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Abstract
In clinical research, it is often of interest to build a medical predictive model based on a number of independent variables (predictors) which are 
considered most relevant to the dependent variable (clinical outcome). Baseline demographics and patient characteristics which may inform 
disease status and/or treatment effect are often considered relevant predictors. These predictors, however, may be highly correlated. In the interest 
of parsimony of predictors (or least dominated parameters), a composite index is usually developed which combines highly correlated predictors 
into a single predictor. The exponential-type composite index is commonly seen in clinical research, for example, the body mass index (BMI). In 
this article, several statistical methodologies for the development of exponential-type composite index are derived, including the multiplicative 
model and additive model. The relative performance of these methods are compared via extensive clinical trial simulations. Both multiplicative 
and additive composite index can successfully inform disease status and/or detect treatment effect. Multiplicative composite index has smaller 
standard error of estimated coefficient; whereas the additive composite index is more beneficial in making accurate predictions. Both methods 
have higher empirical statistical power for partial F test than situations without using any composite index
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Introduction 

Composite index is a single variable that aggregates information from 
two or more measurements (independent variables) that are highly correlated 
either statistically or clinically [1]. The composite index is often used in clinical 
research to inform disease status and/or detect treatment effect. It provides 
a summary evaluation of complex features and/or deals with statistical 
inference issues. A typical example of composite index in clinical research is 
the body mass index (BMI). BMI combines weight and height into a single 
index which can best inform the obesity (disease status) and treatment effect 
(reduction of obesity) of the participants under study. Statistically, the idea of 
combining highly correlated independent variables into a composite index can 
alleviate multi-collinearity issue in regression model. Multi-collinearity among 
independent variables (predictors) is a common problem in regression model, 
especially in the field of clinical research [2]. One of the major reasons for the 
existence of multi-collinearity is the correlations existing among predictors. In 
the presence of multi-collinearity, the commonly used ordinary least squares 
(OLS) methods yield unstable estimates of regression coefficients. That is, 
coefficient estimations tend to have large standard errors, which contaminate the 
reliability of statistical inference [3]. Assuming the highly correlated predictors 
are redundant measures for the same underlying theoretical structure, building 
a composite index is one possible solution to multi-collinearity [4].

This assumption guarantees the validity of creating a composite index, 
i.e., the index provides meaningful information [1]. By replacing the highly 
correlated predictors with the proposed composite index, multi-collinearity 
can be alleviated. The idea of using a composite index to measure multi-
dimensional features is well-accepted and wildly used in clinical research. 
Under linearity assumption, one of the most common applications of composite 

index is to generate a “score” to measure disease activity and patient health 
status by taking the sum of individual predictors [5 -7]. In this case, the scale 
of each predictor can greatly impact the “score” when individual predictors are 
continuous. To avoid being influenced by the scale and allowing each predictor 
to have different weight, Andrade C [2] suggested using the weighted sum of Z 
scores to establish a composite index.

Now the question becomes how to determine the weight for each variable. 
Principal component analysis (PCA) is a favourable approach in dimension 
reduction, especially when there are a large number of independent variables. 
Scholars have used PCA to propose composite index which contained 
thousands of variables [8,9]. However, as an unsupervised approach, PCA 
doesn’t use any information from the outcome variable, which makes it less 
favorable in predictive models with composite index and composite index 
using PCA to determine weights works well only when individual predictors 
are highly correlated, otherwise the statistical power will be contaminant [1]. A 
better alternative in determining the weights is the partial least squares (PLS) 
approach. Instead of only maximizing sample variance as PCA, the objective 
function of PLS is to maximize both correlation to the dependent variable and 
the sample variance. Composite index proposed by PLS was shown to have 
very good performance, e.g., it has higher correlation to the outcome than the 
composite index from PCA [10,11]. 

Based on the idea of making use of the outcome, the latent variable 
model was proposed to create composite index for longitudinal data, which 
was shown to have better performance than the composite score approach in 
terms of type I error and statistical power [12,13] Another way to make use of 
the dependent variable in creating composite index is the regression model. 
By fitting the linear regression model, researchers can use either coefficients of 
variables or Pearson correlation ratio to determine the weight of each variable 
[14-16]. Though a natural extension from linear structure composite index is 
the nonlinear ones, few scholars have investigated methods to propose a 
nonlinear composite index. Generalizing the Pearson correlation ratio of linear 
regression models, Becker W, et al [17] proposed to use nonlinear correlation 
ratio to determine the weights. Specifically, the nonlinear model was fitted via 
Gaussian process; however, Gaussian process is computationally inefficient. 
For some simple nonlinear structures, scholars tried to transform a nonlinear 
model into a linear model to simplify calculation. One commonly seen simple 
nonlinear structure in clinical research is the exponential structure. For instance, 
BMI for measurement of obesity is defined as , Weight /Height2 and the QTc 
interval for assessment of cardio toxicity can be defined as QT RR/  or 

3QT RR/ [18,19]. This structure sometimes can be more interpretable, 
such as BMI can be treated as the body mass. 
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This article innovatively utilizes exponential regression model to propose 
an exponential-type composite index with data-driven weight for each variable. 
Building on an earlier proposal of using regression coefficients of some 
authors, see Chow et al., the weight of each predictor in the composite index 
is determined by fitting the nonlinear (exponential) regression model. Two 
methods of measuring the weights are proposed: the multiplicative model 
and the additive model. Under multiplicative model, after some algebraic 
transformation, the weights are determined using OLS; and under additive 
model, the weights are calculated using the modified Gauss-Newton method. 
The advantages of the proposed exponential models are (i) the proposed 
exponential-type composite index coincident with many well-established 
and well-accepted clinical composite index; (ii) this composite index is more 
accessible, especially when there are not many highly correlated predictors in 
the regression model; and (iii) the proposed methods are more computationally 
efficient and easy to implement than some of the above-mentioned methods. 
Here, the proposed methods are comprehensively evaluated in terms of the 
probability of accurately informing disease status, regression predicted values, 
estimated coefficient standard errors, and statistical power of partial F tests. 
In Section 2, a statistical procedure to generate composite index and potential 
difficulties are explained. Section 3 provides the statistical methods used to 
propose an exponential-type composite index under multiplicative and additive 
models. Section 4 discusses the evaluation methods for composite index. 
Section 5 contains the simulation result in comparing the performance of each 
method. Finally, some concluding remarks are shown in Section 6.

