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Introduction
Complexity in physical system was first addressed by Edward Lorenz 

[1] which is now known as Lorenz equations. For this he developed
a simplified mathematical model of Ordinary Differential Equation
(ODE) of atmospheric convection. These coupled equations have
chaotic solutions for certain parameter values and initial conditions.
In particular, the Lorenz attractor is a set of chaotic solutions of the
Lorenz system which, when plotted, resemble a butterfly or figure
eight. Lorenz equations are follows:

( )dx y x
dt

σ= −

( )dx X z y
dt

ρ= − −

dz xy z
dt

β= −

In the above equations, σ, ρ, β are the system parameters; x, y, z are 
the system state and t is time.

One can easily assume that σ, ρ and β are positive. Lorenz used 
the values σ=10, ρ=28, β=8/3. The system exhibits chaotic behaviour 
for these values [2]. Looking for chaos in cardiac rhythm, brain and 
population dynamics now has a greater merit in comparison to linear 
statistical methods. Hence, modeling and data analysis are considered 
to motivate the investigation in an understanding the behaviour or 
nature of the biological systems in a dynamical manner, particular their 
chaotic features, if any. Hence such modeling approach followed by 
data fitting may be useful in diagnosis and prognosis (predictions about 
the efficacy of a therapeutic process [3]. From a technical standpoint, 
the Lorenz system is nonlinear, three-dimensional and deterministic [4].

Development of Algorithm for Solving Differential 
Equation

If the system of differential equation is a linear there are systemic 
methods for deriving a solution. Most of the problems biologist 
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encounters are non-linear and for such cases mathematical solutions 
rarely exist. Hence, computer simulation is often used instead. The 
general approach to obtaining a solution by computer is as follows:

1. Construct the set of ordinary differential equations, with one
differential equation for every molecular species in the model.

2. Assign values to all the various kinetic constants and boundary
species.

3. Initialize all floating molecular species to their starting
concentrations.

4. Apply an integration algorithm to the set of differential equations.

5. If required, compute the fluxes from the computed species
concentrations.

6. Plot the results of the solution.

Step 4 is obviously the key to the procedure and there exist a great
variety of integration algorithms. Other than educational purposes, 
it is rarely a modeller can write their own integration computer code 
because many libraries and applications exist that incorporate excellent 
integration methods. An integration algorithm approximates the 
behaviour of a continuous system on a digital computer. Since digital 
computers can only operate in discrete time system, the algorithms 
convert the continuous system into a discrete time system. In practice, 
a particular step size, h is chosen, and solution points are at the discrete 
points up to some upper time limit. The approximation generated 
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by the simplest methods is dependent on the step size and in general 
smaller the step size more accurate the solution. It is not possible to 
continually reduce the step size in the hope of increasing the accuracy 
of the solution. For one thing, the algorithm will soon reach the limits 
of the precision of the computer and secondly, smaller the step size the 
longer it will take to compute the solution. There is therefore often a 
trade-off between accuracy and computation time [5].

There are several methods to develop an algorithm for increasing 
accuracy of a solution. We often write models of biochemical reactions 
in the form of ordinary differential equations. These equations describe 
the instantaneous rate of change of each species in the model. For 
example, consider the simple possible model, the first order irreversible 
degradation of molecular species, S into product P:

S→P                                			                (1)

The differential equation for this simple reaction is given by a 
familiar form:

1
ds -k S
dt

=                                   			                (2)

To solve this equation several computational methods can be used 
so that the pattern of changes of S in time can be derived. Let us first 
consider the simplest method, Euler method which depicts an easiest 
way to solve a differential equation. This method uses the rate of change 
of S to predict the concentration at some future point in time. At time 
t1 the rate of change in S is computed from the differential equation 
using the known concentration of S at t1. The rate of change in S to 
predict the over a time interval h, using the relation dsh

dt
. The current 

time, is incremented by the time step, h and the procedure repeated 
again, this time starting at t2. This method can be summarized by the 
following two equations which represent one step in an iteration that 
repeats until the final point is reached:

( ) dy(t)y t +h = y(t)+h
dt

n+1 nt = t +h                          			         (3)

