
Volume 10(4) 087-092 (2017) - 087

Research Article

Paul and Majumder, J Comput Sci Syst Biol 2017, 10:4
DOI: 10.4172/jcsb.1000255

Research Article Open Access

Journal of

Computer Science & Systems BiologyJo
ur

na
l o

f C
om

pu
ter Science & System

s Biology

ISSN: 0974-7230

J Comput Sci Syst Biol, an open access journal
ISSN: 0974-7231

*Corresponding author: Majumder D, Department of Physiology, West Bengal
State University, Berunanpukuria, Malikapur Barasat, Kolkata, West Bengal, India,
Tel: +91-33-25241977; E-mail: durjoy@rocketmail.com

Received September 02, 2017; Accepted September 11, 2017; Published
September 13, 2017

Citation: Paul R, Majumder D (2017) Development of Algorithm for Lorenz
Equation using Different Open Source Softwares. J Comput Sci Syst Biol 10: 087-
092. doi:10.4172/jcsb.1000255

Copyright: © 2017 Paul R, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

Keywords: Mathematical model; Algorithm; Complexity;
Quantitative science

Introduction
Complexity in physical system was first addressed by Edward Lorenz

[1] which is now known as Lorenz equations. For this he developed
a simplified mathematical model of Ordinary Differential Equation
(ODE) of atmospheric convection. These coupled equations have
chaotic solutions for certain parameter values and initial conditions.
In particular, the Lorenz attractor is a set of chaotic solutions of the
Lorenz system which, when plotted, resemble a butterfly or figure
eight. Lorenz equations are follows:

()dx y x
dt

σ= −

()dx X z y
dt

ρ= − −

dz xy z
dt

β= −

In the above equations, σ, ρ, β are the system parameters; x, y, z are
the system state and t is time.

One can easily assume that σ, ρ and β are positive. Lorenz used
the values σ=10, ρ=28, β=8/3. The system exhibits chaotic behaviour
for these values [2]. Looking for chaos in cardiac rhythm, brain and
population dynamics now has a greater merit in comparison to linear
statistical methods. Hence, modeling and data analysis are considered
to motivate the investigation in an understanding the behaviour or
nature of the biological systems in a dynamical manner, particular their
chaotic features, if any. Hence such modeling approach followed by
data fitting may be useful in diagnosis and prognosis (predictions about
the efficacy of a therapeutic process [3]. From a technical standpoint,
the Lorenz system is nonlinear, three-dimensional and deterministic [4].

Development of Algorithm for Solving Differential
Equation

If the system of differential equation is a linear there are systemic
methods for deriving a solution. Most of the problems biologist

Abstract
Physiological processes are dynamic in nature and have multi-factorial influences; hence, exhibited as nonlinear

and complex. Due to unavailability of data capturing technology in discreet time points, majority of physiological
researches are focused on linearity; and hence problems of complexity are addressed empirically. However, in recent
time there is an increasing trend to understand the physiological system in a quantitative manner across the globe.
Due to unavailability of costly software, it is difficult for students to get an exposure to this global trend. In physical
system complexity was first addressed by Edward Lorenz in 1963, which is now known as Lorenz equation. Here we
depict the simple computational approach to represent the Lorenz equation using some freely available open source
softwares, so that students by themselves can appreciate the importance of the quantitative approach of science in
and able to represent the complex and nonlinear dynamical behaviour of different physiological systems.

Development of Algorithm for Lorenz Equation using Different Open Source
Softwares
Paul R1,2 and Majumder D1,2*
1Department of Physiology, West Bengal State University, Berunanpukuria, Malikapur Barasat, Kolkata, West Bengal, India
2Society for Systems Biology & Translational Research; 103, Block - C, Bangur Avenue, Kolkata - 700055, West Bengal, India

encounters are non-linear and for such cases mathematical solutions
rarely exist. Hence, computer simulation is often used instead. The
general approach to obtaining a solution by computer is as follows:

1. Construct the set of ordinary differential equations, with one
differential equation for every molecular species in the model.

