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Abstract
Diet and dietary habits are currently accused of being among cancer causing agents. The present study was carried 

out in a trial to point at the beneficial anti-cancer properties of one the most Egyptian traditional food components 
(Garlic). We studied the anti-cancerous properties of Diallyl disulphide (DADS), a major organosulfur compound in 
garlic oil, on HT29 colon cancer cell line and in vivo of male rabbits (Oryctolagus cuniculus) as an animal model of colon 
cancer. DADS showed differential effect on the expression of a group of genes, as it down-regulated the expression of 
oncogenes (e.g., CTNNB1, CCDN1, BIRC5, MYC and AKT), while up-regulated the expression of tumour suppressor 
gene (TP53) and apoptosis regulator gene (BAX). DADS’ apoptotic effect was also seen via inducing the expression 
of cytochrome c and activation of caspase-3. Moreover, DADS induced chromatin configuration changes through 
increasing histone acetylation of histone-3 and -4. Examination of 1,2 dimethyl hydrazine (DMH) induced cancer in 
vivo model (O. cuniculus) showed histological changes characteristic for colon tumorigenesis such as, hyperplastic 
intraepithelial lesions, neoplastic changes and lymphocytes infiltration, which were strongly attenuated in animals co-
injected with both DADS and DMH and were not observed in the animals that received DADS prior to DMH treatment. 
This study suggested the protective properties of DADS against colon cancer in vitro and in vivo.
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Introduction
In Egypt, the recent number of cancer patients per year was 

estimated to be 70,000. The highest percentage of these cases were 
recorded in Upper Egypt [1]; a matter needs to be urgently and 
seriously investigated. The causes of these elevated numbers of daily 
discovered cases cannot be simply grouped under the title of heredity 
factors, because cancer is a multi-factorial disease [2], and there are 
globally growing scientific evidences suggest that it could be controlled 
through modifying the life style of the susceptible individuals [3,4]. 
Among those factors that were strongly accused by their involvement 
in inducing cancer are pollution, in air, water and soil. The repetitive 
exposure to high concentrations of such pollutants was correlated with 
cancer incidence [5-7], particularly colorectal cancers [8]. 

Because dietary habits have pronounced impacts on human health/
disease status, the correlation between cancer incidence and diet 
concerned the researchers for the last few decades, to the extent that 
Doll and Peto (1981) made to state that 35% of cancer deaths may be 
related to dietary factors [9]; Abdulla and Gruber, (2000), Sabate and 
Ang, (2009), who reported that ~ 40 % of cancers are directly linked 
to the diet [10,11]. Adversely, balanced and healthy foods, showed 
protective activities displayed by certain dietary components against 
cancer. These beneficial components have attracted the scientist’s 
attention (e.g., Apple polyphenol extract), which prevents intestinal 
polyps formation in rats [12], fish oil, reduces DNA adduct formation in 
the rat colon [13], germinated barley, treats colitis and reduces the risk 
of colitic cancer [14]. Recently, one of the traditional ingredients in the 
Egyptian meals (Garlic), particularly DADS [15] showed strong anti-
cancerous properties manifested the induction of cell cycle arrest and 
microtubules formation disruption in human breast adenocarcinoma 

cells (MDA-MB-435) [16], induced apoptosis in human leukaemia cells 
(HL-60) [17] and ceased human neuroblastoma cellular proliferation 
[18]. DADS also showed anti-invasive activities in human prostate 
carcinoma cells (LNCaP) through tightening the tight junctions and 
inhibition of matrix metalloproteinase activities [19]. These studies 
clearly suggested that diet is closely related with both causation and 
prevention of cancer. 

In this work, we studied the differential impact of DADS on the 
expression of a group of genes known to be involved in regulation of 
colon tumorigenesis in vitro, in the human colon cancer cell-model 
(HT-29). Then we investigated both prophylactic and heeling impacts 
of DADS in DMH colon cancer animal model [20], using laboratory 
male rabbit (O. cuniculus). Our results demonstrated that DADS 
differentially repressed oncogenes but induced the expression of tumor 
suppressor genes in vitro and increased the resistance of O. cuniculus to 
develop colon cancer after receiving multiple doses of DMH. 

