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Abstract
Development of microfluidic culture technology combined with tissue engineering catalyzes the progress in study 

of cell biology. These tools will promote the understanding of physiological and pathological changes. Cancer cells and 
stem cells are sensitive to their surroundings, thus could be better explored by controllable microfluidic devices. In this 
review, we describe the ways to control cell microenvironment and explain how the influencing factors influence cellular 
behaviors, then present microfluidic-chip-based exemplary applications for cancer models and stem cell differentiation. 
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Introduction
There is a clear need to study normal and pathological cell 

function under native in vivo milieu. As many of problems of interest 
in cell biology lie on micro scale, there is an urgent need to process 
studies at micro level. The miniaturization of culture system fulfills 
this requirement due to its features like automatic operation, high-
throughput analysis highly integration of function modules and 
precisely control of different parameters. Among these microfluidic 
culture systems, 3D microfluidic culture models are powerful to 
improve the physiological relevance of in vitro models in study of 
cancer [1,2]. In addition, the development of in vitro models at tissue 
and organ level is one of the most promising microscale applications in 
high-throughput screening of drug toxicity. The integration of tissue-
engineering strategies and microfluidic technologies has recently 
sparked a breakthrough in adapting to morphological changes in 
tissue structure and function over time, providing a level of precision 
control that could not be achieved previously [3]. Tissues-on-a-chip 
and organs-on-a-chip show a more humanized character, would 
greatly improve the efficacy of drug toxicity screening [4,5]. Vascular 
structures have been constructed to explore inflammatory signals 
and further to connect individual organs to form a microvascular 3D 
networks [6]. There are a number of journal papers that are published 
in microfluidic culture applications in life science and some microscale 
3D in vitro systems are commercially available for applications of anti-
cancer drug testing [7], reflecting the growing importance of this field.

Based on our previous work, we review the development of 
microfluidic applications in cell biology in three sections. In the first 
section, how the cells and microenvironment factors are patterned 
and controlled to replicate vivo-like models in microfluidic devices 
are described and how the factors influence cell fate are discussed 
in terms of physical cues, cell-cell and cell-ECM interactions. The 
second section introduces the cell-assays based on the development of 
3D microfluidic culture in the field of cancer research and stem cell 
differentiation. Finally, we describe potential future of microfluidic 
culture in cell-biology study. 

Cell and environment control

Cell fate in vivo is largely affected by external factors like physical or 
chemical interface and interaction with other cells or matrix; therefore, 
it is important to precisely control these factors in in-vitro studies. 
Microfluidic cell cultures wins over conventional culture methods 
in controlling these factors both spatially and temporally, and then 
shedding light on mechanisms of cellular processes in vitro.

Cell patterning: Adhesion is a fundamental behavior that 
determines cellular behaviors like polarity, migration and apoptosis 
[11]. In others words, the impact of geometry by a cell and a group of 
cells could be studied by controlling the adhesion behavior. The adherent 
state of cells on surface can be governed by chemical and mechanical 
methods in microfluidic devices (Figure 1a). For example, Dertinger’s 
group processed neural network construction by using surface gradients 
of laminin, an ECM protein important for neuronal guidance [12]. 
They found anon orientation toward the increasing surface density of 
laminin. Using a piece of hydrophobic polythyleneterephthalate (PET) 
film, we separated two kinds of cells on the same coverslip before the 
following on-line analysis of metabolism [13].

On the contrary, topographical factor shows no significant impact 
on cell patterning. By creating continuous sinusoidal features in PDMS, 
cells grown on this surface were proven to show similar alignment on 
completely smooth wavy and sharp corners [14]. 

Micro compartmentalization has enabled patterning cells in vivo-
like cellular arrangements by channel geometry and the physical 
attributes of microsystems. For example, our group investigated the 
quantum dot (QD) cytotoxicity on HepG2 cells cultured in agarose 
matrix. The 3D culture chambers were divided into close and far 
chambers for their different distances from the main channel [15].

 Zervantonakis’s group regenerated endothelial barrier in 3D 
microfluidic model [16]. The 3D compartmentalization enables 
precise investigation of distance between tumor and stromal cells, 
and the incorporation of macrophages (the cells that direct tumor 
intravasation). The distance dependence has also been studied in terms 
of breast cancer progression [17]. Cancer cells that in closer proximity 
to fibroblasts were proven to be more invasive. Therefore, in the process 
of cancer progression, the physical contact with fibroblasts might be the 
basis before the driving by soluble factors.