Composite Index 

One major application of composite index in clinical research is the 
regression model with highly correlated predictors. Consider a multivariate 
linear regression model

0 1 1 1 1... ...β β β β β εp p p+ p+ m mY = + X + + X + X + + X + ,                    (1)

where Y is the response variable, X1 , … , Xm are predictors, and    

0 1 µβ ,β ,...,β  are regression coefficients. One typical assumption of the 

random error term is that ( )20∼ σ,Nε . This implies that Y  is assumed to 

follow  ( )2
110 ... σ,Xβ++Xβ+βN mm . Suppose there are p  highly correlated 

independent variables in the regression model, without loss of generality, 
assume the highly correlated variables are X1,…,XP (P‹M). Then the predictors 
can be categorized into two clusters: the high-correlation cluster{ X1,…, X P }
and the low-correlation cluster  { X p+1,…, X m}

The composite index is proposed to replace X1,…,XP in original regression 
model (as Eq.(1)), which can be treated as a function of these variables, i.e., 
the composite index is C=G (X1,…,XP), and g is the utility function representing 
the relationship of these highly correlated predictors . g can be either linear or 
nonlinear. In this paper, an is considered, that is  ( ) pγ

p
γγ

p XXe=X,...,Xg  ...1
1

0
1 , where 

 pγ,...,γ,γ 10  are coefficients needed to be estimated.

The “weights” (or coefficients) in the utility function can be estimated by 
fitting the following nonlinear regression model [18] :   

 ,XXXeZ pγ
p

γγγ  ...∼ 2
2

1
1

0                                                                             (2)

where X1,…, X P are independent variables, Z is the dependent variable, 
and observations for Z are obtained by fitting the original regression model 
in Eq.(1) using OLS. Let  0 1 mβ ,β ,...,β  denote the estimated coefficients, and 
observations 

~
 Z  can be derived as following. 

 
1 1 2 2 ... p pZ = β X + β X + + β X ,

∧                                                      (3)

and 
~

 Z  can be treated as information in the regression model explained 
by X1,…, X P

The reason for not using equal sign in Eq.(2) is that, to make it a valid 
regression model, some additional assumptions on the error term and/or 
some transformations need to be applied to Z to estimate coefficients. Now, 
suppose the way to determine the “best” estimated values for  0 1 pγ ,γ ,...,γ  
is proposed, then the composite index can be derived by plugging in the 

estimated coefficients as following:

  0 1 2
1 2 ...

γγ γ γ p
pC = e X X X                                                                      (4)

The regression model in Eq.(1) can be rewritten using the proposed 
composite index:

  0 1 1 ...c p+ p+ m mY = β + β C + β X + + β X + ε.                     (5)

In summary, the composite index can be derived as the following steps:

Fit the multivariate regression model  ε+Xβ++Xβ+β=Y mm...110 .

Obtain estimated coefficients for β ’s using OLS and compute ~Z .

Fit nonlinear regression model 0 1
1~ ... p

pZ e X X
γγ γ , and obtain the estimated 

coefficients for pã,...,ã,ã 10 .

Propose the composite index 0 1 2
1 2 ... p

pC = e X X X
γγ γ γ .

It should be noted that under normality assumption of random error term 
in Eq.(1), both γ  and estimates of  follow normal distribution, and so does 
Z. For nonlinear regression model in Eq.(2), since the right-hand side has an 
exponential-type form, one typical approach is to take logarithm and transform 
it into a linear model, then use OLS to estimate coefficients. However, after 
taking logarithm, in Z will no longer follow a normal distribution, which makes 
OLS inapplicable. The next section will discuss how to set up and fit the 
nonlinear regression model in Eq.(2), and finally derive a valid composite index.

Nonlinear/Exponential models

Graver and Boren [20]. Categorized nonlinear regression models with 

exponential form p0 1 2
1 2 pX X ...X

γγ γ γε δ into two different categories: the 

multiplicative models and the additive models. The primary difference between 
these two models is how the random error term is considered in the nonlinear 
model. One major assumption of the exponential form regression model is 
that all of observations for predictors are positive, and dependent variable 
Z  follows normal distribution. That is, the highly correlated predictors in the 
original model must be strictly positive.

Multiplicative Model

The multiplicative model assumes that the nonlinear regression model 
has form  0 1 2

1 2 ...
γγ γ γ p
pe X X X δ  where  δ  is the random error term, and  δ  is 

assumed to follow log-normal distribution. As mentioned previously, one 
typical approach to estimate coefficients is to take logarithm, then use OLS. 
Since Z follows normal distribution, Ze  follows log-normal distribution. The 
multiplicative model can be written as 

  0 1 2
1 2 ....

γγ γ γZ p
pe = e X X X δ                                                                  (6)

Then,  δ=τ ln  follows normal distribution. Denote the distribution for  τ  
as  ( )2~ Mτ N μ,σ . , and the mean and variance for  δ  are derived as 

                          
 

( ) ( )

2

2 222 , and -1
Mμ+

σ μ+σM M

σ

E δ = e Var δ = e e .  
 

