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Abstract

Vascular complications in diabetes are an emergent health care problem. Accelerated endothelial dysfunction in
pathological settings connoted by hyperlipidaemia and hyperglycaemia is a crucial step for the development and the
progression of atherosclerosis. Previous data support the central role of Advanced Glycated End-products (AGEs)
and oxidation or glycation of Low Dense Lipoproteins (LDLs) in the impaired vascular remodelling associated with
diabetes. Hyperglycemia, via NADPH Oxidase (NOX) enzymatic activity, upholds the production of Reactive Oxygen
Species (ROS), which in turn mediate tissue damage and long-lasting “metabolic memory”. Nonetheless, in diabetic
setting, ROS act as secondary messenger to strictly control stemness of visceral-derived adipose stem cells and to
promote transcriptional and post-transcriptional events, also involving small non-coding microRNAs (miRs). In this
article we provide an overview on the events elicited by acute and chronic hyperglycemia that account for vascular
and kidney diseases. The deleterious effects of LDL and fatty acids on endothelial progenitor cells in condition
connoted by hyperglycemia are also discussed. Moreover, as current therapeutic approaches failed to improve
endothelial dysfunction/disease progression and consequently long-term outcomes in diabetics with vascular
complications, particular attention has been devoted to describe efforts made to identify novel therapeutic options,
for the management of one of the most relevant health care problems world wide. Finally, as targeting of epigenetic
mechanisms is a future challenge, relevant data supporting their deep involvement in long-lasting “metabolic
memory” have been also addressed.
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Introduction
Cardiovascular diseases are the major causes of morbidity and

mortality in patients with type 2 diabetes [1]. Several lines of evidences
indicate that the accelerated impairment of endothelial functions and
the loss of an efficient blood vessel perfusion are crucial for the
development of atherosclerosis in diabetes [2,3]. It is well established
that atherosclerosis is a process, which results from interaction among
plasma lipoproteins, cellular components (monocyte/macrophages, T
lymphocytes, endothelial cells and smooth muscle cells, endothelial
progenitor cells) and extracellular matrix [4].

Modified low density lipoproteins (particularly the oxidized small
dense LDL (sdLDL) act as crucial players in the initiation of the pro-
inflammatory reaction which leads to vessel injury [4]. Besides
abnormal LDL, the advanced glycated end-products (AGEs), resulting
from long-term diabetes, are crucial determinants of diabetic vascular
complications. Generation of oxidative stress and dysfunctional
mitochondria, the lack of efficient antioxidant machinery, as well as
the overproduction of growth factors and cytokines are mainly
involved in disease progression [5-7]. In this review, we will focus on
the molecular mechanisms leading to vascular damage and kidney
disease associated with diabetes. Particular attention will be paid to the
deleterious effects of LDL or protein oxidation or glycation and their
downstream signals. The last part of the review will be focused on the
mechanisms accounting for the long-lasting “metabolic memory” as
well as on novel therapeutic approaches targeting oxidative stress.

Vascular Damage

Low Density Lipoproteins (LDL) and endothelial cells (ECs)
The concept of LDL oxidative modification was first built up by

Steinberg et al. in 1989 [8]. From then to now a number of preclinical
and clinical studies have extensively documented that qualitative
(glycation and/or oxidation) and quantitative LDL abnormalities in
diabetes exert a pivotal role in the development and progression of
atherosclerosis [9]. Modified LDL, no longer efficiently bound by the
canonical LDL receptor, acquire the ability to bind a number of
scavenger receptors expressed by endothelial cells (EC) and
macrophages, such as LOX-1 (oxLDL lecitin like Receptor 1), CD36,
SR-PSOX [10] and the receptor for AGE (RAGE) [11]. LDL binding to
these non canonical receptors brings on a vast array of pro-
atherogenic responses intimately linked to lesion progression in
diabetic setting [12-14]. Of interest oxLDL are much more vulnerable
to glycoxidation [15] and, as suggested by the use of RAGE-deficient
murine aortic ECs, for oxLDL-mediated proatherogenic signals RAGE
is crucial [16]. This implies that ROS generation elicited by binding of
“AGEs” to RAGE is central in the activation of the redox-sensitive
nuclear transcription factor kB (NF-kB) and the transcription of a
variety of atherosclerosis-related genes, including PAI-1, tissue factor,
VCAM-1, ICAM-1, MCP-1, VEGF, and RAGE itself [17-19].
Alternatively we found that small and dense LDL recovered from
diabetic patients (dm-LDL), via RAGE, induce ROS generation,
activate the signal transducers and activators of transcription
(STAT)5B and inhibit EC cell-cycle progression [12,13]. The
observation that such deleterious cue was mediated by the STAT5B
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transcription activity on the cyclin dependent kinase inhibitor p21waf
[12,13] delineates a new mechanism through which RAGE can
stimulate intracellular events to drive changes in gene expression.