Fabricating microwell array on microfluidic platform is a typical 
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method for cell patterning. We have made several researches by this 
method to control cell density gradient and for single-cell analysis [18-
20]. 

 To confine groups of cells into designed geometric shape, another 
way that has risen up in the recent years printing by inkjet, especially 
for 3D model construction.Taking advantages of automatic, high-
throughput and high-efficient operating of solution at micro/nano level 
by this method, our group have made successful progress in single cell 
analysis and cell patterning [21,22]. This approach allows the assembly 
of heterogeneous tissue structure to mimic in vivo physiological tumor 
model, as well as the possibility of fabricating 3D in vitro tumor models 
with large-scale, high throughput and high cell density. It is promising 
to produce reliable in vitro models from 2D to 3D. Based on the rapid 
and automatic inkjet technology, different cells could be deposit in 
predefined patterns [9,23] (Figure 1b). To construct 3D co-culture, 
cells can be mixed with collagen by a dual ejection [24]. Successful 
applications of this method were seen in exploration of breast cancer 
initiation and progression [25]. The 3D tumor assembly can be 
controlled by precisely mixing of cells and matrix substrate like gelatin 
and alginate, thus shows advantages in mimicking vivo-like micro 
environmental characteristics. Similar examples of application of cell 
printing had been reported in controlling the stem cells. Dolatshahi-
Pirouz [26] reported high-throughput generation of miniaturized 
and combinatorial cell-laden micro gel arrays for screen of various 
biomaterials in combination with selected soluble factors for MSC 
osteogenic inductive.

As previously mentioned [27], scaffold-based culture model 
is advantageous for simulating the in-vivo microenvironment and 
provide better mass transport efficiency than natural-derived materials. 
This structure benefits from biomaterials that support well-control of 
cell patterning. With the aid of computer, 3D porous bioactive scaffolds 
with complex architectural structures and well-defined material 
properties could be rapidly fabricated [28,29]. The second way to 
fabricate 3D scaffolds is electrospinning, which creates non-woven mats 
volume as ECM analogue scaffolds. There are two major advantages of 
this method: one is the cost efficiency of using very small quantities 
of polymers, and the other is that additional components such as co-
polymers and growth factors can be added to the polymer solution in 
the preparation process and then be incorporated into the electrospun 
fibers. The scaffold based models are suitable for investigation of anti-
cancer drug mechanisms. In a recent work, a core–shell scaffold had 
been used to spatially assemble hepatocytes in the core and fibroblasts 
in the shell, which realized cell-cell interaction in a drop (Figure 1c). 

Control of physical factors: Microfluidic systems can help 
elucidate the physical factors (such as oxygen, shear stress, geometry 
and temperature) that affect the behavior of cells. We had investigated 
the impact of oxygen on migration of cancer cells on an integrated 
microfluidic device [30]. The Caski cells showed slower migration rate 
under 15% of oxygen than that under 5% oxygen. The impact of shear 
stress is mainly discussed on vascularized tissues or mammary ducts. 
For example, fluid shear stress was indicated to mediate endothelial 
cell transcription, proliferation, barrier function, and changes in 

Figure 1: Cell patterning forms. (a) Cells patterning via electrochemical control [8]. (b) 3D micro-tissue arrays by 
printing of single cells and proteins [9]. (c) Controlled assembly of heterotypic cells in a core–shell scaffold [10]. 
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actin cytoskeleton rearrangement. Various microfliuidic devices 
have been developed to control the shear stress applied on cells. The 
two-independent-channel types, which separated by a gel/scaffold 
compartment, has been used often to control [31] or study the influence 
of shear stress on cultured cells. The microfluidics shows advantages 
for allowing the flow to be controlled precisely in the channels as well 
as across the gel compartment [32,33]. Both micro environmental 
components and intricate architecture of the micro-vasculature 
networks strongly influence the fluid shear stress. 

The influence of shear stress can be limited by separating the cells 
from the flow with a barrier, such as hydrogels [27-29], nano porous 
membranes [30], and micro channels [28], that allow passive diffusion 
of biomolecules. 