Materials and Methods 
Cell culture and treatments

HT-29 cells (American Type Culture Collection), were propagated 
in Dulbecco’s modified Eagle’s minimum essential medium (DMEM, 
Life technologies, catalogue number: 11320-033) supplemented with 
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10% heat-inactivated (60°C, 30 min) fetal bovine serum (FBS; Gibco®, 
catalogue number: 12484-010) and antibiotics (100 U/ml penicillin, 
100 μg/ml streptomycin, Sigma, catalogue number: P4333). Cells were 
incubated at 37°C in a 5% CO2 atmosphere. For the experiment the 
cells were sub cultured in 6-well plates at a density of 105 cells/well for 
48 h and serum starved overnight before treatment. Cells were treated 
with vehicle control (DMSO, Sigma, catalogue number: W387509), or 
DADS (Sigma-Aldrich, Catalogue number 317691) supplemented in 
the culturing medium to a final concentration of 100 µM for 8 h.

Real-time reverse transcription quantitative PCR (RT-qPCR)

RNA was prepared using TRIzol reagent and the Pure Link RNA 
mini kit (Life Technologies, catalogue number: 12183018) following the 
kit’s instruction. RNA was reverse-transcribed and qPCR was performed 
by PCR as the following: Total RNA (1 µg) was reverse transcribed using 
the high-capacity cDNA reverse transcription kit (Life Technologies, 
Catalog number: 4368813) according to the manufacture instructions. 
cDNA samples were diluted 1:5. RT-PCR reaction mixture was prepared 
by adding 4 µL cDNA, 10 µL Fast SYBR Green PCR Master Mix (Life 
Technologies, catalogue number: 4385612), 0.6 µl of each primer of 10 
µM working concentration and 4.8 µL H2O. Amplification conditions 
were initial one cycle for denaturation and enzyme activation at 95°C 
for 20 sec., followed by 40 cycles of 95°C for 3 sec, 60°C, 30 sec. The 
obtained CT values were normalized to the RPL19 (60S ribosomal 
protein L19). Expression levels for different conditions were obtained 
by comparing the mean CT value for each gene relative to the mean 
RPL19 CT value. For repressed genes (i.e., a ΔΔ Ct value<0.0), relative 
fold change is depicted graphically as - (2x), where x is the absolute 
value of the ΔΔ Ct value. 

Data were generally analyzed in biologic triplicate and technical 
duplicate and are expressed as mean ± SE. We used the two-tailed 
(or paired) Student’s t-test, using Microsoft Excel, to determine the 
significant differences with probability values. (≤ 0.05 were considered 
significant). Primers with specific sequence used in the experiment 
were purchased from Macrogen, Seoul, Korea. 

CTNNB1 primer pairs:

[F] 5’-CCTCAGATGGTGTCTGCTATTG-3’, 

[R] 5’-CCTTCCATCCCTTCCTGTTTAG-3’. 

CYCLIN-D1 primer pairs:

[F] 5’-CACACACACACACACAAACC-3’, 

[R] 5’-CCTCCCTTCAACACTTCCTAAA-3’. 

SURVIVIN primer pairs:

[F] 5’-GCACCACTTCCAGGGTTTAT-3’, 

[R] 5’-CAGACGCTTCCTATCACTCTATTC-3’. 

CMYC primer pairs:

[F] 5’-GCTGTAGTAATTCCAGCGAGAG-3’, 

[R] 5’-GAGTCGTAGTCGAGGTCATAGT-3’. 

AKT primer pairs:

[F] 5’-CGCTACTTCCTCCTCAAGAATG-3’, 

[R] 5’-GCCCGAAGTCTGTGATCTTAAT-3.

