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Developing and then Confirming a Hypothesis Based 
on a Chronology of Several Clinical Trials: A Bayesian 
Application to Pirfenidone Mortality Results

Abstract
Background: Designing a study for independent confirmation of a treatment effect is sometimes not practical due to required large sample size. Post hoc pooling of studies 
including those for learning purposes is subject to selection bias and therefore not scientifically solid. We propose a Bayesian approach which calibrates the role of prior information 
from historical studies for learning and confirming purposes. The method is illustrated in the analysis of mortality data for the pirfenidone NDA.

Methods: The pirfenidone NDA includes three placebo-controlled studies to demonstrate efficacy for idiopathic pulmonary fibrosis (IPF), a rare and ultimately fatal lung disease with 
no approved treatment in the US at the time of NDA. The results of two earlier conducted studies PIPF-004 and PIPF-006 suggested that pirfenidone might reduce mortality risk. 
We used a Bayesian analysis to synthesize mortality results from the subsequent confirmative Study PIPF-016 and the combination of Studies PIPF-004 and PIPF-006. 

Results: Pirfenidone’s treatment effect on mortality rate reduction for Study PIPF-016 is statistically significant with discounts of historical evidence from PIPF-044 and PIPF-006 
for both all-cause mortality and treatment-emergent IPF-related mortality. 

Conclusions: The Bayesian analysis provides a formal method to calibrate the role of information from historical evidence in the overall interpretation of results from both historical 
and concurrent clinical studies. The increased efficiency of using all available data is especially important in drug development for rare diseases with serious consequences, where 
limited patient source prohibits large trials, and unmet medical needs demand rapid access to treatment options.
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Introduction

In clinical drug development, early phase studies are designed for 
learning, for generating and testing hypotheses. Later phase studies are 
designed for confirmation of treatment effects for regulatory approval. The 
process of developing and confirming hypotheses applies to a collection 
of several studies as well as individual studies. Earlier confirmatory 
studies may generate refined or new hypotheses to be confirmed by later 
confirmatory studies, and the cycle can go on and on. The setting to confirm 
a hypothesis based on data exclusively from an individual study can be 
inefficient and sometimes not feasible in practice due to required large 
sample size, especially in the case of low event rate for a rare disease. 
Although data pooling from multiple studies can provide reasonable sample 
size for hypothesis confirmation, post hoc data pooling including those 
for hypothesis generation purposes is not scientifically solid, and pre-
specification of data pooling without early learning is often unrealistic.

Bayesian statistics has a natural framework to incorporate prior 
information from earlier studies, for the purpose of evaluating treatment 
effect from new study data. We propose a Bayesian approach which 
calibrates the role of prior information from earlier studies for learning 
and confirming purposes. It formally discount historical information for 
the purpose of confirming a treatment effect in a prospectively designed 
study. This approach recognizes the hypothesis generation aspect of prior 

information while using the residual information for confirmation purposes 
with increased statistical efficiency. Learning is viewed as continuum rather 
than regarding “study” to be the learning unit. We illustrate the method in 
the analysis of mortality data for the pirfenidone NDA.

To help readers with different professions to link Bayesian posterior 
probabilities to the widely used p-values, we use the term “analogous” 
to describe comparable levels of statistical significance between the two 
approaches of statistics. For example, a posterior probability of 0.975 
for treatment benefit is analogous to a one-sided p-value of 0.025 (or a 
two sided p-value of 0.05) in terms of statistical significance, which is a 
conventional cut point for statistical significance in the current regulatory 
environment. This linkage is important to compare the two approaches 
of statistics with comparable level of statistical significance, although the 
meaning of posterior probabilities and p-values are quite different within 
each of the two approaches of statistics: “P=0.025” is not interpreted as 
“the probability of alternative hypothesis is 0.975”, while the same data can 
produce a posterior probability of 0.975 for treatment benefit with a “non-
informative” prior.