Temperature also affects cellular behavior. To study the impact of 
temperature on microfluidic systems, perfuse temperature-controlled 
liquid were introduced into the systems. The control of temperature 
is realized by two distinct laminar-flow-based systems [38,39]. This 
approach has been applied on revealing the dependence of temperature 
for development rate of embryo [38]. Similar successful application 
was achieved activating or deactivating temperature sensitive genes in 
cytoskeletal dynamics study [33]. 

We have reviewed the types of microfluidic culture in previous 
work [27]. And due to the spatial constraints of micro channels, two-
dimension (2D) culture show dominance of diffusion over convection. 
This feature of mass transport also controls the transport of signaling 
molecules in 3D micro systems but is governed mostly through the 
external cellular matrix (ECM).

The in vivo microenvironment is a confined space for cells to live. 
The confinement has impact on cell structure and behavior. Compared 
to single channel, micro-compartmentalization devices are more 
capable to rebuild this confinement, especially for physical confinement 
encountered by cells during migration and invasion, creating in vivo-
like cellular arrangements [17,41].

Traditional cell migration or invasion studies are conducted in a 
vertical device, which hinders the real-time monitoring. However, 
microfluidic devices allows horizontal arrangement of compartments 
for better monitoring of changes in cells and the ECM during migration, 
therefore are more, suitable for analysis on dynamic cell transition. 
There are several successful reports about cell motility, for example, 
study the regulation of dendritic cell migration [42]. Researchers have 
found that mechanical confinement itself has impact on cell motility 
[43]. 

Gradient of chemical factors: Chemical concentration gradients are 
regulated to control many basic cell functions and biological processes 
such as gene regulation (MAPK-mediated bimodal gene expression 
and adaptive gradient sensing in yeast), cancer metastasis [44,45] 
cellular chemotaxis [37,46] and migration [47,48], differentiation, 
development [49,50], immune response [51,52], wound healing [53,54] 
and embryogenesis [55]. 

Early in vitro platforms to study the effect of chemical gradient, like 
Boyden chamber [50], Dunn slide chamber [57], Zigmond chamber 
[58] and agarose/petri dish [59], are limited to reach the length 
scales that are actually relevant to biological cells. Microfluidic device 
overcomes these shortages and offers higher gradient resolutions and 
provides well-controlled hydrodynamic and mass transport conditions. 
The temporal and spatial control over defined gradients of soluble 
factors or immobilized factors (on surfaces) provided by flow-based 
microfluidic devices is a significant improvement over the widely 

available methods. The effect of flow alone on neutrophils has been 
addressed and mechanical activation by shear from laminar flow in 
micro channels was demonstrated [60]. 

Cell-cell and cell-extracellular matrix (ECM) interactions: Cell-
cell interaction is realized by cell-cell junctions or paracrine signaling 
mechanisms, and determines the response to stimuli and cellular 
phenotypes. Microfluidics offers opportunity to isolate specific signals 
at single cell level and obtain a clear understanding of genotypic and 
phenotypic variation among similar cell type by high-throughput 
screening. By directing interactions between cell surfaces, specific 
homotypic or heterotypic cell-cell interactions can be studied. [61,62]. 

Generally, seeding of different types of cells is the first step for cell-
cell interaction study. Unlike 2D culture, 3D culture model typically 
needs to premix cells with matrix (Figure 2a). The 3D structure provides 
the foundation of human complex tissue network and is proper to serve 
as a study model in microfluidics. Other designs of chips for cell-cell 
interactions include microvalves, microchannels and membrane as 
shown in reference [63-68] (Figure 2b-d) and to control administration 
of metabolites from one kind of cells to the receptor cells, our group had 
once presented a so called surface tension plug on a microfluidic device. 
Based on this device, we investigated the signal pathway between 293 
and L-02 cells [69]. Paracrine communication is usually studied on a 
two-channel type that separated by a gel channel or intervening gel. 
In this model, interstitial flow application induced 3D tissue-like 
structures, which proved the enhancement of cell-cell cohesion. [70].

Li’s group used electrochemical desorption of self-assembled 
monolayers (SAMs) to control multiple types of adherent cells in 
their migration behaviors in real time [8]. The first electrochemical 
desorption of SAMs in fibronectin filled PDMS channels induces the 
adhesion of cells in the channels. After the PDMS stamp was peeled 
off, a separation of different types of cells without physical barriers was 
formed. Then a second step is desorption releases the remaining SAMs 
and enables cells to spread freely. 