Essential to diabetes is the development of chronic hyperglycemia
resulting in AGE formation [19]. As stated above this process also
involves LDL which, by undergoing AGE-modification, acquire more
relevant pro-atherogenic properties and accelerate atherosclerosis. As
the result of such additional qualitative abnormality, LDL switch on a
cascade of intracellular events, that besides STAT5 and PKC [20,21],
also include the activation of the Erk1/Erk2 MAP and Src kinases
[13,22]. More recent reports have highlighted novel mechanisms in
RAGE signaling. In particular Shui et al. [23] have shown that the
activation of the mTOR pathway, known to be associated with cardiac
hypertrophy and atherosclerosis, is also crucial for LOX-1 expression
in response to AGE-mediated signals. More interestingly, they provide
evidences for a novel protective effect of metformin administration
that open new insight to moving forward to human studies. Indeed,
metformin by interfering with the mTOR pathway was found to
reduce LOX-1 expression on ECs [23].

Accumulating evidences indicate that gly-LDL by oxidative stress
generation can also induce thrombogenic reactions. At this regard,
Sangle et al. [24] provide evidences that gly-LDL lead to heat shock
factor 1 (HSF 1)-mediated PAI 1 production. By using both in vitro
and in vivo models they elegantly showed that NOX, and H-Ras/Raf-1
signaling pathways are implicated in the up-regulation of HSF1 or
PAI-1 in ECs [24].

Over the last few years a number of studies have demonstrated that
T and B lymphocytes and dendritic cells express RAGE [25,26],
suggestinga role of RAGE in adaptive immune responses as well.
Although this novel RAGE role is still debated [25,27,28], it has been
suggested that ligand-mediated RAGE activation could be relevant for
effective T lymphocytepriming during acute inflammatory responses.
Based on the notion that long-term diabetes recapitulates chronic
diseases it is conceivable to hypothesize that, in diabetes, RAGE
signaling could maintain a sustained inflammation andtissue damage
also by acting on immune cells [19].

An immunological response to gly and oxLDL has been also
reported and seems to predict, more efficiently than traditional risk
factors, vascular disease progression in diabetes [29,30]. In keeping
with this observation it has been reported that the progression of
diabetic retinopathy positively correlates with the level of immune-
complexes containing gly- and ox-LDL [31]. As gracefully shown by
the authors immune-complex binding to macrophages leads to
oxidative stress, mitochondrial dysfunction and retinal pericytes
apoptosis [31]. More recently, Bernal Lopez et al. [32] also
demonstrated a positive correlation between the levels of anti-ox-LDL
IgM and the expression of genes involved in inflammation, apoptosis,
plaque disruption, lipidic metabolism and cellular turnover. However,
whether this correlation simply reflects plaque instability or the
inflammatory milieu of diabetic patients is still open to debate [32].

Apart from glycation and oxidation, in diabetic patients LDL can
get into homocysteinisation [33]. Owing to lipoproteinglycation, LDL
appear to be more susceptible to bind homocysteine derivatives, and a
direct correlation between homocystamide LDL derivates and the
HbA1c levels has been reported. Thus, additional EC oxidative damage
can be induced by homocystamide LDL-mediated peroxynitrite
production [33].

One last word must be dedicated to the work of Pirillo et al. [34]
which demonstrated how modified HDL (through the 15
lypoxigenasis) lose their protective effect and become pro atherogenic
(Figure 1).