2. Assign values to all the various kinetic constants and boundary
species.

3. Initialize all floating molecular species to their starting
concentrations.

4. Apply an integration algorithm to the set of differential equations.

5. If required, compute the fluxes from the computed species
concentrations.

6. Plot the results of the solution.

Step 4 is obviously the key to the procedure and there exist a great
variety of integration algorithms. Other than educational purposes,
it is rarely a modeller can write their own integration computer code
because many libraries and applications exist that incorporate excellent
integration methods. An integration algorithm approximates the
behaviour of a continuous system on a digital computer. Since digital
computers can only operate in discrete time system, the algorithms
convert the continuous system into a discrete time system. In practice,
a particular step size, h is chosen, and solution points are at the discrete
points up to some upper time limit. The approximation generated

Citation: Paul R, Majumder D (2017) Development of Algorithm for Lorenz Equation using Different Open Source Softwares. J Comput Sci Syst Biol
10: 087-092. doi:10.4172/jcsb.1000255

Volume 10(4) 087-092 (2017) - 088
J Comput Sci Syst Biol, an open access journal
ISSN: 0974-7231

by the simplest methods is dependent on the step size and in general
smaller the step size more accurate the solution. It is not possible to
continually reduce the step size in the hope of increasing the accuracy
of the solution. For one thing, the algorithm will soon reach the limits
of the precision of the computer and secondly, smaller the step size the
longer it will take to compute the solution. There is therefore often a
trade-off between accuracy and computation time [5].

There are several methods to develop an algorithm for increasing
accuracy of a solution. We often write models of biochemical reactions
in the form of ordinary differential equations. These equations describe
the instantaneous rate of change of each species in the model. For
example, consider the simple possible model, the first order irreversible
degradation of molecular species, S into product P:

S→P 			 (1)

The differential equation for this simple reaction is given by a
familiar form:

1
ds -k S
dt

= 			 (2)

To solve this equation several computational methods can be used
so that the pattern of changes of S in time can be derived. Let us first
consider the simplest method, Euler method which depicts an easiest
way to solve a differential equation. This method uses the rate of change
of S to predict the concentration at some future point in time. At time
t1 the rate of change in S is computed from the differential equation
using the known concentration of S at t1. The rate of change in S to
predict the over a time interval h, using the relation dsh

dt
. The current

time, is incremented by the time step, h and the procedure repeated
again, this time starting at t2. This method can be summarized by the
following two equations which represent one step in an iteration that
repeats until the final point is reached:

() dy(t)y t +h = y(t)+h
dt

n+1 nt = t +h 			 (3)

At every iteration, there will be an error between the change in
S we predict and what the change in S should have been. This error
is called the truncation error and will accumulate at each iteration
step. If the step size is too large, this error can make the method
numerically unstable resulting in wild swings in the solution. Figure
1 suggests that larger the step size larger the truncation error. This

would seem to suggest that the smaller the step size more accurate
the solution will be. This is indeed the case, up to a point. If the step
size becomes too small, then there is the risk that round off error will
propagate at each step into the solution. In addition, if the step size
is too small it will require a large number of iterations to simulate
even a small time period. The final choice for the step size is therefore
a compromise between accuracy and effort. A theoretical analysis of
error propagation in the Euler method indicates the error accumulated
over the entire integration period (global error) is proportional to the
step size. Therefore, halving the step size will reduce the global error by
half. This means that to achieve even modest accuracy, small step sizes
are necessary. As a result, the method is rarely used in practice. The
advantage of the Euler method is that it is very easy to implement in
computer code or even on a spread sheet.

n = Number of state variables

yi= i-th variable

Set timeEnd

currentTime = 0

h = stepSize

initialize yi at current time

while currentTime < timeEnd do

for i = 1 to n do

dyi= fi(y)

for i = 1 to n do

yi(t + h) =yi (t) + h dyi

currentTime = currentTime + h

end while

Algorithm 1: Euler integration method, fi(y) represents differential
equation from the systems of ordinary differential equations.

Euler method can also be used to solve systems of differential
equations. In this case all the rates of change are computed first
followed by the application of the equation (3). As in all numerical
integration methods, the computation must start with an initial for the
state variables at time zero. The algorithm is described using pseudo-
code in Algorithm 1.

Figure 1: Graphical representation of Euler’s method.

Citation: Paul R, Majumder D (2017) Development of Algorithm for Lorenz Equation using Different Open Source Softwares. J Comput Sci Syst Biol
10: 087-092. doi:10.4172/jcsb.1000255

Volume 10(4) 087-092 (2017) - 089
J Comput Sci Syst Biol, an open access journal
ISSN: 0974-7231

Euler method, though simple to implement, tends to be used in
practice because it requires small step sizes to achieve reasonable
accuracy. In addition, the small step size makes the Euler Method
computationally slow. An example of Euler method is shown in
Algorithm 2, by which Prey-Predator Population Dynamics can be
observed. Outputs are shown Figure 2.