The composition and physical features of ECM directly influence 
a range of cellular processes including cell life/death, differentiation, 
shape, polarization, and motility [71-75]. Therefore, the ECM 
surrounding cells is critical to determine the cell fate. Various ECM 
materials have been used including naturally-derived polymers 
(collagen, hyaluronan and fibrin) and artificial polymers (alginate, 
polyethylene glycol (PEG), and poly (lactic-co-glycolic) acid (PLGA)). 
Naturally-derived ECM materials are biocompatible but limited in 
cost and repeatability, while artificial polymers are readily controllable 
in architecture, stiffness, porosity and shape. Fischbach’s group had 
reported the use of arginylglycylaspartic acid (RGD)-peptide that 
incorporated into a 3D alginate ECM, which increased angiogenic 
activity of cancer cells [76].

Laminar-flow microfluidics is an attractive approach to generate a 
linear gradient using small amounts of molecules, and thus is suitable 
for conducting studies on specific cell-ECM interactions (Figure 3) 
[12,78]. For example, Dertinger showed microfluidic application on 
haptotaxis study based on a T-sensor network, and analysis showed 
that the surface density of laminin oriented axon specification. Hsu 
used a parallel flow chamber to study the influence of shear stress and 
investigate the interactions between haptotaxis and shear stress during 
EC migration. In 3D microfluidic vessel model, luminal combined 
with interstial flow are major factors to regulate cell-cell and cell-ECM 
signaling. The interstial flow is the extracellular fluid that exists in the 
interstitial spaces between tissue spaces, can direct the migration of 
cancer cells [79] (Figure 4).
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Figure 2: Common designs and features of the chips for cell-cell interactions. (a) Typical progress of seeding and culturing cells in 3D structure. (b) 
Pneumatic micro valve operations for cell co-culture. (c) Micro channel design for real time observation of cell-cell interaction. (d) Membrane insertion 
between two chambers for separating and culturing cells. Adapted from [68].

Figure 3: Laminar-flow control by microfluidics. (a) A device used for partitioning a mirofluidic channel using gels to enable tunable 3D cell culture. Separation 
is achieved with laminar flow using a syringe pump [41]. (b) Patterning of cells using laminar flow [77]. 
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Figure 4: Injection molding allows easy and robust set up of 4 parallel experiments on a conventional scope. (A) A single unit containing two gel compartments 
(upstream (US) and downstream (DS)) and medium reservoirs with different pressure heads that drive flow. (B) Top view of device shows four units on one 
slide, allowing parallel experimentation with a motorized microscope stage. (C) Flow chamber modules consisting of top, middle and bottom part defining the 
reservoirs and the butterfly-shaped ground piece creating gel channels in different perspectives as labelled. (D) Schematic of flow setup. For static conditions 
(left), both reservoirs are filled to the top; for flow conditions, a pressure head of 7 mm H2O is maintained throughout the experiment with a peristaltic pump 
setup as shown. (E) Fluorescence microscopy image overlaid with phase of the interface between two fluorescently-labeled cell-loaded gels confined by 
PDMS pillars. (F) Close-up of E showing the gel border. (G) Chamber setup with tubing casket on an inverted microscope. Scale bars: 100 μm. Details can 
be found in [79].

Figure 5: Microfluidic 3D cancer models. (a) Three-dimensional formation of endothelial sprouts and neovessels in a microfluidic device [80]. (b) Schematic 
for microfluidic cell migration assay enabling direct comparison of cell migration behavior between the condition and control sides [81]. (c) Microfluidic system 
of tumor cell extravasation [82]. 
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Microfluidic applications in cell biology

Bio-microfluidics has been successfully been applied in cellular 
biology for study various cellular behaviors and phenotypes including 
cell growth, differentiation, signal transduction, protein secretion and 
transport, gene expression, cell and ECM behaviors, and cytoskeletal 
dynamics.