Figure 1: Schematic representation of mechanisms involved in
diabetes-associated vascular damage (A) Circulating factors
involved in diabetes-associated vascular damage are schematically
described.Advanced glycation end-products (AGE), glycated LDL
(gly-LDL), oxidized LDL (Ox-LDL), high glucose (HG) palmitic
acid (PA) are crucial determinants of vascular damage. When AGE/
gly-LDL interact with the receptors for AGE (RAGE) on EC, they
stimulate generation of reactive oxygen species (ROS). This results
in STAT5 activation and p21waf expression, leading to cell-cycle
arrest, or in the activation of the nuclear factor kB (NF-kB). NF-kB
in turn transcriptionally regulates its target genes: plasminogen
activator inhibitor-1 (PAI-1)/vascular cell adhesion molecule-1
(VCAM-1)/intercellular adhesion molecule-1 (ICAM-1). In
diabetic condition circulating endothelial progenitor cells (EPC) are
reduced in number and impaired in function. AGE and Ox-LDL via
RAGE down-regulate VEGF and eNOS activity. Moreover, while
high palmitic acid (PA) concentrations activate STAT5/
PPARγcomplex leading to p21waf expression, HG up-regulates
miR-221/222 expression to control p21waf, p27Kip1 and p57Kip2
content that results in EPC cell-cycle arrest. (B) Persistent
hyperglycaemia induces epigenetic changes that determine the so
called “metabolic memory”. The relevant mediators of epigenetic
changes that sustain vascular damage are depicted: mitochondrial
p66shc, sirtuin-1 (SIRT-1), p53, and Set7/9.

Hyperlipemia/hyperglycaemia and endothelial progenitor
cell dysfunctions

The bone marrow pool of endothelial progenitor cells (EPCs) has
attracted particular attention due to their potential clinical application
[6,35]. However, EPCs are reduced in number in patients with type 1
or type 2 diabetes [36-38]. Moreover, their functional capabilities are
impaired in these pathological conditions [36-38]. Of note, in diabetic
patients with peripheral vascular complications a further and
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progressive impairment of EPC number has been reported [37]. A
number of studies indicate that besides hyperglycaemia different
metabolic stress factors associated with diabetes contribute to such
quantitative and qualitative abnormalities [39,40]. Among these,
oxidized LDL (ox-LDL), alterated fatty acids and AGE are included
[36-38,41].

AGE, by binding to RAGE, induce apoptosis and impair EPC
migration and tube-like structure formation by affecting VEGF-
signalling pathway and eNOS activity  [42]. Liang et al. [43] reported
that such dysfunctional EPC phenotype could be reverted by
administration of anti-AGE antibodies or rosiglitazone, a well-known
PPARgamma agonist [43,44]. That the inflammatory milieu, via the
up-regulation of RAGE, is also crucial for AGE-mediated effects is
supported by experiments performed on EPC exposed to C-reactive
protein [45].

Along with ox-LDL, alteration of lipid and in particular of fatty acid
(NEFA) metabolism is common in type 2 diabetes [46]. Indeed,
metabolic profiling of plasma NEFAs in type 2 diabetes patients has
discovered different biomarkers, including Palmitic Acid (PA) [47].
PA is a ligand for cell surface receptors and for transcription factor
receptors, the PPARs. PPARs are crucial regulators of genes involved
in lipid and glucose metabolism, vascular functions, and inflammation
[48]. We have recently demonstrated that EPCs recovered from
diabetic patients, displaying high concentrations of PA, or EPCs
cultured in diabetic concentration of PA are unable to undergo cell-
cycle progression [49]. We found that, as expected, diabetic
concentrations of PA induce the expression of PPAR gamma.
However, in this particular condition PPAR gamma binds to the
promoter region of STAT5 and negatively influences its transcription.
Despite the reduction of STAT5 content, the STAT5/PPAR gamma
complex is still formed, but changes its target. It binds to the p21waf

promoter and induces its transcription. So that EPCs undergo cell-
cycle arrest.