%forward Euler

K(1)=5.0; %initial Krill population

a=1.0; %(a-bW) is the intrinsic growth rate of the Krill

b=0.5;

W(1)=1.0;%initial whale population

c=0.75; %(-c+dK) is the intrinsic growth rate of whales

d=0.25;

tinit=0.0;

tfinal=50;

n=5000;%no. of time steps

dt=(tfinal-tinit)/n;%time step size

%T=[tinit:dt:tfinal]; %create vector of discrete solution times

%Execute forward Euler to solve at each time step

for i=1:n

K(i+1)=K(i)+dt*K(i)*(a-b*W(i));

W(i+1)=W(i)+dt*W(i)*(-c+d*K(i));

end;

%Plot Results...

%S1=sprintf('IC: W0=%g, K0=%g',W(1),K(1));

figure(1);

plot(K,W);

title('Phase Plane Plot');

xlabel('Krill');

ylabel('Whales');

%legend(S1,0)

%grid;

init=1;

figure(2);

%clg;

plot((init:tfinal),K(init:tfinal),'r',(init:tfinal),W(init:tfinal),'b-.');

legend('Krill','Whales');

xlabel('time');

ylabel('whales and krill');

Algorithm 2: Application of Forward Euler method in MatLab/
FreeMat.

Modification of Euler method-Heun method

A simple modification however can be made to the Euler Method
to significantly improve its performance. This approach can be found
under a number of headings, including the modified Euler Method
or Heun or the improved Euler Method. The modification involves
improving the estimate of the slope by averaging two derivatives, one at
the initial point and another at the end point. In order to calculate the
derivative at the end point, the first derivative must be used to predict

the end point which is then corrected by averaged slope. This method
is very simple example of predictor-corrector method. This method can
be summarized by the following equations:

() dy(t)y t +h = y(t)+h
dt

 	 	 (4)

() h dy(t) dy(t +h)y t +h = y(t)+ +
2 dt dt
 
 
 

 	 (5)

n+h nt = t +h
 (6)

A theoretical analysis of error in the propagation of Heun method
show that it is a second order method, that is if the step size is reduced
by a factor of 2, the global error reduced by factor of 4. However, to
achieve this improvement, two evaluations of the derivatives are
required per iteration, compared to only one for Euler method. Like
the Euler method Heun method is also easy to implement.

n = Number of state variables

yi= ith variable

Set timeEnd

currentTime = 0

h = stepSize

initialize yi at current time

while currentTime < timeEnd do

for i = 1 to n do

ai = (y)

bi = fi (y + h a)

for i = 1 to n do

i i i i
hy (t h) y (t) (a b)
2

= = + +

currentTime = currentTime + h

end while

Algorithm 3: Heun Integration Method. fi (y) is the ith ordinary
differential equation.

The Runge-Kutta methods

The Heun method described in the previous section is sometimes
called RK2 method where RK2 stands for second order Runge-Kutta
method. The Runge- Kutta methods are a family of methods developed
around the German mathematicians Runge and Kutta. In addition
to the 2nd order Heun method, there have 3rd, 4th, and even 5th order
Runge-Kutta methods. For hand coded numerical methods, the 4th
order Runge-Kutta algorithm (often called RK4) is the most popular
among modelers. The algorithm often is a little more complicated in
that it involves the evaluation and weighted averaging four slopes. In
terms of global error, however, RK4 is considerably better than Euler
or Heun method and has a global error of the order of four. This means
that halving the step size will reduce the global error by a factor or 1/16.
Another way of looking at this is that the step size can be increased up
to 16 fold over the Euler method and still have the same global error.
This method can be summarized by the following equations which
have been simplified by removing the dependence on time:

Citation: Paul R, Majumder D (2017) Development of Algorithm for Lorenz Equation using Different Open Source Softwares. J Comput Sci Syst Biol
10: 087-092. doi:10.4172/jcsb.1000255

Volume 10(4) 087-092 (2017) - 090
J Comput Sci Syst Biol, an open access journal
ISSN: 0974-7231

()nK1 hf y=

n
k1K2 hf (y
2

= +

n
k2K3 hf (y)
2

= +

n 3K 4 hf(y k)= +

n 1 nt t h+ = +

Materials and Methods
There are different software’s to solve systems of differential

equation. For this purpose, MatLab is the most popular software tool
among engineers is available commercially. It has a built in powerful
language for numerical analysis. Other examples include Octave,
FreeMat and Scilab – all are freely available open source software that
can be used to solve different ordinary differential equations. We have
developed our code in MatLab, FreeMat and Octave and a comparison
is made to understand how an algorithm for 4th and 5th order Runge –
Kutta method is used through open source software for representing
Lorenz equation (Table 1).

Results
Simulation run with the algorithm for Lorenz equation gives

following graphical plots in MatLab (Figure 3), FreeMat (Figure 4) and
Octave (Figure 5) software respectively.