       (7)

To have 
 ( ) 0 1 2

1 2 ...
γγ γ γZ p
pE e = e X X X , 

 ( )E δ  must be 1. Then,  2 / 2Mμ= σ−    

and  ( ) 1
2
Mσe=δVar .

Take logarithm of Eq.(6), the nonlinear model becomes linear:

 
0 1 1 2 2ln ln ... lnp pZ = γ + γ X + γ X + + γ X + τ,                                     (8)

where Z follows a normal distribution with mean and variance as

 ( ) ( ) 2
0 1 1 2 2ln ln ... ln , andp p ME Z = γ + γ X + γ X + + γ X + μ Var Z = σ .        (9)

It should be noted that  ( ) 0≠τE , then OLS cannot be applied directly. 
To make the random error term has zero mean, let  γ0

¿= γ0+µ , then the 
exponential regression model in Eq.(8) becomes
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   0 1 1 2 2ln ln ... lnp pZ = γ + γ X + γ X + + γ X + τ , ,∗τ #                   (10)

where  ( )20∼ Mσ,Nτ . Then OLS becomes applicable. To simplify 
estimation of coefficients, the independent variables are centralized. For i= 
1,..., n, the linear regression model in Eq.(10) can be written as 

 ( ) ( ) ( ) *
0 1 1 1 2 2 2' ln ln ln ln ... ln lni p p pZ = γ + γ X X + γ X X + + γ X X + τ ,− − −                    (11)

where  
ki

n

=i
k X

n
=X ∑

1
ln1ln , for k= 1,. . . , p , 

 
pXXγ=γ ln- ...ln′ 100 , and n is the sample size. In matrix 

notation, the OLS estimators for coefficients in Eq.(11]) are

1
0 0 (12)Z and S Tγ γ

∧ ∧−
−

−= =

Where  
_

1
( )

0 ) ( ) 111 1 1

1( ... ) ; ; ( ), ( ; ( ),

n
ik

i=

i Jk j

Xn n In In Xi if i j
InT

p i ij ij i ik In X In x in X if i j ippp i= k=
Z Z s S S Z In X T T

n
γ γ γ
∧ ∧ ∧ − =−

− − ≠ ×××

∑= = = = =


∑ ∑

( )ln ln ( ) , 1,...., .
n

i ik i k
k=

T = X X Z Z and i j p

TheOLS estimator for isγ

− − =∑

*

1ln ... - ln (13)pZ X Xγ
∧ −

= −

Since 
* 2

0 0 / 2,Mγ γ µ σ= − = − to estimate 0γ it is necessary to fin the 

estimation for 2
Mσ The unbiased estimator for 2

Mσ is [20]

2

1

( ) , (14)
( 1)

n
kk

M
i

Z Z
n p

σ
∧

=

−
=

− +∑

Where 
 *^ ^ ^ ^

1 20 1 2 ...k p pZ = γ + γ X + γ X + ++γ X  Then the estimator for 𝛾0 is

 
 * 2

*
00 0 (15)

2
Mγ γ γ σµ

∧ ∧ ∧

= − = +                                                                    (15)

The fitted value for Z using Eq.(8) is
 *^ ^ ^ ^ ^ ^ ^ ^

1 2 1 2 20 1 2 0 1ln ln ... ln ln ln ... lnp pp pZ = γ + γ X + γ X + + γ X = γ + γ X + γ X + + γ X + μ.              (16)

The estimators for coefficients in Eq.(6) are  ^ ^
*
0 1 pγ ,γ ,...,γ  and the 

composite index in Eq.(4) under multiplicative model becomes

                           ^ ^^ ^^ ^ ^ ^
^*^

0 01 2 1 2
1 2 1 2... ...γ γγ γγ γ γ γp p

M p p
+μC = e X X X = e X X X .                  (17)

Additive Model

The additive model assumes that the nonlinear regression model has form
 0 1 2

1 2 ...
γγ γ γ p
pe X X X +η , where n is the random error term with normal distribution. 

Denote  ( )2~ 0 Aη N ,σ . Then the exponential regression model is defined as
 0 1 2

1 2 ...
γγ γ γ p
pZ = e X X X +η.                                                                          (18)

Z will not be transformed as in multiplicative model, since 
 0 1 2

1 2 ...
γγ γ γ p
pe X X X +η  already follows a normal distribution. In nonlinear 

regression, Gauss-Newton method is a commonly used method to find “best” 
estimators for coefficients using Taylor expansion. Hartley HO [21] proposed 
a modified Gauss-Newton method to ensure that every iteration will lead a 
decrement in sum squares of errors. Graver CA and Boren HE [20] adjusted 
the modified Gauss-Newton method to make it more efficient in computation. 
Additionally, the modified Gauss-Newton methods ensures the convergence of 
estimated coefficients [21].

The computation efficient modified Gauss-Newton method can be 
summarized as follows [20]. The primary objective is to minimize the sum 
squares of errors:

 ( ) ( ) .XXXeZnim γ,...,γ,arg=γ,...,γ,γQnim γ,...,γ,arg
n

=i

pγ
pi

γ
i

γ
i

γ
i

pγp
pγ ∑

1

2
2

2
1

1
0

10
10

10
...-                            (19)

Let  11
1

1
0

s
p

ss γ,...,γ,γ  denote estimated coefficients in Eq.(18) at the 
(S-1) th iteration. Solve the following P+1equations to find the solution for D0, 
D1,…, Dp : (detailed derivations are in Appendix) 

21 1 11 1 1 1 1 1
0 0 01 1 1 1 1 1

1 1 0 1 1 1 1
1 1 1

21 11 1 1
0 01 1 1

1 1 0 1
1 1

... ln ... ...