The Pirfenidone NDA

The pirfenidone NDA includes a total of three placebo-controlled 
studies to demonstrate efficacy for idiopathic pulmonary fibrosis (IPF), a 
rare and ultimately fatal lung disease with no treatment in the US at the time 
of NDA. Studies PIPF-004 and PIPF-006 were conducted with a minimum 
of 72 weeks of double-blind placebo control, while Study PIPF-016 was a 52 
week double-blind placebo controlled study started after completion of the 
early two studies. The primary endpoint is percent predicted FVC, although 
mortality is considered as the ultimate endpoint with the limitation of low 
statistical power to be the primary endpoint.



J Biom Biostat, Volume 12: 2, 2021Lin Z, et al.

Page 2 of 7

The mortality analyses using the log-rank test described in the SAP 
for PIPF-016 provide p-values consistently less than 0.05 when using full 
pooling as shown in Table 2, while results based on PIPF-016 alone have 
p=0.1045 for all-cause mortality and p=0.2258 for treatment emergent IPF-
related mortality.

We carried out a Bayesian analysis that discounts previous Studies 
PIPF-004 and PIPF-006 but borrows some inferential strength from these 
studies in estimating the effect of pirfenidone on reduction of mortality as 
compared with placebo for the PIPF-016 study [4,5].

Statistical Modeling

We use a Bayesian analysis to synthesize mortality results from Study 
PIPF-016 and the combination of Studies PIPF-004 and PIPF-006. The 
prospectively defined analysis for mortality endpoints in the statistical 
analysis plan for PIPF-016 was a time-to-event log-rank test of the hazard 
ratio. However, since the duration of follow-up is predetermined to be one 
year for all patients, we analyze the dichotomous outcomes of deaths within 
the first year. An advantage of using dichotomous outcomes (instead of 
time-to-event outcomes) is its simplicity of modeling with complete data 
transparency at each step of calculation, which is important for ease of 
communication of a complex concept to different professions. The approach 
to synthesize mortality data can be applied similarly to survival data with 
appropriate modeling.

Let the labels for Studies PIPF-004, PIPF-006, and PIPF-016 be s=4, 
6, and 16, respectively. In study s the number of subjects on placebo (PBO) 
is ms and on pirfenidone (PIR) is ns. In study s there are xs deaths in the 
PBO group and ys in the PIR group. We assume that the numbers of deaths 
within the PIR and PBO groups in study s are distributed as binomial:

xs~Binomial(ms,ps);

ys~Binomial(ns,qs) for s=4, 6, and 16.

In the Bayesian framework we can use the data from these historical 
studies to form a prior distribution on the mortality event rates for Study 
PIPF-016. The data from PIPF-016 can then be combined with the prior 
distribution formed from the historical study data to calculate the posterior 
distribution of the mortality event rates.

Historical prior

We assume beta prior distributions on the mortality event rates in Study 
PIPF-016:

The results of clinical studies PIPF-004 and PIPF-006 suggested 
that the evident slowing of disease progression caused by pirfenidone 
might translate into lower mortality. Therefore, the prospective plan of 
the subsequent confirmative study PIPF-016 included 52-week all-cause 
mortality and treatment-emergent IPF-related mortality as secondary 
endpoints. However, PIPF-016 was not powered to detect clinically 
important effects on either type of mortality. Assuming a total of 31 deaths 
from any cause (as actually observed in the study overall—refer to Table 1) 
and an eventual log-rank test, a large treatment effect with 0.5 hazard ratio 
has only 49% power to detect a treatment difference. Assuming a total of 10 
treatment-emergent IPF-related deaths, the study has only 19% power with 
the same hazard ratio assumption.

To achieve greater power, the protocol and statistical analysis plan of 
PIPF-016 indicate that the events in PIPF-016 will be pooled with those 
censored at one year in PIPF-004 and PIPF-006. Results from the pooled 
analyses provide reasonably convincing evidence for a positive conclusion, 
as shown in Table 2.