Microfluidic 3D cancer models: a) Angiogenesis and metastasis: 
With the development of biomaterials, several chip-based models have 
provided information and data about cancer-related processes, such 
as angiogenesis, migration and extravasation (Figure 5). Angiogenesis 
comprises of endothelial sprouting and intussusceptive micro vascular 
growth, which is remodeling of existing vascular networks by forming 
a new vessel from an existing one. This process can be driven by growth 
factors, like vascular endothelial growth factor (VEGF) gradients, 
hypoxic conditions and the presence of tumors or trans endothelial 
flow. Angiogenesis is crucial to include in cancer models, because it is 
a prerequisite for tumor growth, invasion, progression, and metastasis. 
One strategy to build vascular models is to separate two parallel 
microfluidic channels by a hydrogel filled channel in the middle [80]. 
The other way is the vascular structures fully embedded within 3D 
ECM [83]. As an example of the second approach, endothelial colony-
forming-derived endothelial cells and normal human lung fibroblasts 
are mixed with fibrin matrix [84]. Angiogenesis-based approaches were 
successfully employed in microfluidic devices to exploit paracrine and 
juxtacrine signaling between ECs and MSCs [75] or between ECs and 
fibroblasts to generate vascular networks [86]. It had been reported that 
EC and MSC co-cultures were employed to vascularize cell spheroids 
for therapeutic neovascularization [87]. 

Metastasis is a complex process in cancer started with intravasion, 
invasion of cancer cells through the basal membrane into a blood or 
lymphatic vessel, followed by extravasion, entrance in other tissues 
and/or organs [16,88]. Chip-based models had been developed for 
intravasion and extravasion processes, in which the formation of an 

endothelial monolayer on a 3D collagen type I hydrogel mimicking 
ECM enabled the precise quantification and control of critical 
microenvironmental factors.

b) Drug discovery on tissue or organ level: One of the successful 
practical applications of 3D cancer systems is in the drug discovery, 
especially for the screening of drug toxicity. Animal models are limited 
for difference in metabolism and cellular response to chemical signals 
from that in humans [89]. The 3D cancer systems provide a more 
humanized platform that may enhance the predictability of new drug in 
humans [90,91]. Multiple parameters in 3D microenvironment, which 
strongly affects the drug effect, require a more complex in vitro model 
to investigate at tissue or organ level. 

Continued development and integration of microtechnology 
with 3D cancer biology support the generation of 3D in vitro cancer 
models at tissue level. The microminiaturization fabrication enables 
hollow shaped, or duct-like, structures, which are compatible with 
mammary duct and blood vessels. Nelson [92] created 3D mouse 
mammary ducts by micropatterning of collagen gel to investigate the 
effect of transformation growth factor-beta on mammary branching 
morphogenesis. They demonstrated the important role of tissue 
geometry during organ morphogenesis and its role in defining the local 
cellular microenvironment. However, this model lacks in introducing 
continuous flow. Other examples for duct-like structures that use 
microchannel geometry, gel patterning, fluid dynamics, or microfiber 
generation overcome this problem [83]. Bischel constructed a circular 
shaped lumen system after lining the lumen with endothelial cells. By 
a viscous fingering method, a less viscous solution tunnels through 
the center of a more viscous solution can be created [93,94]. organs-
on-chips (also known as organ-on-a-chip) is microfluidic device for 
culturing living cells in continuously perfused, micrometer sized 
chambers in order to model physiological functions of tissues and 
organs. 

The word chip in organ-on-chip stems from the original fabrication 

Figure 6: Microengineered tissues or organs on chips. (a) Branching position is determined by tubule geometry and is consistent with the concentration 
profile of secreted diffusible inhibitor(s) [92]. (b) A microfluidic kidney epithelium model [95]. (c) Liver-on-a-chip [96]. (d) The human-on-a-chip concept [4]. 
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method, a modified form of photolithographic etching used to 
manufacture computer microchips, which allows control of surface 
feature shapes and sizes on the same scale (nm to μm) that living 
cells sense and respond to in their natural tissue milieu. The simplest 
system is a single, perfused microfluidic chamber containing one 
kind of cultured cells that exhibits functions of one tissue type. In 
more complex designs, two or more micro channels are connected 
by porous membranes, lined on opposite sides by different cell types, 
to recreate interfaces between different tissues. Development of these 
micro engineering approaches has opened entirely new possibilities to 
create in vitro models that reconstitute more complex 3D organ level 
structures and to integrate crucial dynamic mechanical cues as well 
as chemical signals. There have been different kinds of tissue or organ 
chip models for specific research (Figure 6), such as liver-on-a-chip, 
[96] kidney-on-a-chip, [97,98] gut-on-a-chip, [99,100] lung-on-a-chip, 
[101,102] heart-on-a-chip [103] and vessel-on-a-chip [104]. 