... ln ln ln - ...

pn ns s ss s s s s s

i i ji j i i i i i
i= j= i=

pn s ss s s

i i ki ki ji j i i
i= j=

e X X D + X D = Z e X X e X X

e X X D X + X X D = Z e X

γ γ γγ γ γ γ γ γ

γ γγ γ γ

            
        

∑ ∑ ∑

∑ ∑
11 1 1

01 1 1
1 1 1

1
 ... ln

n ss s s

i i i ki
i=

X e X X Xγγ γ γ

 



 
       

∑
       (20) 

                                                                                                                                                                           
where K= 1,..,p. Then estimated coefficients  s

p
ss γ,...,γ,γ 10

 at S th iteration 
can be updated using the following algorithm:

0 11,...., . , ,...., iteration can be updated using the following algorithm:s s s
pk p Thenestimated coefficients at sthγ γ γ=

Algorithm 1: Modified Gauss-Newton Algorithm

Data: 𝑋1, ...,𝑋𝑝 > 0 and 𝑍
Result: Estimators of coefficients (𝛾0, 𝛾1...𝛾𝑝) in Eq. (18)

0 0 0
0 1( , ,...., ), 1 1000;p S and Nγ γ γ = =

s N do<While

( ) 0 1 . 20  , ,  ..., ;psolve Eq forD D D

0 0 1 10,0.1,0.2,  ...,{ } ( , ....1. , )0 ;s s s
l p pQ Q l D l D l Dl γ γ γ∈ ← + + +for do

 s ll arg minQ← ;

0.1;c =
-20  = 0 & max < 10  dosl lwhile

0 0 1 10, 0.1, 0.2 ..., 1{ . } ( , ...., ;0 )s s s
l p pQl c c c c Q l D l D l Dγ γ γ∈ ⋅ ⋅ + + +⋅ ⋅ ←for do

 s ll arg minQ←
0.1;c c= ⋅
0 then returns

sl l≠if

end
1 0,1,..., ;s s s

k k kl D for k Pγ γ+ ← + =
51

0 10,1,..., 10s s s s s
k k pPfor kγ γ γ γ γ−+ − < = then return( , , ....,if );

S = S +1;

end

Let  s
p

ss γ,...,γ,γ 10  denoted the estimated coefficients for nonlinear 
regression model in Eq.(18) estimated by the modified Gauss-Newton method. 
The composite index in Eq.(4) under additive model becomes

 .XXXe=C pγ
p

γγγ
A ...2

2
1

1
0                                                                     (21)

Evaluation of Composite Index

One major application of composite index is to alleviate multi-collinearity in 
regression model. An ideal composite index should yield estimated coefficients 
with smaller standard error while maintaining the prediction accuracy. Then 
the composite index can be evaluated in terms of the predicted values of the 
regression model and the statistical power while testing for coefficients, in 
addition to standard errors.

Let γ
∧ ° denote the prediction from original regression model in Eq.(1). Let 

γ
∧

m and γ
∧

a denoted the predictions from regression model with composite index 
using multiplicative and additive model, respectively. The following statistics 
can be used to compare the fitted values using regression models with and 
without composite index:

Absolute difference: 0 0Y Y ) Y Y )M AM AD and D
∧ ∧ ∧ ∧

= − = −

Relative difference: 
0 0

0 0

Y Y Y Y) )
Y Y

M A
M AR and R

∧ ∧ ∧ ∧

∧ ∧

− −
= =
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In addition, the composite index can be evaluated by studying the 
statistical power of testing for the significance of either the composite index or 
corresponding highly correlated predictors. For original regression model, the 
following hypotheses may be tested: 

 p.,...,=iβH=β==βH ip 1for  0≠∃:  vs0...: 110            (22)

The partial F test may be applied to test for the hypotheses. Let A={Xp+1,…
,Xm} denote the independent variables in the reduced model and the number of 
variables in A  is w = mp. Let  B={Xp+1,…,Xm} denote the independent variables 
that we want to test for, and the number of variables in B is u=p. Under H0, the 
F statistic is A={xp+1,…,Xm}

		  
,

u
v×=

v
u=F

SSR(full)-SST
d)SSR(reduce-SSR(full)

/SSE(full)
/d)SSR(reduce-SSR(full)                            (23)

Where V= n u w 1, and F follows F distribution with degree of freedom u  

and v . Reject H0, if ác>F ; otherwise, fail to reject H0,  where ( )001
1 ,v;u,F=c áá  

is the ( )%1 á  quantile of F distribution, and á  is the significance level. The 

first term of Eq.(23) can be treated as the measure of effect size (the signal-to-
noise ratio) and the second term carries information about the sample size and 
number of parameters [22].Specifically, the effect size is defined as

 

,==f

SST
SSR(full)-1

SST
)SSR(reduce-

SST
SSR(full)

SSR(full)-SST
d)SSR(reduce-SSR(full)2                                                      (24) 

where . It should be noted that SST 
only depends on the observed data not the model. The correlations between 
variables in A,B and ã  can be written as

 

SST
)SSR(reduceand ,

SST
SSR(full) 22 =R=R AY;BA,Y;

                                                             (25)

Thus, the effect size can be expressed in terms of correlations:

 
.

R
RR

=f
BA,Y;

AY;BA,Y;
2

22
2

1−
−

                                                                                       (26)

Under H1, the F statistic follows non-central F distribution. Given no 
centrality parameter L, the statistical power is

                              ( ),FΨ= Lv;u,1power                                                      (27)                             

where ( ).Lv;u,Ø  is the cumulative density function of F distribution with 
degree of freedom u and v, and no centrality parameter L ; and F is the observed 
test statistic in Eq.(23). Using Laubscher’s square root normal approximation 
of noncentral F distribution, the statistical power can be approximated as [22]

 
( ) ( )

.