The consistency of the mortality results across the three trials as shown 
in Table 1 and the efficacy of pirfenidone in slowing the progression of IPF 
support a pooling strategy. However, there is a recognized limitation of 
the pooled mortality analysis because it was specified after results of the 
earlier trials were available, although before the start of PIPF-016. As a 
result patients in those two trials cannot be considered exchangeable with 
patients in trial PIPF-016 for the purpose of confirmation of treatment effect, 
as the earlier trials are partly hypothesis generating. 

A standard analysis for discounting prior information is via a Bayesian 
statistical approach [1]. The results of these earlier trials are relevant for 
addressing the final question, but at less than their face value. Hence in the 
context of trial PIPF-016 they should not count fully [2,3]. 

Pooling of mortality data

In view of the limited power for addressing mortality in Study PIPF-
016, the statistical analysis plan (SAP) for PIPF-016 prospectively defines 
a pooling analysis with the mortality information from Studies PIPF-006 and 
PIPF-004 as a secondary analysis:

Mortality data from Study PIPF-016 also will be pooled with data from 
the pirfenidone 2403 mg/d and placebo groups from Studies PIPF-004 and 
PIPF-006. For the pooled analysis, the PIPF-004 and PIPF-006 results will 
be censored at Study Day 365 if an event has not occurred earlier in order 
to allow the three studies to contribute comparable follow-up times to the 
pooled analysis.

PIPF-016 PIPF-004 PIPF-006
Mortality PIR

(N=278)
n (%)

PBO
(N=277)

n (%)

RR PIR
(N=174)

n (%)

PBO
(N=174)

n (%)

RR PIR
(N=171)

n (%)

PBO
(N=173)

n (%)

RR

All-cause 11 (4.0) 20 (7.2) 0.55 5 (2.9) 13 (7.5) 0.38 6 (3.5) 9 (5.2) 0.67
TE IPF-related 3 (1.1) 7 (2.5) 0.43 2 (1.1) 8 (4.6) 0.25 2 (1.2) 7 (4.0) 0.29

Note: Table reports the number of 52-week all-cause and TE IPF-related mortality events for PIR and PBO.
IPF: Idiopathic Pulmonary Fibrosis; PBO: Placebo; PIR: Pirfenidone; RR: Relative Risk, of PIR to PBO; TE: Treatment-Emergent.

Table 1. Mortality data from Trials PIPF-016, PIPF-004 and PIPF-006 (All Randomized Patients).

All-Cause Mortality TE IPF-Related Mortality

Pirfenidone 2403 mg/d 
(N = 623)

Placebo 
(N = 624)

Pirfenidone 
2403 mg/d 
(N = 623)

Placebo
(N = 624)

Patient death, n (%) 22 (3.5) 42 (6.7) 7 (1.1) 22 (3.5)
Hazard ratioa (95% CI) 0.52 (0.31,0.87) 0.32 (0.14,0.76)

p-valueb 0.0107 0.0061
aHazard ratio was based on the Cox proportional hazard model.

bp-value was based on the log-rank test.
Note: Table reports 52-week all-cause and TE IPF-related mortality data for PIR and PBO.

CI: Confidence Interval; IPF: Idiopathic Pulmonary Fibrosis; PBO: Placebo; PIR: Pirfenidone; RR: Relative risk, of PIR to PBO; TE: Treatment-Emergent.

Table 2. Mortality Data from PIPF-016, PIPF-004, and PIPF-006 Pooled (All Randomized Patients).
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p16~Beta(αPBO,bPBO);
q16~Beta(αPIR,bPIR);
In particular, for both groups PBO and PIR we specify the borrowing of 

the historical data as a fraction borrowed parameter (θ) as:
αPBO=θ(x4 + x6)α0

bPBO=θ[(m4 - x4)+ (m6 + x6) + b0

and
αPIR=θ(y4 + y6)α0

bPIR=θ[(n4 - y4)+ (n6 + y6) + b0

where θ is a number between 0 and 1 to reflect the amount of borrowing of 
information between Study PIPF-016 and historical Studies PIPF-004 and 
PIPF-006. If θ=1, then the historical studies are pooled with Study PIPF-
016, whereas if θ=0, then the historical data are completely discounted. 
The original prior, before any of the three studies, for both PIR and PBO is 
assumed to be a uniform distribution, with α0=β0=1.