The integration of functional organ mimetics, such as gut-, liver-, 
lung- and skin-on-chip within a “human-on-a-chip” (Figure 6d), could 
provides improved methods to explore different routes of drug delivery 
(oral, aerosol and transdermal), as well as their effects on the efficacy or 
toxicity of different drug formulations [4].

Recently, a new platform has been developed called the tumor-
microenvironment-on-a-chip (T-MOC) to mimic the complex 
pathophysiological transport within the tumor and surrounding 
microenvironment. The T-MOC system is able to precisely modulate 
environmental parameters such as interstitial fluid pressure and tissue 
microstructure to analyze the significant effects such as each parameter 
dictates on nanoparticle and drug transport [105,106]. Similar to 
T-MOC, there is organ-tumor-on-a-chip. Organ-tumor-on-a-chip 
refers to modeling of tumors on microfluidic chips, and the resulting 
organ-on-a-chip type human cancer models can be used for research 
on cancer growth and metastasis, drug target discovery, testing drug 
compounds, and for associated companion diagnostics. Investigations 
have been made recently on tumor-on-a-chip for the tumor of lung, 
bone marrow, brain, breast, urinary system (kidney, bladder and 
prostate), intestine and liver [107].

Microfluidic organs-on-chips research must also contend with 
specific technical challenges. Fabrication requires specialized micro-
engineering capabilities. Bubbles in microfluidic channels may injure 
cells and hamper fabrication and control of chips, and it can be difficult 
to completely remove them. Although continuous perfusion generally 
supports high levels of long-term cell survival, the use of simplified 
ECM gels or thin ECM coatings can be a problem owing to matrix 
degradation or contraction over time. Additional challenges include 
achieving robust and consistent cell seeding in microfluidic channels, 
preventing microbial contamination, and controlling the cell-cell and 
cell-ECM interactions necessary to generate precise tissue structure-
function relationships. Even with these limitations, microfluidic 
culture devices have much to offer. In organs-on-chips, cell types of one 
tissue can be positioned precisely and consistently relative to those of 
another. Another advantage of organs-on-chips is the ability to control 
fluid flow, which enhances the differentiation, function and long-term 
survival of many cell types. For example, human lung cells have been 
cultured on chip in a functional state for at least one month in culture 
[108]. The true power of microsystems engineering lies in the ability 
to design synthetic culture systems in which many different control 
parameters (e.g., types and positions of cells; precise 3D orientation of 
tissue-tissue interfaces; transcellular chemical, molecular and oxygen 
gradients; flow levels and patterns; mechanical forcing regimens) can be 
changed independently, while simultaneously carry out high resolution 

and real-time imaging of molecular-scale events within a 3D tissue or 
organ context.

Although bioengineered 3D microsystems and organ-on-a-chip 
technologies are relatively new and still require further validation and 
characterization, their potential to predict clinical responses in humans 
could have profound effects on drug discovery and environmental 
toxicology testing. The scale-up of these complex technologies, together 
with systems integration of the engineering (e.g. fluidics handling, 
pumps) into easy to use, scalable, reproducible and user-friendly 
systems will be the key to their future success. It will be important to 
ensure that appropriate biomarkers and assays are developed for use 
with these microsystems, and to validate the extrapolation of in vitro 
results to the human situation.

Microfluidic devices for cell-based assays have provided new types 
of microenvironments and new methods for controlling and observing 
the cellular responses. As more microfluidic devices for cell biology are 
developed and implemented to address the current roadblocks such as 
ease of use, biological validity, and limitations in readouts, the unique 
strengths of these devices will become more accessible to the general 
biology community as common laboratory tools.

Stem cell biology

Stem cells in vivo are established in niche, which is the 
microenvironment stem cells lived in and preserves stem cells from 
physiological stimuli. This microenvironment regulates how stem 
cells participate in tissue generation, maintenance, and repair. Micro-
technology-based platforms enable imitation of complex physiological 
context, which fulfill the requirements in the area of stem cell studies.

Regulation of human stem cell differentiation: As the interplay 
between stem cells and their microenvironments strongly influences 
stem cell differentiation, microfluidic control of soluble and insoluble 
factors enables precisely anticipate of the cell fate. The ways to control 
these factors are discussed in section 2 Cell and environment control, 
which are similar in regulation of stem cells. In this part, we will present 
how these factors affect differentiation of stem cells. 