L+u
L+u+

v
uc

v
ucv

L+u
L+uL+u

Φ
α

α



















2

1222
≈power                                                        (28)

The non-centrality parameter L and effect size F2 has the following relation:
 

( ).wun×
R

RR
=f=L

BA,Y;

AY;BA,Y;v 1---
-1

-
2

22
                                                        (29)

For regression model using the proposed composite index, the hypotheses 
in Eq.(22) become

 .βH=βH cc 0≠:  vs0: 10
                                                                         (30)

Let B={c} denote the composite index and the number of variables in B 
is u=1 . The power of F test (or t test) can be determined similarly by Eq.(27) 
and Eq.(28).

Simulation

To investigate the performance of the composite index using multiplicative 
and additive models, a simulation study is conducted to evaluate the probability 

of the composite index and corresponding highly correlated predictors having 
consistent statistical inference result, the predicted values from regression 
model, estimated coefficient standard error, and statistical power of partial F 
test. Assuming there are four variables in the linear regression model; {X1, X2} 
is the high-correlation cluster, with correlation denoted as  highρ , {X3, X4} is 
the low-correlation cluster, with correlation denoted as ρ low , and the between 
cluster correlation is denoted as  ρbetween . Specifically, we have

 high12 ρ=ρ , low34 ρ=ρ  and between24231413 ρ=ρ=ρ=ρ=ρ . 

The simulation contains 1000 runs, and the process is summarized as 
follows

Generate random samples for X1’, X2’, X3’, X4’ from multivariate 
normal distribution with mean vector ì , standard deviation  (standard 
deviation for all X’ s are assumed to be the same), and correlation matrix 
Ω  (Ω  is determined by high low between, ,ρ ρ ρ and In this simulation 

( ) ( )TT =μμμμ=μ 00004321  and 1=σ  .

Take exponent for all generated samples for X’s to make them satisfy the 
assumption of being positive for pre-defined exponential model. Let �ŒiX

i e=X  
(i=1,...,4) denote the variables after taking exponent. It should be noted that 
the proposed approaches only require the high-correlation cluster variables 
to be positive. All independent variables are taken exponent in the simulation 
for simplicity.

The dependent variable is generated by

0 1 1 2 2 3 3 4 4Y = + β X +β X +β X +β X +εβ , where ( )10∼ ,Nε . 
Fit regression model in Eq.(1) and (5) and evaluate composite index.

Let 0.05between =ρ  to make the data have low between-cluster correlation. highρ  takes values 0.7 (moderate 

high),0.80 (high) and 0.90  (very high). lowρ  takes values 0.1 (very low), 0.2  (low) and 0.3 (moderate low). Let 

1430 =β=β=β , and sample size n=50. The significance level is 0.05=α . 

(Table 1) presents the conditional probabilities for composite index having significant coefficients given either X1 or X2 

with significant coefficient. Here, three situations are considered, including 321 =β=β  when X1 and X2 have great 

impact on the outcome, 0.321 =β=β  when X1 and X2 have small impact on the outcome, and 0.33 21 =β,=β  

when X1 has great impact and X2 has small impact. For both multiplicative and additive composite index, if the original 

highly correlated predictors are significant, the composite index will almost always be significant, regardless of whether 

the impact on the outcome is big or small. 

(Table 1)(Table 1)

On the other hand, the conditional probabilities for   or   being significant 
given the composite index is significant are shown in (Table 2). When  , the 
conditional probabilities for   or   being significant are always  . It suggests that 
when the impact of original predictors is highly significant, original predictors 
will still yield significant conclusions even though multi-collinearity exists in 
the model. However, when the true coefficients decrease to  , the conditional 
probabilities for   or   being significant decreases dramatically, especially when   
and   are highly correlated. Specifically, when the within-cluster correlation 
is the conditional probabilities for (or) become less than. In this way, multi-
collinearity can greatly influence the conclusion of the regression model. In 
summary, the proposed multiplicative and additive composite index will be 
significant if either   or   is significant, i.e., they have better performances in 
informing disease status and detecting treatment effect than   and   in a multi-
collinear regression model.

As mentioned in Section 4, a valid composite index is expected to yield 
non-inferior predictions than regression model without composite index. (Table 
3) presents the absolute and relative difference of fitted values for regression 
model with and without composite index. Due to having fewer predictors in 
the model, both multiplicative and additive composite index tend to provide 
predictions different from the predictive model without considering composite 
index. And this difference decreases when   and/or   have less impact on the 
outcome variable. Comparing absolute differences, additive composite index 
has better performance than multiplicative composite index. Fixed  , absolute 
differences increase when   increases. Similar findings are detected while 
fixing. As for relative differences in predicted values, multiplicative composite 
index also leads to higher differences than additive composite index. For 
additive composite index, the relative difference of additive composite index is 
much closer to   compared with multiplicative composite index.
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Table 1. Conditional probabilities for composite index to be significant given original predictor is significant.

ρ High ρ low

Multiplicative composite index Additive composite index

1

1
XP C

 
2 2

CP X
 

3
1 2CP X or X

 1CP X 2CP X
1 2CP X or X

Case 1 : β1 = β2 = 3
0.7 0.1 1.000 1.000 1.000 1.000 1.000 1.000

0.2 0.999 0.999 0.999 1.000 1.000 1.000
0.3 1.000 1.000 1.000 1.000 1.000 1.000

0.8 0.1 1.000 1.000 1.000 1.000 1.000 1.000
0.2 0.999 0.999 0.999 1.000 1.000 1.000
0.3 0.998 0.998 0.998 1.000 1.000 1.000

0.9 0.1 1.000 1.000 1.000 1.000 1.000 1.000
0.2 0.998 0.998 0.998 1.000 1.000 1.000
0.3 1.000 1.000 1.000 1.000 1.000 1.000