We use the symbol q for the death rate for PIR in Study PIPF-016 and p 
for the death rate on PBO, dropping the subscript 16 in both cases.

The prior distributions of q and p before Study PIPF-016 but after 
Studies PIPF-004 and PIPF-006 depend on θ. Figure 1 shows two special 
cases for all-cause mortality, one with θ=1 and the other with θ=0.50. In the 
case θ=0, complete discounting of the earlier studies, both prior densities 
are uniform: equal to a constant for the whole interval from 0 to 1.

Posterior distribution: Updating historical prior with 
study PIPF-016 results

The posterior distribution of p and q given the results of PIPF-016 also 
has a beta distribution:

q|n16,y16~ Beta(y16 + αPIR,n16 - y16 + bPIR );

p|m16,x16~ Beta(x16 + αPBO,m16 - x16 + bPBO );

Results

We provide results depending on θ, the amount of borrowing from 
PIPF-004 and PIPF-006. For each θ we draw 1 million samples from the 
posterior distributions of p and q and we report:

1) Posterior probability of superiority of PIR vs PBO (this is the 
proportion of samples where q < p)

2) Posterior mean of the relative risk (q/p)

3) 95% credible interval of the relative risk

Table 3 shows results for both all-cause mortality and treatment-
emergent IPF-related mortality.

All-cause mortality

Under our Bayesian analysis and with no borrowing of information 
from PIPF-004 and PIPF-006, the posterior probability that pirfenidone is 
superior to placebo in terms of the all-cause mortality event rates is 0.951. 
This is analogous (in the sense of comparable statistical significance) to a 
one-sided p-value of 0.049 and a two-sided p-value of 0.098. In the other 
extreme, under full borrowing of information from PIPF-004 and PIPF-006, 
the posterior probability that PIR is superior to PBO in terms of all-cause 
mortality event rates is 0.9947. This is analogous to a one-sided p-value 
of 0.0053 and a two-sided p-value of 0.0106. This is very similar to the 
p-value under full pooling and the log-rank test on a time-to-event endpoint 
of 0.0107.

Figure 1. The Prior Densities for Pirfenidone (PIF) and Placebo (PBO) Using Full Borrowing and 50% Borrowing.

Table 3. Mortality Results from Bayesian Analysis. IPF: Idiopathic Pulmonary Fibrosis; TE: Treatment-Emergent.

No Borrowing Full Borrowing Tipping Point
Borrowing needed to 

achieve 0.975 probability 
of superiority for 

pirfenidone

Bayesian Prob. of 
Superiority (analogous 

two-sided p-value)

Log-rank Reported
p-value

Bayesian Prob. of 
Superiority (analogous 

two-sided p-value)

Log-rank Reported
p-value

All-cause 0.951 (0.098) 0.1045 0.9947 (0.0106) 0.0107 29%
TE IPF-related 0.890 (0.220) 0.2258 0.9975 (0.0050) 0.0061 38%
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Figure 2 shows the probability of superiority for varying θ, reflecting 
a varying amount of borrowing from PIPF-004 and PIPF-006 as well as 
the estimated relative risks and 95% credible intervals for each. The figure 
shows that the “tipping point” where the probability of superiority is 0.975 
(analogous to a one-sided p-value of 0.025) is θ=0.29. So borrowing 29% 
or more of the mortality information from Studies PIPF-004 and PIPF-006 
(which means discounting these two studies by 71% or less) gives statistical 
significance for all-cause mortality.