USP28 primer pairs:

[F] 5’-CACTGACATCTTCTCGGTCTTC-3’, 

[R] 5’-CTCTTCTTCCCACTCCTCTACT-3’.

P53 primer pairs:

[F] 5’-AGTCTACCTCCCGCCATAAA-3’, 

[R] 5’-CCCAAACATCCCTCACAGTAAA-3’.

BAK primer pairs:

[F] 5’-CTCTCCCTTCCTCTCTCCTTATAG-3’, 

[R] 5’-GGGATTCCTAGTGGTGTTGATAG-3’.

BAX primer pairs:

[F] 5’-CAGACCGTGACCATCTTTGT-3’, 

[R] 5’-GTGTCCCGAAGGAGGTTTATT-3’.

Western blot

Following treatment, DADS or vehicle control, cellular lysates 
were prepared from HT-29 cells by washing the plates with ice cold 
phosphate buffer saline (PBS) followed by scraping the cells with plastic 
scraper and collecting the cells suspension in pre-chilled Falcon tubes. 
Cells were pelleted by centrifugation (250 xg) for 5 min and the pellets 
were resuspended in radio immunoprecipitation assay buffer (RIPA) 
[150 mM sodium chloride, 1.0% NP-40 or Triton X-100, 0.5% sodium 
deoxycholate, 0.1% SDS (sodium dodecyl sulphate), 50 mM Tris, pH 
8.0] containing Halt™ Protease Inhibitor Cocktail, Life Technologies, 
catalog number: 78437 (1 X, final concentration). Total protein 
concentration were determined via protein assay kit (BioRad, Cat. No. 
500-0006) and 50 µg protein were separated by SDS polyacrylamide gel 
electrophoreses (PAGE). 

Protein bands were transferred to Polyvinylidene fluoride 
membrane (PVDF, Amersham, Cat. No. 10600023), then, the membrane 
were blocked overnight in the blocking buffer (20 mM Tris HCl, 500 
mM NaCl, pH 7.5) containing 5% non-fat dry milk (BioRad, Cat. No. 
170-6404XTU). Desired protein bands were detected by incubating 
the membranes for 2 h at room temperature in the blocking buffer 
containing 3% non-fat dry milk and first antibody in a manufacturing 
recommended dilutions. We used antibodies to detect beta catenin, 
cyclin D1, surviving, c-myc, AKT, pAKT, P53, Bak, Bax, Ace-H3 
[acetyl K27], Ace-H4 [acetyl K91], cytochrome c, caspase-3 [full length 
protein], and β-actin; corresponding catalogue numbers respectively 
are ab6302, ab16663, ab182132, ab32072, ab32505, ab66138, ab179477, 
ab32371, ab7977, ab4729, ab4627, ab133504, ab13847 and ab6276, all 
were purchased from ABCAM; USP28 antibody was purchased from 
Cell signaling (Cat. No. 4217). Immuno-detected band visualization 
was carried out using ECL plus Western Blotting Substrate (Thermo, 
Cat. No. PI32106).

Animal model 

The experimental animal we used was O. cuniculus, four weeks 
old, obtained from the animal house of Sohag University, and were 
housed in polypropylene cages and maintained at controlled conditions 
of temperature ≈ 28°C with a 12 h light and 12 h dark cycles and fed 
commercial pellet diet. Animals were divided into five groups, four 
animals each, and treated for four weeks as the following: group (A) 
received vehicle control only (distilled water containing 1 mM EDTA) 
via subcutaneous injection, group (B) received DMH only [20 mg/kg 
dissolved in the vehicle control], group (C) received DADS only (60 mg/
kg, via intragastric intubation), group (D) received DADS and DMH, 
and finally group (E) received DADS for the first 4 weeks followed by 
DMH for extra 4 weeks. All treatments were received three times a 
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week for the entire experiment time. All experimental procedures were 
conducted according to the ethical standards of Sohag University for 
animal experimentation.