Case 2: β1 = β2 = 0. 3
0.7 0.1 0.999 1 0.999 1.000 1.000 1.000

0.2 0.999 1 0.999 1.000 1.000 1.000
0.3 1.000 1 1.000 1.000 1.000 1.000

0.8 0.1 1.000 1 1.000 1.000 1.000 1.000
0.2 1.000 1 1.000 1.000 1.000 1.000
0.3 1.000 1 1.000 1.000 1.000 1.000

0.9 0.1 1.000 1 1.000 1.000 1.000 1.000
0.2 1.000 1 1.000 1.000 1.000 1.000
0.3 1.000 1 1.000 1.000 1.000 1.000

Case 3: β1 = 3, β2 = 0. 3
0.7 0.1 1.000 1.000 1.000 1.000 1.000 1.000

0.2 1.000 1.000 1.000 1.000 1.000 1.000
0.3 0.999 1.000 0.999 1.000 1.000 1.000

0.8 0.1 1.000 1.000 1.000 1.000 1.000 1.000
0.2 1.000 1.000 1.000 1.000 1.000 1.000
0.3 0.999 0.998 0.999 1.000 1.000 1.000

0.9 0.1 1.000 1.000 1.000 1.000 1.000 1.000
0.2 1.000 1.000 1.000 1.000 1.000 1.000
0.3 1.000 1.000 1.000 1.000 1.000 1.000

1
11

2
2 1

3
1 2 1 2

( );

( );

( ),

C

C

C

P X P C significant X significant

P X P C significant X significant

P X or X P C significant X or X significant

=

=

=

Where stands for either multiplicative composite index or additive composite index.

Table 2. Conditional probabilities for original predictors to be significant given composite index is significant.

ρ High ρ low

Multiplicative composite index Additive composite index

1

1
XP C

 
2

2XP C
 1

3
2X XP or C

1XP C
2XP C

1 2X XP or C

Case 1 : β1 = β2 = 3
0.7 0.1 1.000 1.000 1.000 1.000 1.000 1.000

0.2 1.000 1.000 1.000 1.000 1.000 1.000
0.3 1.000 1.000 1.000 1.000 1.000 1.000

0.8 0.1 1.000 1.000 1.000 1.000 1.000 1.000
0.2 1.000 1.000 1.000 1.000 1.000 1.000
0.3 1.000 1.000 1.000 1.000 1.000 1.000

0.9 0.1 1.000 1.000 1.000 1.000 1.000 1.000
0.2 1.000 1.000 1.000 1.000 1.000 1.000
0.3 1.000 1.000 1.000 1.000 1.000 1.000

Case 2: β1 = β2=0. 3
0.7 0.1 0.768 0.718 0.960 0.765 0.715 0.956

0.2 0.729 0.734 0.959 0.727 0.731 0.957
0.3 0.731 0.754 0.954 0.731 0.754 0.954

0.8 0.1 0.634 0.658 0.919 0.634 0.658 0.919
0.2 0.632 0.676 0.911 0.632 0.676 0.911
0.3 0.661 0.660 0.924 0.661 0.660 0.923
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0.9 0.1 0.443 0.439 0.736 0.443 0.439 0.736
0.2 0.419 0.463 0.739 0.418 0.462 0.737
0.3 0.432 0.438 0.747 0.432 0.438 0.748

Case 3: β1 = 3, β2 = 0. 3
0.7 0.1 1.000 0.771 1.000 1.000 0.771 1.000

0.2 1.000 0.732 1.000 1.000 0.732 1.000
0.3 1.000 0.756 1.000 1.000 0.755 1.000

0.8 0.1 1.000 0.658 1.000 1.000 0.658 1.000
0.2 1.000 0.631 1.000 1.000 0.631 1.000
0.3 1.000 0.627 1.000 1.000 0.627 1.000

0.9 0.1 1.000 0.430 1.000 1.000 0.430 1.000
0.2 1.000 0.447 1.000 1.000 0.447 1.000
0.3 1.000 0.461 1.000 1.000 0.461 1.000

1

2

1 2

1
1

2
1

2
1

: ( );

( );

( );

X

X

X X C

Note P C P X significant C significant

P C P X significant C significant

P or P X significant C significant

=

=

=

Table 3. Evaluation of composite index in terms of fitted values of regression model.

ρ High ρ low

1

MD
− 1

AD
− 2

MR
− 2

AR
−

Case 1 : β1 = β2= 3
0.7 0.1 5.299 0.604 0.523 0.044

0.2 5.324 0.606 0.525 0.044
0.3 5.377 0.629 0.53X3 0.045

0.8 0.1 5.416 0.405 0.538 0.030
0.2 5.448 0.416 0.540 0.030
0.3 5.519 0.425 0.553 0.031

0.9 0.1 5.532 0.207 0.553 0.015
0.2 5.612 0.207 0.561 0.015
0.3 5.604 0.208 0.566 0.015

Case 2: β1 = β2=0. 3
0.7 0.1 0.125 0.057 0.028 0.012

0.2 0.129 0.056 0.029 0.012
0.3 0.132 0.057 0.030 0.012

0.8 0.1 0.127 0.036 0.028 0.008
0.2 0.126 0.037 0.029 0.008
0.3 0.123 0.036 0.028 0.008

0.9 0.1 0.124 0.018 0.028 0.004
0.2 0.124 0.018 0.028 0.004
0.3 0.118 0.017 0.027 0.004

Case 3: β1 =3, β2 = 0. 3
0.7 0.1 2.861 0.110 0.377 0.012

0.2 2.847 0.106 0.378 0.012
0.3 2.830 0.107 0.380 0.012

0.8 0.1 2.835 0.072 0.375 0.008
0.2 2.855 0.070 0.383 0.008
0.3 2.845 0.072 0.384 0.008

0.9 0.1 2.858 0.037 0.381 0.004
0.2 2.847 0.038 0.383 0.004
0.3 2.842 0.038 0.384 0.004

 
MD  and   

MD are sample average of  
MD  and 

AD  , respectively;
  MR and   AR are sample average of   MR and  AR , respectively.