Treatment-emergent IPF-related mortality

Figure 3 shows similar results for event rates of treatment-emergent 
IPF-related mortality. In particular, under no borrowing of information from 
previous studies the posterior probability that PIR is superior to PBO is 
0.89. At the other end of the scale, under full borrowing from Studies PIPF-
004 and PIPF-006, the posterior probability that PIR is superior to PBO 
is 0.9975. The “tipping point” where the probability of superiority is 0.975 
(analogous to a one-sided p-value of 0.025) is θ=0.38. So borrowing 38% 
or more from Studies PIPF-004 and PIPF-006 (or discounting these two 
studies by 62% or less) gives statistical significance for treatment emergent 
IPF-related mortality.

Calibrating the role of prior information

In view of limited power in assessing a possible reduction in mortality 
due to pirfenidone in comparison with placebo, the statistical analysis plan 

for Study PIPF-016 prospectively specified pooling the mortality results of 
PIPF-016 with those from two previous studies, PIPF-004 and PIPF-006. The 
mortality-related events in these previous studies was partially hypothesis 
generating. Our Bayesian analysis recognizes the hypothesis generating 
aspect of these earlier studies while using the residual information as a prior 
distribution for PIPF-016 by partially discounting the earlier studies.

Figure 4 shows this division into hypothesis generating and confirmation. 
The former is shown in Panel A, showing 50% of the information in Studies 
PIPF-004 and PIPF-006. In Figure 4A the probability that pirfenidone 
is superior to placebo is 91%, which provides substantial motivation to 
establish the hypothesis that pirfenidone reduces all-cause mortality. For 
the prior distribution in Panel B for assessing all-cause mortality in Study 
PIPF-016 the posterior probability of superiority calculated in Figure 2 is 
98.4%. The corresponding calculation for treatment-emergent IPF-related 
mortality in Figure 3 again assuming 50% use of results from Studies PIPF-
004 and PIPF-006 is also 98.4%. The analogous two-sided p-value is 0.032. 
In both cases the results provide ample evidence of confirmation.

Figure 5 is in the same format as Figure 4. It shows the analogous parts 
of the information on all-cause mortality from Studies PIPF-004 and PIPF-
006 at the tipping point of 71% of information for hypothesis generation and 
confirmation.

An example of a Bayesian analysis using 50% borrowing from a 
previous study in a registration setting is Boston Scientific’s WATCHMAN® 
Left Atrial Appendage Closure Therapy (FDA, 2013) [6].

Figure 2. All-cause Mortality.

Figure 3. Treatment-emergent IPF-related Mortality.



J Biom Biostat, Volume 12: 2, 2021Lin Z, et al.

Page 5 of 7

The prior distributions in this Bayesian analysis are empirically based. 
Berry et al., Berry [7] describe how to use other available information 
subjectively to improve the accuracy of Bayesian conclusions. For 
example, the effectiveness of pirfenidone in shifting the stage of IPF 
may be reasonably regarded to result in an end-stage shift, that is, a 

mortality reduction. Evidence for this possibility and other information can 
be incorporated into the prior distributions of this report using methods 
described in these references.

In summary, a helpful feature of the Bayesian analysis described above 

Figure 4. These Two Panels Show the Posterior Densities of the Results from Studies PIPF-004 and PIPF-006 (refer to Figure 1A) Divided in Two, Half for Hypothesis 
Generating (Panel A) and the Other Half to Serve as the Prior Information for Study PIPF-016 in confirming the Hypothesis (PanelB).
The two graphs are identical to accentuate the equality of the information content in this division. In both panels the “numbers of deaths” are 5.5 out of 172.5 “patients” on 
PIR and 11 out of 173.5 “patients” on PBO. In Panel A, assuming a uniform distribution prior to studies PIPF-004 and PIPF-006, the probability that PIR is superior to PBO 
is 91%, which provides substantial motivation to establish the hypothesis that PIR reduces all-cause mortality. For the prior distribution in Panel B for assessing all-cause 
mortality in Study PIPF-016 the posterior probability of superiority calculated in Figure 2 is 98.4%. The corresponding calculation in Figure 3 again assuming 50% use of 
results from PIPF-004 and PIPF-006 is also 98.4%. PBO = placebo; PIR = pirfenidone.