Histopathology

At the end of the experiment, animals were anesthetized using 
ether inhalation, sacrificed, carefully dissected, and the colon region 
from each animal were fixed in 10% formalin and imbedded in paraffin 
wax to prepare paraffin blocks. Paraffin sections (7 µm thickness) were 
then deparaffinized in xylene and hydrated in descending series of ethyl 
alcohol and stained with Hematoxylin and Eosin (H and E). Stained-
samples Slides were mounted in DPX medium and observed under 
light microscope (Axio Lab. A1, Carl ZEISS, Germany) equipped with 
AxioCamERc5s camera.

Results
DADS differentially regulated gene expression in HT-29 cells

DADS was reported to having anti-cancer properties and in a step to 
understand its’ mechanism action, we proposed that it might modulate 
the expression of the gene machinery that controls carcinogenesis in 
the colonic cells. Therefore, we established a cell culture system using 
HT-29 cells (colon cancer cell model) and measured the mRNA levels 
by Real-Time PCR of a group of genes that are implicated in colorectal 
carcinogenesis (CTNNB1, CCND1, BIRC5, MYC, AKT and USP28), 
and in the same time we determined the mRNA levels of the tumor 
suppressor TP53 gene, as well as BAK1 and BAX genes, which are 
involved in controlling the apoptotic pathway. 

Normalized CT values to the RPL19 (ribosomal protein L19) 
demonstrated that DADS significantly down regulated the expression 
of CTNNB1, CCND1, BIRC5, MYC, AKT but did not affect the mRNA 
level of USP28 gene. While mRNA levels of TP53 were significantly 
increased post DADS treatment compared to its levels in the cells 
treated with vehicle control. DADS also significantly increased the 
mRNA levels of BAX but did not affect the BAK1 mRNA (Figure 1 and 
Table 1).

Gene expression process passes through multiple molecular steps 
within the cell, starts with mRNA transcription followed by post 
transcription modifications and functional protein synthesis. The 
impact of DADS on mRNA, we seen above, may or may not extend to 
the following steps and affect the protein levels. Thus, we measured the 

levels of functional proteins of the above mentioned genes before and 
after DADS treatment using Western Blot (W.B.) analysis. 

The protein data showed similar pattern to the mRNA levels 
indicative of the extended impact of DADS in differentially modulating 
not only mRNA message, but also the levels of the functional proteins; 
as compared to levels of the same proteins in the cells treated only with 
the vehicle control. DADS decreased the protein levels of CTNNB1, 
CYCLIN D1, SURVIVIN, C-MYC and AKT. HT-29 cells showed lower 
level of AKT activation (phosphorylated pAKT), suggesting that DADS 
treatment decreased the pro-survival signaling within the colon cancer 
cell. On the other hand HT-29 cells showed an increase in P53 and BAX 
proteins, while spared the USP28 and BAK protein levels (Figure 2). 

We also studied the changes in the levels of acetylated histone-3 
(Ace-H3, acetyl K27) and -4 (Ace-H4, acetyl K91) in the cellular lysates 
of HT-29 cells that were treated with DADS or vehicle control. As 
expected, DADS significantly increased the levels of acetylated forms 
of both H3 and H4 (Figure 3). This might explain the alteration in 
gene expression and protein levels, which was observed by RT-PCR 

Figure 1: Differential impact of DADS on gene expression in H292 cells. 
80% confluent cells were treated with vehicle control (DMSO) or DADS for 
8 h. Bars graphs indicate mean CT values of four independent biological 
replicates normalized to RPL19 CT values and relative to vehicle control ± 
S.D. ∗Significant (P ≤ 0.05).