At every iteration, there will be an error between the change in 
S we predict and what the change in S should have been. This error 
is called the truncation error and will accumulate at each iteration 
step. If the step size is too large, this error can make the method 
numerically unstable resulting in wild swings in the solution. Figure 
1 suggests that larger the step size larger the truncation error. This 

would seem to suggest that the smaller the step size more accurate 
the solution will be. This is indeed the case, up to a point. If the step 
size becomes too small, then there is the risk that round off error will 
propagate at each step into the solution. In addition, if the step size 
is too small it will require a large number of iterations to simulate 
even a small time period. The final choice for the step size is therefore 
a compromise between accuracy and effort. A theoretical analysis of 
error propagation in the Euler method indicates the error accumulated 
over the entire integration period (global error) is proportional to the 
step size. Therefore, halving the step size will reduce the global error by 
half. This means that to achieve even modest accuracy, small step sizes 
are necessary. As a result, the method is rarely used in practice. The 
advantage of the Euler method is that it is very easy to implement in 
computer code or even on a spread sheet.

n = Number of state variables

yi= i-th variable

Set timeEnd

currentTime = 0

h = stepSize

initialize yi at current time

while currentTime < timeEnd do

for i = 1 to n do

dyi= fi(y)

for i = 1 to n do

yi(t + h) =yi (t) + h dyi

currentTime = currentTime + h

end while

Algorithm 1: Euler integration method, fi(y) represents differential 
equation from the systems of ordinary differential equations.

Euler method can also be used to solve systems of differential 
equations. In this case all the rates of change are computed first 
followed by the application of the equation (3). As in all numerical 
integration methods, the computation must start with an initial for the 
state variables at time zero. The algorithm is described using pseudo-
code in Algorithm 1.

Figure 1: Graphical representation of Euler’s method.
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Euler method, though simple to implement, tends to be used in 
practice because it requires small step sizes to achieve reasonable 
accuracy. In addition, the small step size makes the Euler Method 
computationally slow. An example of Euler method is shown in 
Algorithm 2, by which Prey-Predator Population Dynamics can be 
observed. Outputs are shown Figure 2.

%forward Euler

K(1)=5.0; %initial Krill population

a=1.0; %(a-bW) is the intrinsic growth rate of the Krill

b=0.5;

W(1)=1.0;%initial whale population

c=0.75; %(-c+dK) is the intrinsic growth rate of whales

d=0.25;

tinit=0.0;

tfinal=50;

n=5000;%no. of time steps

dt=(tfinal-tinit)/n;%time step size

%T=[tinit:dt:tfinal]; %create vector of discrete solution times

%Execute forward Euler to solve at each time step

for i=1:n

K(i+1)=K(i)+dt*K(i)*(a-b*W(i));

W(i+1)=W(i)+dt*W(i)*(-c+d*K(i));

end;

%Plot Results...

%S1=sprintf('IC: W0=%g, K0=%g',W(1),K(1));

figure(1);

plot(K,W);

title('Phase Plane Plot');

xlabel('Krill');

ylabel('Whales');

%legend(S1,0)

%grid;

init=1;

figure(2);

%clg;

plot((init:tfinal),K(init:tfinal),'r',(init:tfinal),W(init:tfinal),'b-.');

legend('Krill','Whales');

xlabel('time');

ylabel('whales and krill');

Algorithm 2: Application of Forward Euler method in MatLab/
FreeMat.

Modification of Euler method-Heun method

A simple modification however can be made to the Euler Method 
to significantly improve its performance. This approach can be found 
under a number of headings, including the modified Euler Method 
or Heun or the improved Euler Method. The modification involves 
improving the estimate of the slope by averaging two derivatives, one at 
the initial point and another at the end point. In order to calculate the 
derivative at the end point, the first derivative must be used to predict 

the end point which is then corrected by averaged slope. This method 
is very simple example of predictor-corrector method. This method can 
be summarized by the following equations:

( ) dy(t)y t +h = y(t)+h
dt

                          	            	              (4)

( ) h dy(t) dy(t +h)y t +h = y(t)+ +
2 dt dt
 
 
 

                	                 (5)

n+h nt = t +h
                                                                                     (6)

A theoretical analysis of error in the propagation of Heun method 
show that it is a second order method, that is if the step size is reduced 
by a factor of 2, the global error reduced by factor of 4. However, to 
achieve this improvement, two evaluations of the derivatives are 
required per iteration, compared to only one for Euler method. Like 
the Euler method Heun method is also easy to implement.

n = Number of state variables

yi= ith variable

Set timeEnd

currentTime = 0

h = stepSize

initialize yi at current time

while currentTime < timeEnd do

for i = 1 to n do

ai = (y)

bi = fi (y + h a)

for i = 1 to n do

i i i i
hy (t h) y (t) (a b )
2

= = + +

currentTime = currentTime + h

end while

Algorithm 3: Heun Integration Method. fi (y) is the ith ordinary 
differential equation.