Discussion
Conventionally conclusions and inferences about physiological

systems are based on empirical assessment by making comparison
between controls versus experimental or normal versus disease
group and many of the physiological principles are set with the
experimentation and forceful perturbation of the isolated system
and, different conclusions and principles are set with one-shot static
data. As a result, observations in the isolated systems are extrapolated
towards the behavior of the natural physiological system, thus establish

 a b
Figure 2: Prey-predator dynamics by Forward Euler Algorithm, representation through FreeMat. In (a) Phase Plane plot and in (b) dynamics of two species.

MatLab FreeMat Octave

clear all clear all clear;

clc clc clc;

sigma=10; sigma=10; sigma=10;

beta=8/3; beta=8/3; function wdot =

rho=28; rho=28; f(w,t)

f = @(t,w) [-sigma*w(1) + f = @(t,w) [-sigma*w(1) + wdot(1)=10*(w(2)-

sigma*w(2); rho*w(1) - w(2) sigma*w(2); rho*w(1) - w(2) w(1));

- w(1)*w(3); -beta*w(3) + - w(1)*w(3); -beta*w(3) + wdot(2)=-

w(1)*w(2)]; w(1)*w(2)]; w(1)*w(3)+28*w(1)-

%'f' is the set of %'f' is the set of w(2);

differential equations and differential equations and wdot(3)=w(1)*w(2)-

'w' is an array containing 'w' is an array containing 8*w(3)/3;

values of x,y, and z values of x,y, and z endfunction

variables. variables. t =

%'t' is the time variable %'t' is the time variable linspace(0,10,100)'

[t,w] = ode45(f,[0 100],[1 [t,w] = ode45(f,[0 100],[1 ; % 0 50 100

1 1]);%'ode45' uses 1 1]);%'ode45' uses w = lsode("f",[2;

adaptive Runge-Kutte
method

adaptive Runge-Kutte
method 3; 9],t); %5 7 9

of 4th and 5th order to of 4th and 5th order to figure(1);

solve differential solve differential plot3(w(:,1),w(:,2)

equations equations ,w(:,3));

plot3(w(:,1),w(:,2),w(:,3)) plot3(w(:,1),w(:,2),w(:,3)) hold

%'plot3' is the command to %'plot3' is the command to figure(2);

make 3D plot make 3D plot plot(w(:,1));

Table 1: Code for Lorenz equation in MatLab, FreeMat and Octave.

Citation: Paul R, Majumder D (2017) Development of Algorithm for Lorenz Equation using Different Open Source Softwares. J Comput Sci Syst Biol
10: 087-092. doi:10.4172/jcsb.1000255

Volume 10(4) 087-092 (2017) - 091
J Comput Sci Syst Biol, an open access journal
ISSN: 0974-7231

Figure 5: 3D & 2D plot of Lorenz equation using Octave.

different physiological principles. Chaos theory established that all
natural system is the output of multiple interactions of different
components along with different feedbacks and delays; hence has
an extraordinary sensitive to internal conditions which makes them
inherently unpredictable in the long run. Lorenz showed that a change

in a digit in the 6th decimal make a drastic change in systems dynamics
in long-run. Hence, for prediction of physiological systems, accurate
measurements of initial parametric values are important, however,
sensing and measurement technology becomes the limitation. This
may be true for physiological system, a natural system.

Another characteristic of chaotic systems is order without
periodicity. Though chaotic systems operates under some set rule,
but such behaviour may occur due to feedbacks and time time-delay
associated with a process makes it unpredictable. Due to these two
features behaviour of the physiological systems appears to be complex.
Chaotic system also shows order and chaos depending on the situation.
When the system becomes increasingly unstable, an attractor draws the
stress and the system splits and return to order. This process is called
bifurcation. Bifurcation results in new possibilities that keep the system
alive and random.

We mention some important features of heart beating and brain
function with respect to chaos. For details interested readers may
consult paper “Human beings as chaotic systems” by Crystal Ives [6].
Though apparently it seems that heart beats periodically in resting
condition but sensitive instrument reveal that there is small variability
in the interval between beats. Such results due to delay in transmission
of signal from SA node to other parts of heart and respiratory system
also influences its activity.

Similarly, neuron doctrine states that the physiological basis
of behavior depends on the activity of individual neurons which is
triggered by stimulus. So far brain activity is explained as a local network
as the “chemical point-to-point switch board”. Chaos theory strongly
opposes neuron doctrine and urges for holistic analysis for the brain
functioning. Small changes in a neuronal activity make a bifurcation
hence employ of newer nerve cells; hence there is a large deviation in
brain activity with the progress of time - this may be exhibited with
the chaotic attractor. “A theory exists that learning takes place when a
new stimulus leads to the emergence of an unpatterned, increasingly
chaotic state in the brain”.