Figure 5: This Figure Shows the Information Division Between Hypothesis Generation and Hypothesis Confirmation at the “Tipping Point” Described in the Text.
The two panels show the posterior densities of the results from Studies PIPF-004 and PIPF-006 divided in two, 71% for hypothesis generating (Panel A) and the 29% to 
serve as the prior information for Study PIPF-016 in confirming the hypothesis (Panel B). In Panel A, assuming a uniform distribution prior to Studies PIPF-004 and PIPF-006, 
the probability that PIR is superior to placebo is 93.8%. Panel A contains more than twice as much information for hypothesis generation as Panel B does for confirmation. 
In Panel A the “numbers of deaths” are 7.81 out of 244.95 “patients” on PIR and 15.62 out of 246.37 “patients” on PBO. In Panel B the “numbers of deaths” are 3.19 out of 
100.05 “patients” on PIR and 6.38 out of 100.63 “patients” on PBO. PBO = placebo; PIR = pirfenidone.
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is that it provides a way to calibrate the role of the information from the 
earlier studies in the overall interpretation of the results from all studies. The 
range of this calibration includes no use of the information from the previous 
studies at one end and full use of the previous studies in a pooled analysis at 
the opposite end. The middle ground with respect to the calibration provides 
a reasonably convincing basis for a positive conclusion with respect to the 
totality of information from all three studies. Discussions to determine an 
appropriate amount to borrow from previous studies are included in the 
following section.

Discussion

Borrowing information

Borrowing information from prior studies to confirm treatment effect 
becomes increasingly important in drug development, especially in the 
field of rare disease, with opportunities of increased efficiency of delivering 
effective treatments to patients. In many cases, combining information 
from multiple studies is the only way practical to confirm treatment effect, 
like the case of mortality data for pirfenidone [8]. The Bayesian mortality 
analysis for pirfenidone illustrated how information from prior studies can 
be formally incorporated to confirm efficacy for a prospectively designed 
study not independently capable for such confirmation. It discounted prior 
study data to account for its hypothesis generating aspect without ignoring 
the information for the purpose of hypothesis confirmation.

The appropriate amount to borrow (θ) depends on if the discounted 
amount (1- θ) reasonably establishes the treatment benefit as a hypothesis 
to be confirmed. The Bayesian calculation translates this concept into the 
probability of treatment benefit based on the discounted fraction of previous 
study data. If the probability is large enough to establish the hypothesis, 
such as 90%, then the residual fraction from previous studies can be 
borrowed and integrated with new study data for independent hypothesis 
confirmation.

Determining an appropriate amount to borrow requires subjective 
judgement. There is no established convention to determine if a particular 
probability, say, 60%, is considered large enough to establish a hypothesis. 
Without additional information (such as data of reliable biomarkers), a 
default probability value of 90% should be sufficient for the purpose of 
generating hypotheses. The actual discount may be adjusted with a different 
corresponding probability than 90% based on subjective judgement using 
extra knowledge such as mechanism of action, similarity of study design, 
data consistency, and etc. If the prior data are compelling from virtually 
identical study design, borrowing a moderate amount is reasonable, as 
was illustrated using 50% borrowing for the pirfenidone mortality data. The 
probability of superiority for pirfenidone based on 50% of previous all-cause 
mortality data is over 90%, which is sufficient for hypothesis generation 
purposes. Borrowing the remaining 50% to form a prior of the new study 
for confirmation purposes is therefore reasonable. The subjective nature of 
this determination should not discourage borrowing of valuable information 
from previous studies, as the alternative of ignoring compelling data from 
previous studies is much more problematic. In practice the sponsor and 
the regulatory agency should discuss an agreement before un-blinding of 
the prospective study to avoid ambiguity of study outcomes. In case of no 
pre-specified agreement, like the case of pirfenidone NDA, the analysis 
provides valuable information for understanding the overall data strength 
of treatment effect for regulatory decisions. Although justifying a particular 
fraction of borrowing can be difficult especially on a post-hoc basis, the 
tipping point calculation provides an intuitive and objective tool to evaluate 
the evidence of treatment effect based on a wide range of borrowing 
fraction had it been pre-specified, so that a positive conclusion is possible 
in a relatively conservative manner when data evidence is strong. Using the 
pirfenidone data as an example, the regulatory review team may determine 
if borrowing at least 29% from previous studies is justifiable for a positive 
conclusion of treatment effect on all-cause mortality.

