sn0.05)O4  solid solutions as a function 
of the sintering temperature for 4h are illustrated in Figure 3. Notice 

 

Figure 1: X-ray diffraction patterns of(Mg1-xCox)2(Ti0.95Sn0.05)O4 (x=0.01~0.09) 
ceramics sintered at 1350oC temperatures.
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Figure 2: X-ray diffraction patterns of (Mg1-xCox)2(Ti0.95Sn0.05)O4 (x=0.05) 
ceramics sintered at various temperatures.

x a=b=c(Å) Vm  ((Å3)
0.01 8.4591 ± 0.0061 605.3025
0.03 8.4622 ± 0.0119 605.9682
0.05 8.4634 ± 0.0145 606.2260
0.07 8.4651 ± 0.0105 606.5914
0.09 8.4676 ± 0.0226 607.1290

Table 1: Lattice parameters data for sintered (Mg1-xCox)2(Ti0.95Sn0.05)O4 sintered at 
1350oC.

Elements Mg Co Ti Sn   O
A 27.30 2.13 13.06 1.03 56.48
B 20.45 1.41 18.72 1.07 58.35

Table 2: EDX data of (Mg1-xCox)2(Ti0.95Sn0.05)O4 (x=0.05) ceramics for spot A 
(atom%) and B (atom%).
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The quality factor values (Q×f) of (Mg1-xCox)2(Ti0.95Sn0.05)O4 ceramic at 
various sintering temperatures are shown in Figure 7. With increasing 
sintering temperature, the Q×f value increased to a maximum value 
and then decreased. A maximum Q×f value of 330,000 GHz was 
obtained for (Mg1-xCox)2(Ti0.95Sn0.05)O4 (x=0.05) ceramic at 1350oC. 
The degradation of the Q×f value can be attributed to abnormal grain 
growth at higher sintering temperatures, as shown in Figure 3. The 
microwave dielectric loss is mainly caused by the lattice vibrational 
modes, pores, second phases, impurities, and lattice defects. Relative 
density also plays an important role in controlling dielectric loss, as 
has been shown for other microwave dielectric materials. As well 
known, factors that influence the dielectric Q fall into two categories: 
intrinsic and extrinsic. The former is due to the interaction between 
polar phonon vibration with the microwave electric field in crystals, 
while the latter includes order-disorder transformation, pore density, 
grain size, oxygen vacancy, and impurity phases in ceramics. The 
intrinsic Q sets the upper limit value for a pure defect-free single 
crystal and can be quantitatively described by the well-known classical 
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Figure 3: SEM photographs of(Mg1-xCox)2(Ti0.95Sn0.05)O4 (x=0.05)ceramics  
sintered at various temperature 4 h.

 

Figure 4: The marks of SEM for the (Mg1-xCox)2(Ti0.95Sn0.05)O4 (x=0.05) ceramics 
sinter at 1350oC for 4 h.
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Figure 5: Bulk density of(Mg1-xCox)2(Ti0.95Sn0.05)O4 (x=0.01~0.09) ceramics 
system sintered at different temperatures addition.
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Figure 6: εr values of (Mg1-xCox)2(Ti0.95Sn0.05)O4 (x=0.01~0.09) ceramics system 
sintered at different temperatures.
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damped oscillator model in microwave frequency range. In this model, 
when employing one-phonon absorption approximation, a roughly 
reciprocal relationship between Q×f and the dielectric constant could 
be obtained as 

1Qxfαε −                                 (2)

where the frequency f should be limited to the vicinity of the phonon 
engine frequencies, of the order of 1012 Hz at room temperature, to 
make the estimation valid. However, a series of experiments evidenced 
that the extrapolation of Eq. [2] from microwave frequencies down to 
megawatt frequencies (1–4 magnitude orders below the optical phonon 
engine fre-quency) at room temperature could also give a satisfying 
magnitude order of dielectric Q for well processed ceramics. The result, 
however, showed that the dependence of Q×f on εr only yielded Q×f α 
εr

−0.6, indicating a rather smoother increasing rate of Q×f value with εr 
compared with Eq. [2]. The most probable reason for this phenomenon 
could be associated with the extrinsic origins. As acknowledged by many 
authors, the porosity in dielectrics had deleterious effects on dielectric 

Q×f values, whose influencing degree, however, varied with different 
dielectrics. For low dielectric Q×f ceramics with 103 GHz magnitude 
order, the effect of porosity on dielectric Q could be described as 

Q=(1−1.5P),                                   (3)

where Qo was the intrinsic dielectric Q measured by microwave 
reflective spectrum and P was the porosity. However, as for high Q×f 
ceramics with 105–106 GHz magnitude order such as polycrystalline 
Al2O3 ceramic, even a small amount of porosity would considerably 
reduce the dielectric Q by

3/2' )
1

(1)1(1
P

PPA
Q

P
Q o −

+−=                                                                                                                          (4)

where Qo was the full density dielectric quality factor (1.565×10−5), A’ was 
a constant of 9.277×10−3 and P was the porosity. According to Eqs. (3) 
and (4), 8% porosity, which was the porosity in  (Mg1-xCox)2(Ti0.95Sn0.05)
O4 end component in the present study. The maximum Q×f value 
sintered at 1350oC with x form 0.01 to 0.09. The Q×f value increased 
with increasing of Co2+ content, but the x value is above 0.05, Q×f value 
decreased due to the Co2+ sintering at higher temperature. Many factors 
affect the microwave dielectric loss of dielectric resonators, such as the 
lattice vibration modes, pores and secondary phases. Generally, a larger 
grain size, i.e., a smaller grain boundary, indicates a reduction in lattice 
imperfection and thus a reduction in the dielectric loss. When x was 
increased from 0.01 to 0.05, the Q×f value of (Mg1-xCox)2(Ti0.95Sn0.05)O4 
increased dramatically from 24,000 to 330,000 GHz.

Figure 8 shows the τf values of (Mg1-xCox)2(Ti0.95Sn0.05)O4 ceramics 
sintered at various temperatures as a functions of the Co2+ content. The 
remarkable variations in the τf values of  (Mg1-xCox)2(Ti0.95Sn0.05)O4 were 
recognized by the Co2+ substitution for Mg2+ and these values ranged 
from -48 to -41 ppm/oC. Thus, it is considered that the additional 
improvement in the τf value is required for the dielectric resonator 
applications at high frequency.

Conclusions 
The dielectric properties of (Mg1-xCox)2(Ti0.95Sn0.05)O4 solid 

solutions were investigated. The effect of Co2+ substitution were to 
enhance Q×f value from 150000 GHz to 330000 GHz and densification 
sintering at lower temperature compared to Mg2TiO4 which sintered 
at 1450oC. An inexpensive, reliable, and easy-to-process dielectric 
using (Mg1-xCox)2(Ti0.95Sn0.05)O4 ceramics was achieved. Especially, it 
provides a very wide process window, which will be highly beneficial 
for practical applications. At 1350oC, the (Mg1-xCox)2(Ti0.95Sn0.05)O4 
(x=0.05) ceramics possess a maximum Q×f of 330,000 GHz associated 
with an εr of 14.7 and aτf of -48.18 ppm/oC. The Co2+ substitution for 
Mg2+ improves the Q×f value sintering at lower temperature compare 
with pure Mg2TiO4. The proposed dielectric, has an extremely low loss 
has made it a very promising material for microwave and millimeter 
wave applications.
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