Another important aspect is in the definition of disease state. In
the field of pathology there is a concept that disorder caused disease.
But now health is viewed as chaos. Arnold Mandell, a Psychiatrist

Figure 3: 3D plot of Lorenz equation using MatLab.

Figure 4: 3D plot of Lorenz equation using FreeMat.

Citation: Paul R, Majumder D (2017) Development of Algorithm for Lorenz Equation using Different Open Source Softwares. J Comput Sci Syst Biol
10: 087-092. doi:10.4172/jcsb.1000255

Volume 10(4) 087-092 (2017) - 092
J Comput Sci Syst Biol, an open access journal
ISSN: 0974-7231

and dynamicists wonders, “Is it possible that mathematical pathology,
chaos, is health? And the mathematical health, which is… predictability
and differentiability… is disease?” [7]. A nonlinear system has the
adaptability that helps to adjust possesses the characteristic in the
system disorder. “From seizures to leukemia, disease is finally being
recognized for what it is: an acute attack of order.” So, studying the
dynamics becomes important and to address of human problem,
confinement within the subject nomenclature becomes irrelevant.

However, experimental biologists and physiologists consider the
associated conceptual changes as an addition to the existing knowledge,
and hence unable to appreciate the newer dimension. Paul Rapp, a
neuroscientist at Medical College of Pennsylvania comment on the
plotting of EEG waves on phase-space diagram can be noted: “For the
first time we are able to see changes in the geometry of EEG activity
that occur as the result of human cognitive activity…. I expected to see
something very boring that did not significantly change as the subject
began to think. The moment these structures flooded onto the screen
and began to rotate, I knew I was seeing something very extraordinary”.

Conclusion
Codes for Lorenz equation was developed in MatLab, FreeMat

(Open source software), Octave (Open source software) for simulation
to appreciate the complexity of a dynamical system. The simulation
plots suggest that a nonlinear system and simulation study reveals

that dynamical pattern of a complex system is dependent on the initial
parametric values of the systems variables. Hence, for getting a system
prediction of a multifactorial complex system, accurate quantification
of the parametric values of different variables is important. With
the algorithm and code developed here would help physiologists to
understand and appreciate the essence of measurement accuracy
in different physiological experiments and the power of inferences
through experiment [7,8].

References

1. Lorenz EN (1963) Deterministic non periodic flow. Journal of the Atmospheric
Sciences 20: 130-141.

2. Hirsch MW, Smale S, Devaney RL (2003) Differential Equations, Dynamical
Systems and An Introduction to Chaos. Chapter 14, 2nd Edn. Pure and Applied
Mathematics Series, Elsevier Academic Press, 327-358.

3. Lesne A (2006) Chaos in biology. Chapter 18: Modeling Biological Systems
99: 413-428.

4. Sparrow C (1982) The Lorenz Equations: Bifurcations, Chaos, and Strange
Attractors, Springer.

5. Systems Biology Organization, Control Theory For Biologists, draft 0.81.

6. Ives C (2016) Student Papers. Department of Physics, Oregon State University,
USA.

7. Glieck J (1987) Chaos: Making a new science. Penguin Books, New York, NY,
USA.

8. Briggs J (1992) Fractals: the patterns of chaos. Touchstone, Simon and
Schuster Inc., New York, USA.

http://journals.ametsoc.org/doi/pdf/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2
http://journals.ametsoc.org/doi/pdf/10.1175/1520-0469%281963%29020%3C0130%3ADNF%3E2.0.CO%3B2
https://www.math.upatras.gr/~bountis/files/def-eq.pdf
https://www.math.upatras.gr/~bountis/files/def-eq.pdf
https://www.math.upatras.gr/~bountis/files/def-eq.pdf
https://link.springer.com/chapter/10.1007%2F0-387-25012-3_18
https://link.springer.com/chapter/10.1007%2F0-387-25012-3_18
https://www.pnnl.gov/science/highlights/highlight.asp?id=4693
https://www.pnnl.gov/science/highlights/highlight.asp?id=4693
http://www.sysbio.org
http://dl.acm.org/citation.cfm?id=62026
http://dl.acm.org/citation.cfm?id=62026

	Title
	Corresponding author
	Abstract
	Keywords
	Introduction
	Development of Algorithm for Solving Differential Equation
	Modification of Euler method-Heun method
	The Runge-Kutta methods

	Materials and Methods
	Results
	Discussion
	Conclusion
	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5
	Table 1
	References