In addition to precise transcriptional regulation, vascular
remodeling requires post-transcriptional regulation, involving small
non-coding microRNAs (miRs) [50]. miRs are highly conserved, non-
coding small RNAs which regulate gene expression at the post-
transcriptional level [51]. Recently, a miRNA signature in insulin
target tissues and a plasma miRNA profile in type 2 diabetes have been
reported [52]. Different families of miRs, including miR-221/222, have
been shown to be involved in the control of endothelial cell fate and
vascular remodeling [53]. In particular, miR-221/222-driven post-
transcriptional regulation of cyclin-dependent kinase (Cdk) inhibitors
(CKIs) p27Kip1 and p57Kip2 have been involved in mechanical vascular
diseases [54]. Consistently, we demonstrated that acute or chronic
exposure to high glucose concentrations prevented cell-cycle
progression of both ECs and EPCs by modulating the expression of
p27Kip1 and p57Kip2 [55]. Moreover, we found that high-glucose and
AGEs were also able to inhibit vessel formation in an in vivo model of
angiogenesis by regulating the expression of miR221/222. Along with
miR-221/222, miR-320 [56] and miR-503 [57] have been shown to
contribute to the impaired vascular remodeling in preclinical models
of diabetes. In particular, Caporali et al. [57] demonstrated that forced
expression of mirR-503 in ECs leads to inhibition of vascular growth
in diabetic mice subjected to hind limb ischemia. This effect relies on
miR-503-driven post-transcriptional regulation of the cell-cycle
related CCNE1 and cdc25A genes [57]. The potential clinical
implication of miR-503 in diabetes-associated vascular complications
is sustained by the observation that diabetic patients display increased

plasma miR-503 levels [57]. Thus, these data, besides confirming that
deregulation of miR-221/222, miR-320 and miR-503 expression could
be involved in high glucose-driven anti-angiogenic signals, identify
miRNAs as potential targets for pharmacological intervention to
improve vascular dysfunction in conditions connoted by altered
glucose metabolism [55-57].

Kidney Disease

AGE effects on mesangial cells
Diabetic nephropathy consists of an early onset of glomerular and

tubular hypertrophy and a late extracellular matrix accumulation
leading to a progressive expansion of the mesangial cells (MCs) [58].
Mesangial cell hypertrophy mainly depends on intracellular signals
elicited by transforming growth factor beta (TGF-β) [59]. Cell-cycle
independent or dependent mechanisms are implicated in the control
of cell hypertrophy [60]. TGFβ-induced cell-cycle dependent
hypertrophy involves the synthesis of structural protein such as p21waf

and p27Kip1 key regulators of G1 phase progression (TGFβ) [61]. At
this regard, we demonstrated that AGE, but not high glucose (HG),
were able to increase p21waf while inhibit cyclin D1 expression in MCs
[62]. We also showed that, in response to both TGF-β and AGE, cell
cycle arrest of MCs is the result of STAT5 binding to the promoter
region of p21waf [62]. As stated above, along with MC hypertrophy,
extracellular matrix accumulation contributes to kidney disease in
diabetic setting. We provided evidences that while STAT5 controls
TGF-β- and AGE-mediated MC hypertrophy it was not involved in
collagen production. Moreover, the increase of immunoreactivity for
the activated STAT5 and p21waf in kidney biopsies from early to
advanced stage of diabetic nephropathy sustains the possibility that
these molecular events could also be crucial for human disease [62].