Under the same parameter setting as (Table 3) and (Table 4) presents 
the evaluation findings in terms of standard errors. The empirical probability 
of composite index has smaller estimated coefficient standard error is studied. 
The estimated coefficient standard error of composite index is compared 
to both the minimum and maximum of the standard error for estimated 
coefficients of   and  . For multiplicative composite index, the probability of 
having a lower standard error is 1 under all settings, suggesting that the 

multiplicative composite index can always successfully alleviate the problem of 
having large standard error due to multi-collinearity. As for additive composite 
index, the probability for it to have smaller standard error than at least one of   
and   is not exactly  , however, the probability relatively large, especially when 
the within-cluster correlation is very high. And the additive composite index is 
less likely to have a smaller standard error than all predictors compared with 
multiplicative composite index.
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Summarizing findings for informing disease status and/or detecting 
treatment effects, based on results presented in Table 1 and 2, both 
multiplicative and additive composite index have very good performance. 
Specifically, if the original highly correlated predictors are significant, the 
proposed composite index will always be significant. Additionally, when   and/
or   are not significant due to multi-collinearity, the proposed composite index 
can successfully inform disease status. To compare the performance between 
multiplicative and additive composite index, the estimated coefficient standard 
error and fitted values of regression model are studied. It turns out that additive 
composite index tends to make more accurate predictions (as shown in Table 
4), and multiplicative composite index tends to have smaller standard error (as 
shown in (Table 4)).

Additionally, the empirical statistical power of partial F test with and 
without using composite index is shown in (Figure 1). Specifically, it presents 
the empirical statistical power to test for hypotheses in Eq.([eq18]) when 
the statistical power while using any composite index is always higher than 
situation without using composite index. The difference in statistical power 
decreases when sample size increases. If the sample size is larger than  , 
under the specific parameter setting, differences in empirical powers become 
negligible. Additionally, the statistical power of using additive composite index 
is higher than multiplicative composite index when sample size is small in most 
cases. Thus, both multiplicative and additive composite index lead to higher 

statistical power of partial F test than situations ignoring multi-collinearity in the 
regression model.

Data Availability Statement

Data sharing is not applicable to this article as no new data were created 
or analyzed in this study. 

Derivation for modified Gauss-Newton method

Under the assumption for ( )20∼ Aσ,Nη , the additive model is defined as
 ( ) η,+γX;f=η+XXXe=Z pγ

p
γγγ :...2
2

1
1

0

where  ( )Tpγγγ=γ ...10 . For every observation,  ( )γ;Xf=Z ii  for 

i=1,...,n. Similar to OLS, the "best" estimates for coefficients is defined as the 
estimates that minimize the sum squares of errors as Eq.(19):

 
( ) ( )( ) .γ;XfZarg=γQarg

n

=i
iinim

γ
nim
γ ∑

1

2
                                                      (A1)

Table 4. Evaluation of composite index in terms of standard error of estimated coefficient.

ρHigh ρlow

Multiplicative composite index Additive composite index

minP maxP minP maxP
Case 1 : β1 = β2= 3

0.7 0.1 1.000 1.000 0.602 1.000
0.2 1.000 1.000 0.294 1.000
0.3 1.000 1.000 0.591 1.000

0.8 0.1 1.000 1.000 0.791 1.000
0.2 1.000 1.000 0.813 1.000
0.3 1.000 1.000 0.790 1.000

0.9 0.1 1.000 1.000 1.000 1.000
0.2 1.000 1.000 0.998 1.000
0.3 1.000 1.000 0.995 1.000

Case 2: β1 = β2=0. 3
0.7 0.1 0.321 0.999 0.001 0.985

0.2 0.223 0.996 0.000 0.967
0.3 0.166 0.998 0.000 0.972

0.8 0.1 0.282 1.000 0.000 0.991
0.2 0.238 1.000 0.000 0.981
0.3 0.360 0.999 0.003 0.993

0.9 0.1 0.589 1.000 0.010 0.999
0.2 0.323 0.999 0.000 0.998
0.3 0.397 1.000 0.001 0.999

Case 3: β1 =3, β2 = 0. 3
0.7 0.1 1.000 1.000 0.113 1.000

0.2 1.000 1.000 0.594 1.000
0.3 1.000 1.000 0.613 1.000

0.8 0.1 1.000 1.000 0.800 1.000
0.2 1.000 1.000 0.730 1.000
0.3 1.000 1.000 0.635 1.000

0.9 0.1 1.000 1.000 0.938 1.000
0.2 1.000 1.000 0.976 1.000
0.3 1.000 1.000 0.977 1.000

Note: ( )1 2
SE SE SEmin C X XP = P < min{ , } and ( )1 2

SE SE SEmax C X XP = P < max{ , } , where  is the standard error of the estimated coefficient of the 
composite index using either multiplicative model or additive model, SEX1 and SEX2 are standard errors of the estimated coefficients of 1X  and 2X  in regression model without using 
composite index.
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Figure 1. Statistical power of partial F test with and without using composite index. Under the specific parameter setting in thesimulation, the sample size cannot be smaller than 30, 
otherwise computational singularity problem will occur in estimating coefficients for additive model.

To find of ( )γargminQ , one may consider finding the solution to 
( ) 0

∂

∂ =
γ
γQ

k

 for p,...,,=k 10 . However, since 

( )γ;Xf i  is a nonlinear function, it is quite difficult to take first derivative of ( )γQ  directly. 