Gene name % Fold change S.D.  P value ≤
CTNNB1 -31.22 ± 0.1373 0.004221 *
CCDN1 -62.02 ± 0.2311 0.006642 *
BIRC5 -20.83 ± 0.0702 0.004805 *
MYC -26.64 ± 0.1661 0.002574 *
AKT -10.68 ± 0.1235 0.004991 *

USP28 -3.87 ± 0.0852 0.08038
TP53 15.02 ± 0.1092 0.00297 *
BAK1 01.70 ± 0.1245 0.063341
BAX 39.12 ± 0.1846 0.002741 *

Table 1: RT-PCR data analysis of DADS impact on the gene expression in HT-29 
cells, CT values were normalized to those of RPL19 and relative to vehicle control. 
Data are mean of four independent experiments (n=4), SD=standard deviation, *p 
≤ 0.05 considered significant.
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Figure 2: DADS differential modulation of the protein levels in HT-29 cells. (A) 
Cellular lysates of vehicle control and DADS treated cells (100 µM, 8 h) were 
denatured and 50 µg/ well were separated by SDS-PAGE and trans-blotted 
into PVDF membrane and immunoprobed following the standard Western blot 
protocol. (B) Bands intensity was determined using TotalLabTM gel analysis 
software and expressed as arbitrary scan units after normalization to β-actin 
values. The reported results are mean ± SE of three independent experiments; 
*p ≤ 0.05.
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and W.B., respectively, after DADS treatment. In addition to this, we 
measured the cytochrome c and caspase-3 (pro- and active forms) by 
W.B. analysis in the cellular lysates of HT-29 cells treated with either 
DADS or vehicle control (Figure 3). 

An increase in the level of cytochrome c and decrease in the level 
of pro-caspase-3 were observed accompanied with the appearance of 
active caspase-3 protein bands (12 -21kDa) in the cellular lysates of 
DADS treated cells (Figure 3).

For further investigation we generated an in vivo model for 
colorectal cancer by injecting the laboratory male rabbit (O. cuniculus) 
with DMH as mentioned in the materials and method section. Animals 
were divided into five groups: group (A) received vehicle control only, 
group (B) received DMH only, group (C) received DADS only, group 
(D) received DADS and DMH and group (E) received DADS first for 4 
weeks followed by DMH treatment. Microscopic examination of colonic 
tissues of O. cuniculus showed normal organization of histological 
layers with flat mucosa and numerous straight tubular crypts that 
extend down to the muscularis mucosa (Figure 4A, 4F and 4K). 

While the colonic sections prepared from animals treated with 
DMH (Figure 4B, 4G and 4L) displayed histological and cytological 
changes characteristic for hyperplastic intraepithelial lesions, such as 
crowded nuclei without stratification (L, the red arrow), elongation of the 
crypts (G, red arrows). Moreover, DMH displayed cytological features 
characteristic for neoplasia, such as hypercellularity accompanied with 
hyperchromatic nuclei and high nuclear/cytoplasmic ratio (Figure 4L, 
red arrow). DMH also caused lymphocytes infiltration (Figure 4B and 
4G, black arrows). Such kind of histological and cytological apparitions 
were not seen in the DADS group (Figure 4C, 4H and 4M) which 
looked similar to the control group, and were strongly attenuated in 
the DMH+DADS group (Figure 4D, 4I and 4N), and strongly enhanced 
the resistance against DMH carcinogenicity in the group that received 
DMH after 4 weeks of DADS treatment, as most of the above described 
histological apparitions were not seen (Figure 4E, 4J and 4O). 