The CXC chemochine ligand 16 (CXCL16) is a transmembrane
molecule acting as an adhesion molecule for immune cells, smooth
muscle cells and ECs or as a scavenger receptor for ox-LDL in different
cell types [63-65]. CXCL16 consists of a surface-bound and a soluble
form released by two disintegrin like metalloproteinases ADAM10 and
ADAM17 [66,67]. Both CXCL16 and ADAMs are constitutively
expressed in human podocytes where CXCL16 is crucial for ox-LDL
uptake [68]. Proinflammatory stimuli such as interferon-gamma and
tumor necrosis factor-alpha are known to induce the expression of
CXCL16 and the release of the soluble form from human podocytes
[68]. In addition it has been also reported that the soluble form of
CXCL16 contribute to the recruitment of CXCR6-expressing immune
cells to sites of active inflammation [69-71]. The crucial role of
podocytes in kidney diseases along with the observation that soluble
CXCL16 promotes pro-atherogenic signals and can predict long-term
mortality in acute coronary syndrome [72] prompted Zaho et al. [73]
to evaluate the serum levels of CXCL16 in diabetic patients with or
without kidney disease. The results of this study clearly demonstrate
that CXCL16 serum levels are higher in diabetic patients with
nephropathy than in healthy subjects or diabetic patients without
kidney disease. Although the authors concluded that serum CXCL16
levels might represent an indicator of renal injury in diabetic subjects,
prospective studies with larger sample sizes are required to assess
whether, indeed, CXCL16 could be usefully exploited as a diagnostic
biomarker to identify the onset and/or the development of kidney
disease in diabetic patients [73].
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Figure 2: The mechanisms involved in kidney disease and some of
the novel therapeutic strategies targeting ROS-mediated damage
are schematically represented. Upper panel: The relevant signaling
pathways involved in AGE/transforming growth factor beta
(TGFβ)/Ox-LDL-induced mesangial cell (MC) hypertrophy are
depicted. STAT5, Rac-1-mediated ROS generation and the CXC
chemokine ligand 16 (CXCL-16) shedding are reported. Middle
panel: visceral adipose tissue-derived stem cells (ASCs) in presence
of HG de-differentiate into self-renewing cells. Oct-4: octamer-
binding transcription factor 4; Nanog: homeobox protein Nanog.
Lower panel: schematic representation of the anti-oxidant
properties of UnAG in a pre-clinical model of PAD. UnAG
administration rescues oxidative-stress-mediated skeletal muscle
damage inducing satellite cell proliferation and muscle
regeneration. SOD2: Superoxide dismutase 2.

Current therapies for diabetic nephropathy are based on drugs that
act on the renin-angiotensin converting enzyme used to control
systemic and intraglomerular hypertension [74]. Although a good
pressure control reduces the incidence of complications, mortality and
progression of nephropathy [75] the achievement of therapeutic goals
in diabetic patients is still a major unmet need. Likewise, alternative
strategies based on anti-TGF-β antibody poorly control the
progression of diabetic nephropathy [76]. This suggests that additional
therapeutic strategies are still required to preserve diabetic individuals
from the end stage renal failure. The involvement of STAT5 in MC
hypertrophy and the availability of STAT5 indirect inhibitor(s) [77]
raise the possibility that a combinatory approach that targets both
TGF-β and STAT5 might be exploited in the future to treat such
disabling disease.

ox-LDL and MC expansion
Lipid abnormalities are known to be crucial in the progression from

early glomerular injury to progressive glomerulosclerosis [78]. Unlike
TGF-β and AGE, lipid abnormalities and oxidative stress stimulate
MC proliferation and contribute to the development of diabetes-
associated renal disease by expanding MCs. However, the molecular
mechanisms involved in this process are still undefined. We
demonstrate that when cultured in presence of ox-LDL MCs
proliferate by activating Akt and Erk1/2 MAPK pathways [79].
Moreover, we first demonstrated that this event is strictly controlled
by ROS production and Rac-1 GTPase activation resulting in
transactivation of the epidermal growth factor receptor (EGFR). In

both physiological and pathological conditions proliferation is strictly
controlled by extracellular matrix receptors, the integrins, and the
cytokine/tyrosine kinase receptors [80-82]. We provide evidences that
MCs challenged with ox-LDL joint β4 integrin/EGFR signaling to
drive proliferative signals. Therefore the results of this study identify a
novel molecular mechanism induced by ox-LDL that in the early stage
of renal disease could account for MC expansion via β4 integrin
activation. By microarray technology Kim et al. [83] provide an
alternative mechanism involved in MC hypertrophy upon gly-LDL
challenge. Actually, they showed that gly-LDL by activating the Axl/
growth arrest gene 6 axis induce TGF-βand its deleterious effects on
glomerular MCs [83]. Overall these studies open new perspectives for
future pharmacological approaches.