Utilizing Taylor expansion ( )γ;Xf i  can be approximated using a linear function. Specifically, the first order Taylor 

expansion of ( )γ;Xf i  at 0γ=γ  is 

               ( ) ( ) ( ) ( ).γγ
γ
γ,Xf+γ,Xfγ,Xf jj

p

=j γ=γj

i
ii

0

0 0

0 -
∂

∂
≈ ∑ 











                                  (A2) 

Then ( )γQ  in Eq.(A1) can be written as         

( ) ( ) ( ) ( ) .γγ
γ
γ,Xfγ,XfZ=γQ

n

=i
jj

p

=j γ=γj

i
ii∑ ∑ 


























1

2

0

0 0

0 -
∂

∂--                                      (A3) 

Then the first derivative of ( )γQ  with respect to kγ , for K = 0,1,…,p can be written as  

 

( ) ( ) ( ) ( ) ( ) .
γ
γ,Xfγγ

γ
γ,Xfγ,XfZ=γQ

γ=γj

i
jj

p

=j γ=γj

i
ii

n

=i
k 


















































∑∑

0

0

0 0

0

1 ∂

∂- . -
∂

∂--2                  (A4) 

 Let ( )0γ;Xf ik  denote [ ∂ f ( Xi ,γ)
∂ γ j

)γ= γ0
. ( )γQk  Can be further written as 

( ) ( ) ( )( ) ( )( )0 0 0 0

1 1
2 - - . -

n n

k i i j i j j k i
i= i=

Q γ = Z f X ,γ f X ;γ y y f X ;γ−
 
 
 

∑ ∑
       

           
( )( ) ( ) ( ) ( )( )0 0 0 0 0

1 1 0
2 - . 2 .

pn n

i i k i j i k i j j
i= i= j=

Z f X ;γ f X ;γ f X ;γ f X ;γ y y−=− +∑ ∑∑
        (A5)   

Since 

( ) ( ) ( )( ) ( ),γ;Xfγ;XfZ=
γ
γQ=γQ ik

n

=i
ii

γ=γk
k

0

1

0

0

0 -2-
∂

∂ ∑







                                        (A6) 

By setting the first derivative equals to zero, we have 

( ) ( )( ) ( )0 0 0 0

1 0
2ã ã ã

pn

j i k i j j k
i= j=

f X ; f X ; y y = Q .−⇔ −∑∑
                                   (A7)

Let
0

j j jD = γ  γ , Eq. (A7) can be written as

( ) ( ) ( )0 0 0

1 0
2

pn

j i k i j k
i= j=

f X ; f X ; D = Q .γ γ γ∑∑  (A8)

For K=0 ,1,…,P,, the first derivatives of ( )ã,Xf i  with respect to kã  can 

be derived as 

Then the following linear P +1 equations can be derived:

Concluding Remarks

In this research, we aim to propose a valid composite index which can not 
only alleviate multi-collinearity problem while maintaining predictive capability. 
In other words, in a regression model, the composite index should have a 
smaller standard error for the estimated coefficients compared with the original 
highly correlated predictors, while making accurate predictions. One typical 
structure for composite index in clinical research considered in this research 
is the exponential structure. One example of an exponential-type composite 
index which can inform disease status as well as treatment effect is the BMI. 
BMI combines weight and height into a single index which can best inform 
the obesity (disease status) and treatment effect (reduction of obesity) of the 
participants under study. The advantage of using exponential-type composite 
index is that it is consistent many well-accepted clinical composite index and 
easy to interpret, especially when there are fewer highly correlated predictors.

Two methods are proposed in this paper to establish an exponential-type 
composite index, namely the multiplicative model and the additive model. The 
multiplicative model takes the error term in a “multiplicative” way, whereas 
the additive model has an added error term. The composite indices derived 
from each model are named multiplicative and additive composite index. The 
“weights” of variables constituting the composite index are determined by the 
regression coefficients. In the multiplicative model, the error term assumes 
to follow log-normal distribution. After taking logarithm, the problem of finding 
the weights becomes estimating coefficients of linear regression. Then OLS 
method can be applied after some algebraic computation. As for the additive 
model, the error term assumes to follow a normal distribution. The modified 
Gauss-Newton method is applied to estimate coefficients. In this way, the 
composite index can be derived.

According to simulation findings, both multiplicative and additive 
composite indices can improve the estimated coefficients by having a smaller 
standard error. Specifically, the multiplicative composite index has a smaller 
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standard error for estimated coefficient with empirical probability of, and the 
additive composite index has corresponding probability close to comparing the 
predictive ability, the additive composite index has better performance in terms 
of both absolute difference and relative difference to the original regression 
model. Studies on empirical statistical power for the partial F test illustrate 
that both composite indices have higher statistical power than the regression 
model with multi-collinearity issue. The difference among statistical powers 
decreases as sample size increases. Under the specific parameter setting, the 
difference becomes negligible when the sample size is larger than. 

One major assumption of the proposed models is that the predictors used to 
build a composite index must be strictly positive all the time. In future research, 
other types of predictors can be considered, for example, binary predictor 
or predictors with negative values. In either scenario, the exponential-type 
structure and weight calculation method need to be generalized. In addition to 
alleviating multi-collinearity in regression models, the idea of composite index 
can be generalized to form a composite outcome variable to overcome multiple 
testing problem. Specifically, Chow SC and Patty JL [18] proposed the idea of 
using therapeutic index to utilize information from all primary study outcomes. 
Overall, this paper may benefit researchers in alleviating multi-collinearity in 
linear regression models and establishing an innovative composite index to 
interpret clinical findings. Based on findings from the paper, the multiplicative 
composite index is recommended if making inferences on treatment effects is 
the main objective, and the additive composite index is preferred if researchers 
are more interested in maintaining predictive ability.
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