Discussion
 In the present study, we aimed to determine the positive role of 

DADS in protecting against colon cancer; particularly with the current 

Figure 4: Photomicrograph of O. cuniculus colonic tissues; Control group (A, F and K) showed a normal organization of the histological layers with a flat mucosa 
and numerous straight tubular crypts that were extended down to the muscularis mucosa. DMH treated group (B, G, L) displayed changes that were characteristic for 
hyperplastic intraepithelial lesions in such kind of histological  and cytological apparitions that were not observed in DADS group (C, H and M), and in DMH post 
DADS group (E, J and O), while it were strongly attenuated in DMH+DADS group (D, I and N). Muscularis [Me], Submucosa [SM], Muscularis mucosa [MM], Crypts of 
Lieberkühn [CL], Mucosa [M] and Simple Columnar Epithelial cells [EP].
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Figure 3: DADS induction of the apoptosis machinery proteins 
(Caspase-3 and cytochrome c) and changes chromatin confirmation in 
HT-29 cells. (A) Western blot showed that DADS induced caspase-3 activation 
(~ 17 kDa band), caused an increasing of cytochrome c expression and 
induced the acetylation of histone-3 and -4. Gel analysis software (B, upper 
graph) detected an active caspase- 3 band in DADS treated cells, but not 
detected in control, while it accompanied with a reduction of the level of 
pro-caspase-3 band. Densitometric analysis (B, lower graph) depicted the 
significant increase (p ≤ 0.05) of cytochrome c, Ace-H3 and -H4 post DADS 
treatment compared to control. The results are mean ± SE of three independent 
experiments.
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accusation to diet and dietary habits of being among cancer causing 
agents [21-23] and in a country like Egypt facing serious problem 
of yearly elevated numbers of cancer patients. The rationale behind 
choosing DADS for studying its anti-cancerous activities against colon 
cancer was: 1- DADS is a major organosulfur compound in garlic oil 
[15], and 2- Garlic is one of the most consumable Egyptian traditional 
foods. 

The cell line we used, HT-29, which was isolated from a human 
primary colonic adenocarcinoma tissue in 1964 by Fogh [24]. This 
cell line is being extensively used as an in vitro model to test the 
sensitivity of colon cancers towards chemotherapeutic drugs [25]. In 
a previous study, we showed that after 24 hr DADS reduced viability 
and proliferation of colonic adenocarcinoma cells (HT-29) in a dosed 
dependent way. In the present work, the cultured HT-29 cells were 
treated with DADS and monitored the expression of the genes that are 
known to be involved in the carcinogenesis process in the colon, at both 
levels mRNA and protein. 

The results demonstrated that DADS differentially modulated 
the expression of such genes through enhancing the expression of 
tumour suppressor genes and concomitantly repressing the expression 
of oncogenes. RT-PCR and W.B. data showed that the mRNA and 
protein levels of CTNNB1 (β-catenin), CCND1 (cyclin d1), BIRC5 
(survivin), MYC (c-myc) and AKT were significantly repressed 
after DADS treatments compared to their levels in the cells treated 
only with the vehicle control. These genes are known to control the 
carcinogenesis process as β-catenin is important in forming the 
adherens junction in epithelial cells, it also controls cell growth and 
differentiation during both normal development and tumorigenesis 
[26-28]. Cyclin d1 function is to regulate CDK kinases (Cyclin-
dependent kinases), which are involved in regulating transcription, 
mRNA processing and cell cycle control. Over-expression of this gene, 
as seen in a variety of tumors, alters cell cycle progression and may 
contribute to tumorigenesis [29,30]. Survivin inhibits the progression 
of programmed cell death (apoptosis) by inhibiting caspase family of 
protease enzymes and thereby promotes cellular sustainability and 
tumour growth [31]. C-myc itself is a transcription factor and if it is 
over expressed it alters the expression of many other genes involved in 
cell proliferation resulting in cancer progression [32]. AKT is involved 
in protein synthesis pathways, and if its level is up normally elevated 
within the cell, it leads to cellular hypertrophy [33,34]. It also works as 
survival factor, upon activation (phosphorylation) through inhibiting 
apoptosis [35]. On the other hand, DADS up regulated the expression 
of P53 and BAX mRNA and protein. P53 is an important cell cycle 
regulator protein, it activates apoptosis in case of irreversible DNA 
damage [36]. P53 deficiency mediates tumour formation in mammary 
glands [37] and elicit chemotherapeutic resistance in colon cancer 
cells via inducing the survival pathway [38]. BAX is a member of 
BCL-2 family, which regulates apoptosis via controlling mitochondrial 
cytochrome c release and caspases family activation [39]. 