Epigenetic mechanisms and cardiovascular outcomes in
diabetic patients

The signalling pathways involved in glucose-induced vascular
damage in diabetes have been deeply characterized [19]. However, a
successful therapeutic approach to improve the cardiovascular
outcomes in patients with diabetes is still far from being achieved.
That hyperglycaemia per se can contribute to diabetes-associated
vascular complications has been recently reconsidered in the light of
the results of clinical trials indicating that while in new onset diabetes
glucose-lowering treatments preserve patients from vascular
complications in long–term diabetes the intensive glycaemic control is
not effective [84-86]. These observations led to the conclusion that
glycaemic environment could be “better or worse remembered” by the
vascular system and could contribute to the natural history of diabetic-
associated vascular complications [84-86]. The persistence of glucose-
mediated oxidative stress, AGE production and the positive feedback
loop between AGEs and RAGE signals [19], despite a return to good
metabolic control, provides the mechanistic justification of the so
called “metabolic memory”. The “metabolic memory” mainly reflects
epigenetic changes driven by hyperglycemia-mediated mitochondrial
ROS production [87-91]. Epigenetics depend on histone modifying
enzymes, DNA methylation, and chromatin remodeling proteins [89].
These mechanisms are reviewed and consisting in small changes in the
epigenome over time [87-91], seem to be also crucial determinants of
the early “hyperglycemia memory” sustained by the DCCT/EDIC
studies [84,85]. Moreover, it has been suggested that epigenetics and in
particular DNA methylation, could also explain the awful “metabolic
memory” of post-prandial hyperglycemia episodes [92]. Current
knowledge supports single mechanisms as relevant mediators of this
process however Paneni et al. [91] proposed an intriguing molecular
pathway that links together chromatin remodeling, ROS production
and inflammation of the vessel wall. Over the last few years a number
of studies have shown that epigenetic mechanisms, maintained even
after glucose normalization, are involved in the transcription of the
p65 subunit of NF-kB and on the expression of its target genes:
monocyte chemoattractant protein-1 (MCP-1) and vascular cell
adhesion molecule-1 (VCAM-1) [93,94]. Moreover, by molecular
approaches driving superoxide dismutase-2 (SOD2) overexpression, it
has been clearly demonstrated that interfering with ROS generation of
mitochondrial origin prevents sugar-induced histone metilation of p65
[95]. Similar results were obtained by using a quite selective
mitochondrial antioxidant able to interfere with the recruitment of the
Set7 histone methyltransferase to the “chromatinized p65 template”
[91]. Moreover, the recent findings that the expression of the
mitochondrial adaptor protein p66shc is increased in response to
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hyperglycemia [96,97], has spurred a deep investigation on the
involvement of p66shc in ROS-induced “metabolic memory”.

Indeed, it has been shown that high glucose challenge leads to
persistent p66shc activation and ROS production in vascular cells,
despite the return to norm glycaemia [96]. The authors provided clear
cut evidences that this event is mediated by epigenetic mechanisms
involving promoter demethylation and acetylation of histone 3 [96]. In
keeping with the possibility that, despite glucose normalization,
vascular damaging signals could be self-maintained by epigenetics,
recent studies have also discovered a tight connection among p66shc,
the class III histone deacetylase SIRT1 and the tumor transcription
factor p53 [96,98,99]. Indeed, SIRT1 overexpression in ECs inhibits
high glucose-mediated p66shc up-regulation, improves endothelial
function and reduces oxidative stress markers [100].

In keeping with the crucial role of p66shc, p53 and SIRT1 cross-talk
in this context are the following observations: i. p66shc is under the
transcriptional control of p53 [101]; ii. SIRT1 inhibition leads to p53
acetylation and to its increased transcription activity [102,103]. To
close the circle, Liu et al. [104] demonstrated that Set7, along with Set9
histone methyltransferase, negatively regulate p53 via SIRT1. That
epigenetic mechanisms involving SIRT1 are not endothelial specific is
supported by the recent finding that SIRT1 over-expression leads to
podocyte Claudin-1 “re-writing” resulting in the improvement of renal
function in db/db mice [105]. Collectively these observations indicate
that, despite glucose normalization, epigenetic mechanisms could
drive a persistent activation of the intracellular signalling pathways
that ultimately lead to endothelial dysfunction and apoptosis [91].
Thus, as an early good glycaemic control could be maintained despite
the return to worse metabolic control [84-86], to identify the onset of
post-transcriptional modification of histones that change gene
expression pattern in diabetic patients should be a future challenge.