The Runge-Kutta methods

The Heun method described in the previous section is sometimes 
called RK2 method where RK2 stands for second order Runge-Kutta 
method. The Runge- Kutta methods are a family of methods developed 
around the German mathematicians Runge and Kutta. In addition 
to the 2nd order Heun method, there have 3rd, 4th, and even 5th order 
Runge-Kutta methods. For hand coded numerical methods, the 4th 
order Runge-Kutta algorithm (often called RK4) is the most popular 
among modelers. The algorithm often is a little more complicated in 
that it involves the evaluation and weighted averaging four slopes. In 
terms of global error, however, RK4 is considerably better than Euler 
or Heun method and has a global error of the order of four. This means 
that halving the step size will reduce the global error by a factor or 1/16. 
Another way of looking at this is that the step size can be increased up 
to 16 fold over the Euler method and still have the same global error. 
This method can be summarized by the following equations which 
have been simplified by removing the dependence on time:
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( )nK1 hf y=

n
k1K2 hf (y
2

= +

n
k2K3 hf (y )
2

= +

n 3K 4 hf(y k )= +

n 1 nt t h+ = +

Materials and Methods
There are different software’s to solve systems of differential 

equation. For this purpose, MatLab is the most popular software tool 
among engineers is available commercially. It has a built in powerful 
language for numerical analysis. Other examples include Octave, 
FreeMat and Scilab – all are freely available open source software that 
can be used to solve different ordinary differential equations. We have 
developed our code in MatLab, FreeMat and Octave and a comparison 
is made to understand how an algorithm for 4th and 5th order Runge – 
Kutta method is used through open source software for representing 
Lorenz equation (Table 1).

Results
Simulation run with the algorithm for Lorenz equation gives 

following graphical plots in MatLab (Figure 3), FreeMat (Figure 4) and 
Octave (Figure 5) software respectively.

Discussion
Conventionally conclusions and inferences about physiological 

systems are based on empirical assessment by making comparison 
between controls versus experimental or normal versus disease 
group and many of the physiological principles are set with the 
experimentation and forceful perturbation of the isolated system 
and, different conclusions and principles are set with one-shot static 
data. As a result, observations in the isolated systems are extrapolated 
towards the behavior of the natural physiological system, thus establish 

  

                                      a                                                                                b 
Figure 2: Prey-predator dynamics by Forward Euler Algorithm, representation through FreeMat. In (a) Phase Plane plot and in (b) dynamics of two species.

MatLab FreeMat Octave

clear all clear all clear;

clc clc clc;

sigma=10; sigma=10; sigma=10;

beta=8/3; beta=8/3; function wdot =

rho=28; rho=28; f(w,t)

f = @(t,w) [-sigma*w(1) + f = @(t,w) [-sigma*w(1) + wdot(1)=10*(w(2)-

sigma*w(2); rho*w(1) - w(2) sigma*w(2); rho*w(1) - w(2) w(1));

- w(1)*w(3); -beta*w(3) + - w(1)*w(3); -beta*w(3) + wdot(2)=-

w(1)*w(2)]; w(1)*w(2)]; w(1)*w(3)+28*w(1)-

%'f' is the set of %'f' is the set of w(2);

differential equations and differential equations and wdot(3)=w(1)*w(2)-

'w' is an array containing 'w' is an array containing 8*w(3)/3;

values of x,y, and z values of x,y, and z endfunction

variables. variables. t =

%'t' is the time variable %'t' is the time variable linspace(0,10,100)'

[t,w] = ode45(f,[0 100],[1 [t,w] = ode45(f,[0 100],[1 ; % 0 50 100

1 1]);%'ode45' uses 1 1]);%'ode45' uses w = lsode("f",[2;

adaptive Runge-Kutte 
method

adaptive Runge-Kutte 
method 3; 9],t); %5 7 9

of 4th and 5th order to of 4th and 5th order to figure(1);

solve differential solve differential plot3(w(:,1),w(:,2)

equations equations ,w(:,3));

plot3(w(:,1),w(:,2),w(:,3)) plot3(w(:,1),w(:,2),w(:,3)) hold

%'plot3' is the command to %'plot3' is the command to figure(2);

make 3D plot make 3D plot plot(w(:,1));

Table 1: Code for Lorenz equation in MatLab, FreeMat and Octave.
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Figure 5: 3D & 2D plot of Lorenz equation using Octave.

different physiological principles. Chaos theory established that all 
natural system is the output of multiple interactions of different 
components along with different feedbacks and delays; hence has 
an extraordinary sensitive to internal conditions which makes them 
inherently unpredictable in the long run. Lorenz showed that a change 

in a digit in the 6th decimal make a drastic change in systems dynamics 
in long-run. Hence, for prediction of physiological systems, accurate 
measurements of initial parametric values are important, however, 
sensing and measurement technology becomes the limitation. This 
may be true for physiological system, a natural system.