Relation to the power prior model

The statistical model of borrowing historical data in Section 3 is a 
special case of the power prior model discussed by Ibrahim and Chen [9], 
and Ibrahim et al [10]. Ibrahim, Chen and SinHA [11] provided a formal 
justification of the power prior for Bayesian inference. The model for 
pirfenidone has a fixed borrowing fraction from pooled historical data for the 
advantage of simplicity in method communication, which is very important 
in the regulatory environment of drug development where the majority of 
professions are not statisticians. The identical study design, similarity of 
study population of the two historical studies supports data pooling (of the 
two historical studies) with a single discount fraction. In many other cases 
a more general power prior model may be appropriate to allow for a data 
driven dynamic borrowing through a hierarchical model with differences 
across historical studies and treatment arms [9-12]. While such models are 
worth to be further studied, they are beyond the scope of this paper.

The cycle of learning and confirmation

Clinical drug development includes cycles of learning and confirmation 
[13]. Bayesian statistics has a natural framework for constant learning, and 
therefore the potential of improved efficiency for learning and confirmation. 
The Bayesian mortality analysis demonstrates that learning and confirming 
of hypotheses can be achieved without necessarily using “study” as 
the learning unit. It makes confirmation of treatment effect on mortality 
achievable without planning an impossibly large IPF study. In practice, the 
proposed approach should avoid or address the issues of selection bias and 
multiplicity, commonly reported as misuses of p-values [14,15].

A focus of statistical application

This paper focuses on the application of the proposed method rather 
than the treatment effect of pirfenidone. We discuss pirfenidone’s treatment 
effect for readers’ appreciation of the importance of this approach. For 
interested readers, we adopted the study analysis plan’s method of using 
one-year mortality data from the previous two studies to be consistent 
with the new study design, instead of using all mortality data from the 
previous studies which had various follow up duration from one and a half 
year and beyond. Contrary to many statisticians’ opinion, we believe that 
using data with the same follow up duration is more suitable statistically, 
with the limitation that conclusions of the treatment effect are applicable to 
one year of treatment. Using the same duration of follow up data requires 
minimum statistical assumption compared to the alternative of using data 
with different duration of follow up that requires some assumption of no time 
difference. Although appropriate modeling can handle duration differences 
with additional assumptions, it is beyond the scope of this paper. We are 
aware of the potential selection bias of choosing one year mortality data 
instead of all mortality data. Therefore the one year mortality data from the 
previous two studies should be discounted for the purpose of hypothesis 
confirmation. A review of mortality data with different cuts of duration should 
help to understand the robustness of findings with one year duration. The 
pirfenidone treatment effect with a much longer duration is not assumed 
to be the same as with one year duration, and is beyond the scope of this 
discussion.

Conclusions

The Bayesian analysis provides a formal method to calibrate the role of 
information from historical evidence in the overall interpretation of results 
from both historical and concurrent clinical studies. The increased efficiency 
of using all available data is especially important in drug development for 
rare diseases with serious consequences, where limited patient source 
prohibits large trials, and unmet medical needs demand rapid access 
to treatment options. This Bayesian application illustrates that when 
results from historical studies are compelling, independent confirmation 
of treatment effect can be achieved more efficiently using a statistical 
integration of current and historical studies.
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