Novel options for Diabetes-Associated-Complications

Adipose tissue-derived stem cells (ASCs)
The negligible effects of current therapeutic strategies on both

endothelial dysfunction and disease progression have highlighted the
need for novel therapeutic approaches. Recently, the encouraging
results of cell-based therapy using diverse “stem/progenitor” cell
populations in preclinical models of vascular diseases have spurred
clinicians to exploit these cells in regenerative medicine [6]. For many
years bone marrow-derived MSCs (BM-MSCs) have been considered
the most relevant sources of stem cells [106,107]. However, the low
number of cells recovered and the invasive procedures to obtain them
have led to several concerns on the feasibility of exploiting these cells
in humans. Different tissue sources have been used, but because of the
effortless access by minimally invasive procedures adipose
subcutaneous tissue, is nowadays considered a promising alternative
source of adipose-derived stem cells (ASCs) for regenerative medicine.
This is particularly true for cardiovascular diseases as they can
concomitantly stimulate neovascularization, cytoprotection and tissue
regeneration [6].

Originally engraftment and terminal differentiation of stem/
progenitor cells were the most often mechanisms studied [106,107].
However, up to now, there is no definitive evidence on their clinical
efficacy. In fact up-and-coming data indicate that their therapeutic
effectiveness mainly rely on their paracrine effects [108,109]. At this
regard, Rehman et al. [110] have shown that ASC administration

enhances endothelial cell survival in hypoxic conditions and improves
ischemic limb perfusion by means of the vascular endothelial growth
factor (VEGF) release [110]. Likewise, Nakagami et al. [111] reported
that implantation of ASCs into the ischemic hindlimb improves both
angiogenic score and capillary density.

As stated above the majority of preclinical studies were performed
by using ASCs derived from subcutaneous adipose tissue. However,
based on the notion that visceral and subcutaneous adipose tissue
possesses distinctive cell autonomous assets [112] it cannot be barred
that functional differences in ASCs derived from different fat depots
might also exist. Moreover, whether environmental cues, as
hyperglycaemia or pathological conditions connoted drastic changes
in visceral adipose mass can change their self-renewal capability or
secretome is still debated. To address this issue we recently
investigated whether visceral adipose tissue-derived ASCs could
represent a valuable source of stem cells for regenerative purpose in
diabetic condition. To this end ASCs recovered from diabetic patients
or cultured in high glucose concentration were assayed for their self-
renewal capability and cytokine production [113]. Stem cell
pluripotency are under the control of a network of transcription
factors [114], including octamer-binding transcription factor 4 (Oct4)
and Nanog [115]. We demonstrated that the diabetic milieu promotes
stem cell self-renewal potential by activating NOX and “nontoxic”
levels of ROS [113]. Consistent with the crucial role of Oct4 and
Nanog in stem cell self-renewing capabilities we demonstrated that
ASCs derived from diabetic patients or cultured in the presence of HG
express high level of Oct4 and Nanog [113]. By knocking-down NOX
we also demonstrated that this pathway is relevant for HG-mediated
ASC stemness, measured as “spheroid” formation. Moreover
consistently with the ability of ASCs to secrete soluble mediators [116],
the de-differentiation status induced by HG resulted in an increase of
cytokine production. This effect was partially lost when de-
differentiated ASCs were put in culture in the presence of low glucose
concentrations.This implies that hyperglycemic condition can impact
ASC stemness and secretion profile. Moreover, the results of this study
suggest that omentectomy, along with ameliorating the metabolic
profile [117] can offer an additional benefit: the recovered ASCs could
be exploited to repair deteriorating tissues. Finally, the results of this
study indicate that HG pre-conditioning could be exploited to ex-vivo
expand autologous ASCs.