Another characteristic of chaotic systems is order without 
periodicity. Though chaotic systems operates under some set rule, 
but such behaviour may occur due to feedbacks and time time-delay 
associated with a process makes it unpredictable. Due to these two 
features behaviour of the physiological systems appears to be complex. 
Chaotic system also shows order and chaos depending on the situation. 
When the system becomes increasingly unstable, an attractor draws the 
stress and the system splits and return to order. This process is called 
bifurcation. Bifurcation results in new possibilities that keep the system 
alive and random.

We mention some important features of heart beating and brain 
function with respect to chaos. For details interested readers may 
consult paper “Human beings as chaotic systems” by Crystal Ives [6]. 
Though apparently it seems that heart beats periodically in resting 
condition but sensitive instrument reveal that there is small variability 
in the interval between beats. Such results due to delay in transmission 
of signal from SA node to other parts of heart and respiratory system 
also influences its activity.

Similarly, neuron doctrine states that the physiological basis 
of behavior depends on the activity of individual neurons which is 
triggered by stimulus. So far brain activity is explained as a local network 
as the “chemical point-to-point switch board”. Chaos theory strongly 
opposes neuron doctrine and urges for holistic analysis for the brain 
functioning. Small changes in a neuronal activity make a bifurcation 
hence employ of newer nerve cells; hence there is a large deviation in 
brain activity with the progress of time - this may be exhibited with 
the chaotic attractor. “A theory exists that learning takes place when a 
new stimulus leads to the emergence of an unpatterned, increasingly 
chaotic state in the brain”.

Another important aspect is in the definition of disease state. In 
the field of pathology there is a concept that disorder caused disease. 
But now health is viewed as chaos. Arnold Mandell, a Psychiatrist 

Figure 3: 3D plot of Lorenz equation using MatLab.

Figure 4: 3D plot of Lorenz equation using FreeMat.



Citation: Paul R, Majumder D (2017) Development of Algorithm for Lorenz Equation using Different Open Source Softwares. J Comput Sci Syst Biol 
10: 087-092. doi:10.4172/jcsb.1000255

Volume 10(4) 087-092 (2017) - 092 
J Comput Sci Syst Biol, an open access journal  
ISSN: 0974-7231

and dynamicists wonders, “Is it possible that mathematical pathology, 
chaos, is health? And the mathematical health, which is… predictability 
and differentiability… is disease?” [7]. A nonlinear system has the 
adaptability that helps to adjust possesses the characteristic in the 
system disorder. “From seizures to leukemia, disease is finally being 
recognized for what it is: an acute attack of order.” So, studying the 
dynamics becomes important and to address of human problem, 
confinement within the subject nomenclature becomes irrelevant.

However, experimental biologists and physiologists consider the 
associated conceptual changes as an addition to the existing knowledge, 
and hence unable to appreciate the newer dimension. Paul Rapp, a 
neuroscientist at Medical College of Pennsylvania comment on the 
plotting of EEG waves on phase-space diagram can be noted: “For the 
first time we are able to see changes in the geometry of EEG activity 
that occur as the result of human cognitive activity…. I expected to see 
something very boring that did not significantly change as the subject 
began to think. The moment these structures flooded onto the screen 
and began to rotate, I knew I was seeing something very extraordinary”.

Conclusion
Codes for Lorenz equation was developed in MatLab, FreeMat 

(Open source software), Octave (Open source software) for simulation 
to appreciate the complexity of a dynamical system. The simulation 
plots suggest that a nonlinear system and simulation study reveals 

that dynamical pattern of a complex system is dependent on the initial 
parametric values of the systems variables. Hence, for getting a system 
prediction of a multifactorial complex system, accurate quantification 
of the parametric values of different variables is important. With 
the algorithm and code developed here would help physiologists to 
understand and appreciate the essence of measurement accuracy 
in different physiological experiments and the power of inferences 
through experiment [7,8].
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