Kawada presented a membrane-based microfluidic device designed 
to form spatiotemporally nonuniform culture environments for stem 
cells (Figure 7a).The soluble factors diffused through the membrane 
depending on flow rate. In their work, the soluble factors include RA 
and leukemia inhibitory factor were introduced to determine whether 
miPSCs expressed Nanog, a transcription factor required for self-
renewal of ESCs. The results showed that a low concentration of RA for 
72h induction was sufficient to suppress Nanog. 

The other way to control soluble factors is to generate concentration 
gradient with a slow flow rate by using a simple osmotic pump. Stem cells 
in the chemical gradient experienced different fates [113]. Using soluble 
factors, Kim proposed a microplatform for on-chip differentiation of 
embryoid bodies [114]. They changed the duration and rate of the 
flow to adjust the average size of embryoid bodies, and then applied 
RA to induce differentiation of EBs into a neuronal lineage. The results 
showed that RA-treated cells appeared as mature neuronal cells with 
long neurites in a relatively intense response to the neuron-specific 
antibody TuJ1. This microsystem had been proven to be useful on-chip 
method to induce and monitor differentiation of EBs.

Mechanical forces like stiffness and shear stress provide a crucial 
set of signals to alter the structures of cells and regulate their functions, 
resulting in a change of differentiation. Stiffness of substrates determines 
the stiffness of cytoskeletons (Figure 7b). Gilbert demonstrated the 
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effect of stiffness on muscle stem cells (MuSCs) in a bioengineered 
microplatform, and they found that soft substrates with moduli of 12 
kPa were observed to be better for self-renewal of MuSCs and muscle 
regeneration [115]. Modifying substrate stiffness is the way actually 
changes the interaction between cells and substrates, would also orient 
the differentiation of NSCs. By use of variable moduli interpenetrating 
polymer networks to modulate the stiffness of substrate, researchers 
found that moduli of approximately10 Pa blocked the differentiation, 
while moduli of about 500 Pa induced expression of the neuronal 
marker β-tubulin III and differentiation into glial cells with moduli of 
approximately 1,000–10,000 Pa [116]. 

Shear stress also plays role in regulating the differentiation. 
Lee controlled shear stress by micrrofluidics and found that ESCs 
differentiated into endothelial cells under the uniform cell docking 
and shear stress conditions [117]. Kim investigated the osteogenic 
differentiation of MSCs according to the applied shear stress through 
transcriptional coactivator with PDZ-binding motif (TAZ) activation 
using a microplatform with an osmosis-driven pump [118]. The 
interstitial level of shear stress induced osteogenic differentiation of 
MSCs, which is inherently caused by nuclear localization of TAZ. 

Temperature has been used on chip to control the behaviors of stem 
cells by Lucchetta’s group (Figure7c). They placed an embryo in a micro 
platform and introduced a flow with different temperature steps to the 
anterior and posterior halves of the embryo [38,119]. Temperature was 
shown to significantly affect the early development of the embryo. Other 
factors include dissolved oxygen, compressive pressure and electricity 
also proved to have influence on stem cell differentiation [120-122].

Before the differentiation of ESCs, the formation of embryoid 
bodies (EBs), three-dimensional aggregates of pluripotent stem cells, 
are regulated by homophilic interactions of the Ca2+-dependent cell 

adhesion molecule E-cadherin [123-125]. The size of the EB is a critical 
factor influencing the differentiation of ESCs: Large EBs tends to 
become part of the endoderm and mesoderm, while small EBs tend to 
differentiate into ectoderm tissue. There two main types of methods to 
control EBs. One is static, using well-defined micro wells to form EBs 
and to control their average size [126,127] (Figure 7d). The other way is 
dynamic (Figure 7e), which use microfluidics to control EB size easily 
and enables researches under various changes of the microenvironment 
[114].