A naturally occurring hormone, the unacylated ghrelin
(UnAG) to target ROS-mediated damage

As stated above vascular remodelling relies on resident ECs and on
circulating EPCs [6,36]. Thus, changes in EPC number and functional
activities, as occurs in diabetes, impact on their delivery to sites of
ischemia where new vessel formation might be crucial [36]. This
implies that molecules able to revert EPC dysfunction might represent
an alternative therapeutic strategy for diabetes-associated vascular
complications. Recently it has been shown that gastric-released
hormones, such as ghrelin, impact on glucose metabolism as well as on
diabetes-associated vascular complications [118]. Indeed, circulating
total ghrelin levels are negatively associated with body mass index
[119] and obese [120] and in type 2 diabetic patients have a reduced
ghrelin secretion [121]. Ghrelin is a 28 amino-acid peptide circulating
in two different forms: the acylated (AG) and the unacylated (UnAG)
ghrelin [122]. Of particular interest, it has been reported that in
clinical settings associated with insulin resistance a relative excess of
AG compared to UnAG is common [123]. We have shown that UnAG
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and its cyclic analogue, AZP531 protect vascular cells from ROS-
mediated damage in diabetic condition [124,125]. In particular we
showed that UnAG, but not AG, systemic administration protects
diabetic EPCs from oxidative stress and senescence and improves their
vasculogenic potential [124]. Moreover, we provided evidences that
only UnAG was able to rescue defective EPC mobilization in diabetic
patients by restoring eNos activity [124]. Consistently with the anti-
oxidant properties of UnAG, Shimada et al. [126] recently
demonstrated that UnAG protects human retinal microvascular
endothelial cells from oxidative stress-induced apoptosis through the
SIRT-1 signalling pathway. Moreover a prospective study has shown a
correlation between circulating des-acyl ghrelin levels and
cardiovascular events. In this study Yano et al. [127] demonstrated
that a low circulating level of des-acyl ghrelin, is a useful
cardiometabolic marker predicting atherosclerosis in elderly
hypertensive patients. Based on evidences for the favorable
cardiovascular effects of UnAG [124,125] we recently investigated its
therapeutic effects on peripheral arterial disease (PAD). PAD is
associated with high rate of myocardial infarction, stroke and
amputation [128]. The incidence of PAD is expected to increase
because of the increasing prevalence of diabetes and population ages
[129]. Current surgical approaches are associated with increased
perioperative morbidity and mortality [130], while alternative
strategies including cell-based therapies or angiogenic growth factor
delivery employed so far, were found ineffective [6]. Data obtained in a
preclinical model of ischemia demonstrate that UnAG rescues
oxidative stress-mediated skeletal muscle damage and induces satellite
cell (SC) proliferation and muscle regeneration [131]. We also
demonstrated that such effect relies on its ability to induce an efficient
antioxidant response mediated by SOD2. By interfering with the
expression of SOD2 we also showed that SOD2 strictly controls post-
transcriptional mechanisms driven by miR-221/222 to induce skeletal
muscle regeneration [131] (Figure 2).

Conclusions and Perspectives
Defective mitochondrial electron transfer chain along with the

increased ROS generation is crucial determinants of cell damage
[132,133]. This is particularly true in diabetes setting where unbalance
of oxidative stress has causal role in its ongoing vascular
complications. In the last decade different therapeutic strategies have
been exploited to overcome these hurdles, however so far, many of
them failed to show clinical benefits [6,36]. This implies that the
development of a valuable approach is still a thorny challenge. Thus, to
design novel therapeutic approaches able to prevent or ameliorate
tissue damage, future research efforts should be focused on an in-deep
understanding of the mechanisms involved in ROS production and
mitochondrial defects. Pre-clinical models of vascular diseases indicate
that a naturally occurring hormone, such as UnAG, can act as anti-
oxidant molecules able to reverse vascular damage and to induce
skeletal muscle regeneration after ischemia [124,125,131]. In coming
years efforts should be directed to evaluate its potential clinical impact
in humans. Finally, molecular and pharmacological interventions able
to interfere with refractory hyperglycemia resulting in plastic
modification of chromatin and the so called “metabolic memory”
should be future therapeutic challenges.
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