DADS’ induction of the expression of such genes is indicative of 
its protective properties against cancer. Observed apoptotic impact 
of DADS comes consistent with the results obtained from the study 
performed on other cancer cells, such as human leukaemia HL-60 
cells and MDA-MB-435 breast cancer cells, where DADS arrested the 
mitotic division and activated apoptosis [16,40]. In addition, chaperone 
protein family, Hsp70 and Hsp90 are over-expressed in a wide range 
of tumor types (both solid tumors and hematological malignancies), 
and play essential roles in apoptosis, cell proliferation, metastases, 
angiogenesis, and invasion pathways in cancer cell metabolism. They 
provide stabilization; regulation and maintenance of oncogenic client 

proteins (Her-2, Cdk-4, Akt, Raf-1), thus promote cancer cell survival 
[41]. Some approaches being used or proposed in cancer therapy based 
on the in inhibition of Hsp90, Hsp70 and Hsp27 [42].

In a previous study, we proved that the apoptotic effect of DADS in 
breast cancer cells MCF-7 might be due to the upstream alterations that 
happened in the chromatin conformation post DADS treatment, which 
might lead to changes in gene expression [43]. Therefore, DADS ability 
was tested to activate H3 and H4 acetylation and thereby initiation of 
apoptosis by measuring the levels of acetylated forms of H3 (Ace-H3, 
acetyl K27) and H4 (Ace-H4, acetyl K91) beside two of the well-known 
apoptotic molecular markers, cytochrome c and active caspase-3 
[44,45]. A significant increase was observed in the acetylated form of 
histone-3 (Ace-H3) and -4 (Ace-H4) and in the level of cytochrome c, 
along with the appearance of active caspase-3 protein bands, compared 
to vehicle treated cells. 

Induction of histone acetylation was correlated in many studies with 
the initiation of the programmed cell death or apoptosis, particularly 
in cancer cells [46,47]. These data clearly suggest that DADS provoked 
apoptosis in HT-29 cells and this may be caused by the chromatin 
changes (H3 and H4 acetylation) that altered gene expression and 
caused an elevation in the levels of apoptotic genes machinery (BAX, 
cytochrome c) and ultimately led to caspase-3 activation in HT29 cells. 
Then, one question could be asked? Does DADS exert a similar effect in 
vivo? To answer this question we designed an animal model for colon 
cancer (DMH induced colorectal cancer in laboratory male rabbit) [20]. 

Histological and cytological changes characteristic for colon 
tumorigenesis was seen in the histological sections prepared from 
O. cuniculus colonic region post DMH treatments. Such changes 
were hyperplastic intraepithelial lesions, indicated by crowded nuclei 
without stratification, disappearance of the mitotic figures on the 
surface of crypts and elongation of the crypts. In addition to neoplastic 
changes (e.g., hypercellularity, hyperchromatic nuclei and high nuclear/
cytoplasmic ratio), lymphocytes infiltration was detected. 

In the animals treated only with DADS, the colonic sections looked 
like the controls. When DMH was injected along with DADS, the 
above observations were strongly attenuated and were not observed 
in animals that received DADS prior to DMH treatment. Altogether, 
suggest the protective properties of DADS, in vitro and in vivo. This still 
needs further work to reveal the molecular mechanisms of DADS with 
anti-cancerous properties.

Conclusion
DADS (a major organosulfur compound in garlic oil) anti-cancer 

properties were studied in vitro and in vivo, RT-PCR and western blot 
data showed that DADS differentially modulates the gene expression 
in HT29 colon cancer cells. It represses the oncogenes and induces the 
tumour suppressor genes. DADS also attenuates and protects against 
the carcinogenic impact of DMH in the animal model. We suggest that 
DADS has a beneficial impact that may be due to its ability to induce 
histone acetylation and initiate apoptosis in cancer cells.
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