Stem cell niche engineering: A 3D microfluidic culture model 
is required to recapitulate the native niche. There are various of 
microtechnologies (e.g. stop-flow lithography [128], robotic formation 
of micro gels [26] and droplet microfluidics). And droplet microfluidics 
is capable to compartmentalize cells into mono-dispersed and 
physic chemically defined 3D matrices, therefore, is advantageous in 
constructing artificial niches. Both synthetic and natural hydrogels 
have been utilized in creating in vitro 3D platforms by mixing different 
cells into these hydrogels in varied mechanical and biochemical gel 
properties. For example, Huck and colleagues tuned the content of 
collagen/gelatin and the degree of cross-linking to obtain microbeads 
with varying elasticity and biodegradability. These beads were then 
used to study fibro-blast invasion into matrices of different stiffness 
[129]. Similar studies have been processed with synthetic hydrogels. 
Rossow’s group used hyper branched polyglycerol and PEG and 
controlled micro gel elasticity by the molecular weight of the PEG cross-
linker and the precursor concentration. They realized encapsulation of 
lymphoblasts and fibroblasts within microcapsules obtained through 
the co-polymerization of these materials [130]. Garcia’ group employed 
PEG-maleimide-based microgels for successful long-term cell culture, 
showing high viability of human MSCs, as well as insulin secretion of 
human pancreatic islets [131]. 3D co-culture for niche construction can 

Figure 7: Microfluidic applications in stem cell biology. (a) Soluble factors are applied to stem cells as fate determinants through porous membrane [109]. 
(b) Physical factors applied as fate determinants include mechanical stimuli such as stiffness [100]. (c) Other factors applied as fate determinants include 
temperature [38]. (d) Static methods used for EB formation. (e): Dynamic methods used for embryoid body (EB) formation. (ei): Optical image of microfluidic 
EB trap arrays [111]. (eii): Schematic of EB formation within microwells in a multilayer microfluidic platform [112].



Volume 6 • Issue 1 • 1000182Mol Biol, an open access journal
ISSN: 2168-9547

Citation: Yi L, Lin JM (2017) Development and Applications of Microfluidic Devices for Cell Culture in Cell Biology. Mol Biol 6: 182. doi: 10.4172/2168-
9547.1000182

Page 9 of 12

Molecules involved in cell signaling pathways

be realized with droplet-based technology. By varying the flow rate ratio 
between the two cell streams, the ration between the concentrations of 
two cell types can be altered within the micro gel [132]. Another way 
to build co-culture is the layer-by-layer. Sakai and colleagues reported a 
first microfluidical encapsulation of rat adipose-derived cells in gelatin 
microbeads, and a co-encapsulated in another gelatin microbead, which 
supported the adhesion of L929 cells [133]. 

All these examples highlight the advantages of droplet 
microfluidics to generate cell-laden microcapsules as cell-instructive 
microenvironments. 

Conclusion 
The progress in microfluidic culture, especially the new microfluidic 

3D model, elucidates questions in cell biology in a more efficient way. 
Because multiple key biophysical and biochemical parameters attribute 
to the complexity of in-vivo microenvironment and are controllable by 
3D microfluidic devices. 

With more vivo-like features, researches based on 3D microfluidic 
culture model other than 2D model may be a trend in cell biology studies 
to provide a greater understanding of biological mechanisms and better 
guide the design of more physiologically compatible systems. The 
recent development of 3D microfluidic culture in tissue engineering has 
resulted in the evolution of 3D in vitro models for cell biology studies 
[134]; meanwhile, it calls for the development of tissue engineering and 
biomaterials to maximize the utility and functionality of the models. 
For example, smartly designed biomaterials can be degraded by growth 
factors at desired rates that relevant to physiological condition or be 
cleaved only by specific proteases like in vivo ECM [135-137]. Several 
pharmaceutical companies are moving toward adapting 3D in vitro 
cancer models as anti-cancer drug testing tools. However, it does 
not mean that complex organ-level in vitro culture systems will be a 
dominant strategy. In studies that focus on cell interaction, relative 
simple models are needed to avoid multiple interferences. These models 
are widely used in the early stages to identify therapeutical targets 
or screen drug candidates. For later steps like exploration of drug 
toxicity, analyzing at tissue/organ levels may be necessary, because 
multiple parameters would affect toxicity on cells. Widespread use of 
the microfluidic culture systems in practice would be challenged by 
the limitation of reliable detection methods for high-throughput and 
high-content analysis. It is important to develop methods for imaging, 
detecting, and quantifying signals. Despite this challenge, the continued 
development and integration of micro fluidic culture, tissue engineering 
and biomaterials will bring significant contributions toward a deeper 
understanding of mechanism in cell biology. 
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